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Abstract: Background and Objectives: The aim of this study is to demonstrate the increased efficiency
achieved by dental practitioners when carrying out an ex vivo training process on 3D-printed maxil-
laries before performing in vivo surgery. Materials and Methods: This developed ex vivo procedure
comprises the following phases: (i) scanning the area of interest for surgery; (ii) obtaining a 3D virtual
model of this area using Cone Beam Computed Tomography (CBCT); (iii) obtaining a 3D-printed
model (based on the virtual one), on which (iv) the dental practitioner simulates/rehearses ex vivo
(most of) the surgery protocol; (v) assess with a new CBCT the 3D model after simulation. The
technical steps of sinus augmentation and implant insertion could be performed on the corresponding
3D-printed hemi-maxillaries prior to the real in vivo surgery. Two study groups were considered,
with forty patients divided as follows: Group 1 comprises twenty patients on which the developed
simulation and rehearsal procedure was applied; Group 2 is a control one which comprises twenty
patients on which similar surgery was performed without this procedure (considered in order to com-
pare operative times without and with rehearsals). Results: Following the ex vivo training/rehearsal,
an optimal surgery protocol was developed for each considered case. The results of the surgery
on patients were compared with the results obtained after rehearsals on 3D-printed models. The
performed quantitative assessment proved that, using the proposed training procedure, the results of
the in vivo surgery are not significantly different (p = 0.089) with regard to the ex vivo simulation
for both the mezio-distal position of the implant and the distance from the ridge margin to sinus
window. On the contrary, the operative time of Group 1 was reduced significantly (p = 0.001), with
an average of 20% with regard to in vivo procedures performed without rehearsals (on the control
Group 2). Conclusions: The study demonstrated that the use of 3D-printed models can be benefi-
cial to dental surgeon practitioners, as well as to students who must be trained before performing
clinical treatments.

Keywords: dental implants; sinus lift; ex vivo training procedure; in vivo surgery procedure; 3D printing;
CAD/CAM techniques; maxillary models; Cone Beam Computed Tomography (CBCT); polymers
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1. Introduction

In dental clinics, patients often have terminal edentulism that cannot be treated
using traditional prosthetic methods [1–3]. Also, sometimes they do not accept a mo-
bile/removable prosthesis. In such situations, to restore the essential functions of the
stomatognathic system, implant therapy must be used. Such a technique requires an
additional sinus lift surgery [4,5] as well as bone augmentation for the insertion of im-
plants [6–9]. Despite the drawback represented by the necessity for surgery, by following
such procedures, most patients can benefit from an optimal prosthetic restoration from
both a morphological and functional point of view.

To optimize the necessary in vivo procedures, extra support can be provided by three-
dimensional (3D) printing. The scope of using this technique is to be able to rehearse,
ex vivo, the surgical maneuvers before performing them on the patient. Therefore, the
expected rate of success in vivo may increase, as well as the precision and time-efficiency
of the intervention. In this respect, craniofacial surgery represents one of the top areas
where 3D printing technology has built up interest [10–12]. Thus, precise individual patient
models help practitioners in reconstruction in planning and morphological rehabilitation.
Also, they can serve as teaching and educational tools [13,14].

In general, 3D printing, also known as rapid prototyping, is a process of forming a solid
object of a required shape. It was first described and patented in 1986 by Charles Hull [15]
and in 1992 by Deckard et al. [16]. An additive manufacturing (AM) process, in which
successive layers of material are set in different shapes, is used. This process is distinct from
traditional (i.e., subtractive) machining techniques, which rely on eliminating materials
using methods such as cutting or drilling, starting from a semi-manufactured part. In
contrast, 3D printing starts from a digital model. Through AM, the desired object is created
layer by layer, until it reaches its final shape, using a range of possible methods [17–19].
Efforts to optimize related techniques, especially scanning [20–22], have been made to
increase parameters of the process such as precision, surface roughness, and size of objects
to be printed.

In the present work, maxilla models are obtained through 3D printing using Computer-
Aided Design/Computer-Aided Manufacturing (CAD/CAM). The design of the 3D-
printed models is based on the clinical data obtained from intraoral scanning, as well
as on paraclinical data retrieved from the patients using Cone Beam Computed Tomogra-
phy (CBCT). The obtained 3D-printed models are utilized for ex vivo training for implant
insertion and sinus lift simulations before performing the real, in vivo surgery in the
clinical area.

The first hypothesis of the study is to prove that using such implant simulations and
clinical procedure rehearsals provides a superior quality of prosthetic restorative treatments
on dental implants. To verify this hypothesis, a comparison must be made between the
clinical results obtained in the final in vivo procedure and those obtained when the ex vivo
training on models is performed.

The second hypothesis is that intervention time is reduced when such simulations are
performed, compared to the situation when they are not utilized. To verify this hypothesis,
a comparison must be made between the operative time necessary for the final in vivo
procedure when such simulations (and the corresponding ex vivo training on models) are
performed and the operative time necessary without this developed procedure.

2. Materials and Methods

Forty patients were included in this study. They were divided into two groups:
Group 1 comprised twenty patients selected for the developed clinical procedure,

which included simulations/rehearsals, as described in the following for one of these
clinical cases. Similar procedures were performed on each of these twenty patients.

Group 2 was a control group, consisting of other twenty treated patients on which
in vivo surgery was performed without the training developed in this work. This group
was considered in order to evaluate the second hypothesis of this study. As a necessary
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remark, the cases of Group 2 were selected from a larger group of patients on which
the type of surgery specific to this study was performed previously to developing the
simulation and rehearsal procedure developed in this work. The selection was made by
considering an as good as possible match (in pairs of patients) with the cases of Group 1
from the point of view of their clinical difficulty (in this respect, please see Section 3.2).

This work was approved by the Committee of Medical Research of the “Victor Babes”
University of Medicine and Pharmacy of Timisoara, Romania, following the Ethical protocol
of the University with the CECS Approval no. 09/02.03.2018, and it was carried out
according to guidelines of the Declaration of Helsinki. Informed consent was submitted to
all of the forty enrolled patients.

2.1. Diagnosis

As mentioned above, a clinical case selected from Group 1 is presented in the following
to describe the method, i.e., the developed simulation and rehearsal procedure.

This case involved a 50-year-old male patient who presented to the clinic with a max-
illary cantilever cemented prosthetic restoration. The patient affirmed that the functional
role of this restoration became completely inadequate, with no possibility of mastication
on the right side. The first step of the procedure included a clinical examination (Figure 1),
where the missing maxillary right first and second molars were remarked. The first mo-
lar was extracted two years ago and the second molar over ten years ago. The intraoral
examination showed a healthy gingival and mucosal status. For an accurate diagnosis, a
radiological evaluation was performed. The treatment options were explained, and the
patient was also informed about the benefits and risks of each treatment option. As he
wanted to avoid a removable prosthesis due to its inconvenience, the chosen treatment
option was an implant-supported crown restoration.
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Figure 1. (a) Initial clinical assessment; (b) preoperative orthopantomogram (OPG) showing an insufficient height for
implant insertion in the maxillary right first molar edentulous site.

In this first step, a CBCT scan of the maxilla was performed to evaluate the bone
anatomy and confirm the absence of the maxillary sinus pathology (Figure 2).

2.2. Manufacturing of Hemi-Maxillary 3D Printed Model

An overview of this second step of the procedure is made in Figure 3. First, a digital
intraoral impression was performed using the digital intraoral scanning system Cerec
OMNICAM (Dentsply Sirona CEE Central, Bucharest, Romania). Thus, an initial 3D design
was obtained, as shown in the upper image in Figure 3a. Subsequently, the patient was
sent to the radiology center where a CBCT type scan was performed using CRANEX
3DX (Soredex, Tuusula, Finland). A radiographic CBCT scan allows getting an optimally
printed pattern due to its in-depth penetration of the tissues, as shown in the lower image
in Figure 3a.
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Figure 2. Cross-sectional CBCT views corresponding to: (a) the 16 with a bone height of 5.02 mm;
(b) the 17 with a bone height of 2.65 mm and insufficient crestal width.
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Figure 3. The steps of the design and manufacturing of a hemi-maxillary: (a) CAD-initial and final design; (b) CAM-3D
printing, with a Form2 system (Formlabs Inc., Somerville, MA, USA); (c) final two steps of the manufacturing process, i.e.,
washing and curing of the obtained polymer-based 3D-printed models.

The obtained data were overlaid to reach the optimal design of the future 3D-printed
model. With the help of this design, a polymeric model was obtained using the 3D printing
system Form2 (Formlabs Inc., Somerville, MA, USA). The initial 3D design of the maxillary
ready for printing (upper image of Figure 3a) was further correlated with the parameters
of the printing system. The printing process of the final 3D design (bottom of Figure 3a)
was carried out with the following system characteristics and parameters (Figure 3b): 3D
printing can be carried out in slices, with thicknesses ranging from 0.01 to 0.10 mm at
a temperature of 22 to 25 ◦C and a relative humidity of 60%. The 3D printing time of
each model was around 6 h. After this process, the scaffold sites were washed and then
introduced for 30 min in an oven curing from the same 3D printing system (Figure 3c). The
obtained parts were finally processed to remove small excesses of material.

The Digital 3D Printer Form 2 in Figure 3c, which uses laminated light-curing resins
(DigitalWax® DC-Series Casting Resin, DWS, Thiene, Italy), was employed to obtain the
3D polymeric model of the hemi-maxilla for each considered case/patient. Figure 4 shows
the 3D-printed polymeric-made hemi-maxilla model of this patient, in different views.
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2.3. Ex Vivo Simulation of Surgical Procedure

In this third step of the procedure, the dental practitioner performed on the polymeric
3D-printed hemi-maxilla model the simulation of the sinus lift procedure by lateral ap-
proach, the insertion of the ex-vivo implant, as well as the later and crestal augmentation.
Thus, the surgeon was able to observe the exact positioning of the bone formation, the
thickness of the remaining bone, and the distance to the sinus membrane. As a necessary
remark, the following operative phases described in the following section could not be
rehearsed on the 3D-printed model: incision, flap elevation, sinus membrane elevation,
flap repositioning, and suture.

2.4. Surgical Procedure

The real operation was performed between 2 to 5 days (maximum) after the rehearsal,
depending on the availability of the operation room and the surgeon. The essential criterium
was to have the same healthy sinus condition for the patient.

In this fourth step of the procedure, correlating clinical information with preclinical
data, as well as with those obtained on 3D-printed models, the medical doctor was able
to pass to the surgical procedure for the sinus lift and the insertion of dental implants, as
shown in the example in Figure 5 for the considered patient.

The first clinical stage was the sinus lift. For this case, a sinus floor augmentation
procedure via the lateral window approach with simultaneous implant placement for the
missing 16 and a sinus augmentation for latter implantation for 17 were planned. On the
day of the surgery, this patient received 2 g of amoxicillin one hour before the procedure as
antibiotic prophylaxis: 1 g one hour before the procedure and the rest of the dose 12 h after
the first dose. As post-operative therapy, the patient received 1 g three times a day per os
for 7 days [23]. Following the administration of local anesthesia with articaine, a crestal
incision was performed, as well as two vertical releasing incisions on the distal aspect of the
maxillary right second premolar and the mesial aspect of the edentulous crest of the third
molar, respectively. The incisions were made with a 15C scalpel blade and a full-thickness
mucoperiosteal flap was reflected with a lateral sinus wall exposure (Figure 5a).

A bony window was then traced in the 16 and 17 regions using a piezo-surgical unit
(Figure 5b,c). The initial bone marking was done using tip SL1. This was followed by the
deepening of the mark using SL2. Using the SL3 tip, the Schneiderian membrane on the
windows edges was easily elevated (Figure 5d). Following the complete membrane eleva-
tion extending to the anterior and medial walls, the implant osteotomy was performed.

A C1 Implant 3.75 mm × 11.5 mm Standard Platform Conical Connection (MIS
Implants Technologies Ltd., Fair Lawn, NJ, USA) with simultaneous sinus lift procedure
was inserted on the 16 position (Figure 5e). A dedicated xenograft was compacted into the
sinus cavity (CompactBone® B., Dentegris GmbH, Monheim am Rhein, Germany). This
specific augmentative material was chosen because of its mineral composition, physical,
chemical, and biological properties, as well as because of its hydrophilic surface, with
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a close resemblance to the characteristics of the human bone. Also, this material allows
for fast revascularization because of its interconnecting pore system. Thus, it was able to
provide long-term stability of the augmented site with predictable results [24,25].
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Figure 5. (a) Flap design; (b) the bony window; (c) the bony window, almost completed saving the blood vessels; (d) the
Schneiderian membrane was elevated; (e) inserted implant in the 16th position with simultaneous sinus augmentation;
(f) sinus lift procedure 17 and lateral crest augmentation.

At the level of 17, a sinus elevation procedure with a simultaneous lateral and vertical
augmentation of the crest was performed (Figure 5f). The augmented area was completely
covered with a collagen membrane (BoneProtect® Membrane, Dentegris GmbH, Monheim
am Rhein, Germany).

The incisions were closed with interrupted sutures 4-0 polyester (Resorba Medical
GmbH, Nürnberg, Germany).

2.5. Assessment of the Surgical Procedure

A CBCT was performed the day after the surgery in the fifth step of the procedure.
Thus, each patient was followed up two weeks after the surgery to check if the healing
was uneventful. Also, no complications occurred in the six-month period during the
osteointegration of implants.

For the considered case, this CBCT assessment is presented in the cross-sections in
Figure 6. Measurements were then performed, as presented in the following section.

All the phases above were performed, for each patient in the study, by the same
surgeon. All the CBCT examinations were performed by the same radiologist.
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3. Results
3.1. Positioning Assessments

Following the described procedure, a comparison was made between the mezio-distal
positions of the implant on the maxillary arch on the CBCT of the model and the patient’s
postoperative CBCT, as shown in the panoramic views in Figure 7. Also, the distances from
the top of the maxillary ridge to the lowest cut on the maxillary sinus buccal wall were
measured on the cross-section in Figure 8.
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implant (D1)) on (a) the training CBCT model (D1-3D) and on (b) the postoperative CBCT (D1-P)—panoramic view.

Table 1 provides the results of the measurements performed on the CBCT made on
the 3D-printed model after the implant insertion versus the CBCT made on the patients
after the final (i.e., real clinical procedure of) implant insertion.

The statistical processing of these results was performed using SPSSv17, calculating
the mean and the standard deviations (SD). Descriptive statistics were performed for the
numerical variables and comparisons between these series of pair values (i.e., D1-3D and
D1-P) were done with the non-parametric Wilcoxon Signed Ranks test (Table 2). The results
were considered significant for a value of p < 0.05 (Table 3). As it may be concluded from
these data, the difference between the distances from the anterior tooth to the middle of
the implant in the two considered situations is statistically insignificant (Wilcoxon Signed
Ranks Test, p = 0.089).
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Table 1. Measurements performed on CBCT images: 3D-printed models (rehearsed procedures) versus patients (postoperative).

Patient CBCT Measurements on 3D-Printed Models (mm) CBCT Measurements on Postoperative Patients (mm)

Distance from the
Anterior Tooth to the

Middle of the Implant
(D1-3D)

Distance from the Ridge
Margin to the Sinus

Window (D2-3D)

Distance from the Anterior
Tooth to the Middle of the

Implant (D1-P)

Distance from the
Ridge Margin to the

Sinus Window (D2-P)

1 4.23 4.47 4.25 4.72
2 3.91 5.10 4.01 4.87
3 4.43 4.87 4.47 4.64
4 3.86 4.58 3.92 4.98
5 4.67 5.75 4.51 5.68
6 4.64 4.35 4.78 4.73
7 3.80 4.29 3.82 4.48
8 3.86 5.67 3.91 5.39
9 3.90 4.92 4.17 5.19

10 3.92 5.17 4.03 4.83
11 4.45 4.77 4.27 4.91
12 4.29 4.57 4.37 4.31
13 3.95 4.86 3.94 5.07
14 4.17 5.14 4.26 4.92
15 3.83 5.12 4.15 5.37
16 3.89 4.93 4.06 5.19
17 4.57 4.62 4.41 4.95
18 4.49 4.71 4.45 4.58
19 4.54 5.12 4.52 5.34
20 4.48 4.72 4.51 4.60
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Table 2. Descriptive statistics regarding the distance from the anterior tooth to the middle of the
implant following rehearsal procedures on 3D-printed models (D1-3D) compared to the distance
from the anterior tooth to the middle of the implant following implant procedures on patients (D1-P).

Distance N Mean (mm) SD (mm) Minimum (mm) Maximum (mm)

D1-3D 20 4.194 0.316 3.80 4.67
D1-P 20 4.241 0.260 3.82 4.78
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Table 3. Ranks regarding the D1-3D distances compared with the D1-P distances (the Wilcoxon
Signed Ranks test results).

N Mean Rank (mm) Sum of Ranks (mm)

D1-P versus
D1-3D

Negative Ranks 6 a 9.92 59.50
Positive Ranks 14 b 10.75 150.50

Ties 0 c - -
Total 20 - -

Remarks: a D1-P < D1-3D; b D1-P > D1-3D; c D1-P = D1-3D.

Similar statistical processing was performed using SPSSv17 for the distance from
the ridge margin to sinus window, in a comparative look between the data obtained
when rehearsing on 3D-printed models (D2-3D) and when performing implant procedures
on patients (D2-P). Descriptive statistics were performed for the numerical variables.
Comparisons between these series of pair values were done with the non-parametric
Wilcoxon Signed Ranks test (Table 4). The results were considered significant for a value of
p < 0.05 (Table 5). The difference between these distances was also statistically insignificant
(Wilcoxon Signed Ranks Test, p = 0.350).

Table 4. Descriptive statistics regarding the distance from the ridge margin to the sinus window
for rehearsals on 3D-printed models (D2-3D) and the distance from the ridge margin to the sinus
window for implant procedures on patients (D2-P).

Distance N Mean (mm) SD (mm) Minimum (mm) Maximum (mm)

D2-3D 20 4.887 0.385 4.29 5.75
D2-P 20 4.936 0.347 4.31 5.68

Table 5. Ranks regarding the D2-3D distances compared to the D2-P distances (the Wilcoxon Signed
Ranks test results).

N Mean Rank Sum of Ranks

D2-P versus
D2-3D

Negative Ranks 9 a 8.89 80.00
Positive Ranks 11 b 11.82 130.00

Ties 0 c - -
Total 20 - -

Remarks: a D2-P < D2-3D; b D2-P > D2-3D; c D2-P = D2-3D.

3.2. Operative Time

Another important aspect of a surgical procedure, essential from the patient’s point of
view, is the operative time. We registered the corresponding operative time intervals T for
the procedures described above for the patients in Group 1 (i.e., with performed rehearsals
on 3D-printed models) and compared them to the time intervals T0 necessary for the same
surgery procedures for the patients in Group 2 (i.e., for the twenty clinical cases that did
not benefit from a simulation/rehearsal prior to the surgery). The comparison between
these time intervals for each of the twenty patients considered in the control Group 1 and
in the study Group 2 was made in Table 6.

The twenty clinical cases of the control Group 2 (numbered 10 to 200 in Table 6) were
selected to be an as good as possible match (from the point of view of the clinical difficulty)
with the twenty cases selected for the study Group 1. This relative match of the cases
presented in parallel in Table 6 for Groups 1 and 2 is an inherent limitation of the present
work, as one cannot use the same clinical cases for both analyzes. Instead, cases with
similar levels of difficulty from a clinical point of view must be selected for an as rigorous
as possible comparison.
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Table 6. Operative time intervals of implant procedures without (T0) versus with 3D-model-based simulations/rehearsals (T).

Patient of (Control)
Group 2

Operative time Without
3D-Model-Based Rehearsal T0 (min)

Patient of Study
Group 1

Operative Time with Performed
Simulation/Rehearsal T (min)

10 128 1 89
20 101 2 92
30 134 3 102
40 112 4 88
50 115 5 102
60 142 6 79
70 123 7 82
80 126 8 98
90 98 9 95
100 105 10 100
110 141 11 87
120 105 12 81
130 113 13 78
140 124 14 97
150 99 15 103
160 133 16 91
170 90 17 101
180 131 18 120
190 102 19 85
200 129 20 94

Statistical processing was performed using SPSSv17 for these operative times, similar
to Section 3.1, in the comparative look between the necessary time without rehearsal previ-
ous to the procedure (T0), i.e., for Group 2, and when implant procedures on patients were
performed after such a rehearsal on 3D-printed models (T), i.e., for Group 1. Descriptive
statistics were performed for the numerical variables and comparisons between these series
of pair values using the non-parametric Wilcoxon Signed Ranks test (Table 7).

Table 7. Descriptive statistics regarding the operative time without rehearsals (T0) and with per-
formed simulations/rehearsals on 3D-printed models (T).

Time N Mean (min) SD (min) Minimum (min) Maximum (min)

T0 20 117.55 15.55 90 142

T 20 93.2 10.21 78 120

The mean time T0 mean required for implant placement with a simultaneous sinus lift
procedure in patients of Group 2 (i.e., without rehearsals) was 117.55 min. The mean time
Tmean needed for the same procedure in the cases of the patients of Group 1 (i.e., with
rehearsals on 3D-models prior to the real surgery) was 93.2 min. The 24.35 min difference
between these two values, as well as the relative decrease (T0 mean − Tmean)/T0 mean equal
to 20.71% from the T0 surgery time indicates the benefit of applying the rehearsal procedure
for patients.

The results were considered significant for a value of p < 0.05 (Table 8). The differ-
ence between these distances was statistically significant (Wilcoxon Signed Ranks Test,
p < 0.001).

Table 8. Ranks regarding the T0 and the T operative times.

N Mean Rank Sum of Ranks

T0 versus T

Negative Ranks 18 a 11.25 202.50
Positive Ranks 2 b 3.75 7.50

Ties 0 c

Total 20

Remarks: a T < T0; b T > T0; c T = T0.
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4. Discussion and Conclusions

Surgeons often use different 3D-printed human organs before surgery, for example
in craniofacial reconstruction [26,27] and implant-site assessment [28]. Thus, they can
provide a more detailed picture of certain anatomical aspects than when using classical
two-dimensional (2D) models or 3D computer imagery. Using 3D-printed parts, surgeons
can physically feel the replicas of those organs, bone structures, or other aspects of interest.
Thus, they can perform the surgery protocol as a training procedure. An alternative is to
perform implant surgical training and research on a cadaver specimen.

With 3D printing, dental medicine can also evolve in terms of the quality of future
implant surgical treatments, and this has been approached in numerous studies [12,29–34].
Materials and manufacturing procedures have been explored [35,36], as well as safety and
efficacy issues [37]. Accuracy evaluations of 3D-printed models for mandibular models
were also performed, using a range of methods [38].

On the other hand, oral implantology is not a stand-alone branch; it depends equally
on the future prosthetic treatment that must be consistent with the insertion of implants [39].
Tissue engineering is another aspect to be considered, both for bone [7–9,40–42] and soft
tissue [43]. Clearly, in oral implantology, various clinical situations may arise that require
optimal thinking and the calculation of the treatment plan.

The present study approached the utility of the 3D-printed models in the visualization
of the complex maxillary anatomical structures and the impact of the surgery simulation
before the in vivo operative time. Both maxillary implant insertion combined with sinus
augmentation procedures require an accurate technique. Guidance is necessary to achieve
the appropriate angulation and position in relation to the adjacent teeth, as well as a
preplanned design and positioning of the lateral window for approaching the sinus.

Due to the realistic form of the 3D-printed models, the technical steps of sinus aug-
mentation and implant insertion could be performed on the corresponding model prior to
surgery. Technical steps of the procedure were rehearsed in the simulation using the 3D
model (as detailed in the Materials and Methods section): shape and size of antrostomy,
implant insertion, and grafting. As pointed out, several operative phases could not be
rehearsed on the 3D-printed model: incision, flap elevation, sinus membrane elevation,
flap repositioning, and suture (Figure 5).

In this work, we analyzed the compliance of the ideal mezio-distal position of the
implant due to its crucial role for the final prosthetic restoration and the health of the tissue
around it [28]. The statistical data in Tables 2–5 demonstrated that no significant differences
were obtained between simulations and clinical procedures. Thus, the preplanned posi-
tioning of the implant on the 3D-printed model was transferred in the in vivo operative
time. The design and position of the lateral window during the sinus lift procedure have
significant roles in avoiding intra- and post-surgical complications [44,45]. This is the
reason why we have chosen to analyze the compliance of the ideal position of the lateral
window. This method allowed us to assess the thickness of the lateral maxillary wall and
its convexity from the practical scene. From the considered clinical cases, in four of them,
the buccofacial dimensions of the lateral maxillary wall were thicker than 4.5 mm. In
these specific cases, the 3D models allowed to undergo the osteotomies and to practice
this challenging mandatory step of sinus augmentation. The thick lateral maxillary wall
changed the standard surgical procedure, meaning the necessity of thickness reduction of
the trap-door window, a time-consuming maneuver. In the other three cases, we found
a convexity of the lateral maxillary sinus wall. The 3D models again proved useful, as
they allowed to evaluate the surgical access to the sinus by considering the high risk of
Schneiderian membrane perforation.

As an overall result, the statistical data showed no significant differences between the
3D-printed model and postoperative CBCTs.

The first hypothesis of the study was proved: using implant simulations allows for a
superior quality of future prosthetic restorative treatments on dental implants. The second
hypothesis was also confirmed: a significant reduction of the intervention time of around
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20% was obtained (Tables 7 and 8) when rehearsals on 3D-printed models were performed,
compared to the situation when they were not utilized.

In the complex clinical cases approached, the 3D-printed models allowed for a precise
plan of the surgery. Also, the transfer of the accuracy in the real operation field was made
possible. Therefore, using 3D-printed models, implants can be inserted in vivo in full
compliance with future prosthetic treatment. Improving the surgical operative time, as
obtained in this study, is a real benefit to both the patient and the surgeon. An accurate
sinus lift procedure along with reduced tissue manipulation leads to a better perception
during the recovery time.

In conclusion, the use of 3D-printed models can benefit implant practitioners, as well
as students taking a course in Oral Implantology. Also, it can be a support to students
of dental medicine in implantology to simulate implant insertions. Thus, 3D-printed
models can play a significant role in the educational field. The anatomical models mitigate
the inconvenience of cadaveric dissection, allowing the student to focus only on the
structural anatomy and to relate it with its functional role [45]. In contrast, commercial
anatomical models, compared with the 3D models, are only illustrative and unable to
reproduce the biological particularities [46]. For a more pragmatic model used for a hands-
on simulation, creating a double-material 3D model could be more appropriate. In the
cases considered in our work, this would imply simulating the solid bone and the elastic
Schneiderian membrane. However, a printer that could create models that are able to match
the properties of the tissues involved in the operation represents a major issue, because the
current 3D printing technologies do not incorporate fluids into their 3D-printed objects.
Printing with dissectible hydro-gel materials could get us closer to models which could be
felt and could deform similar to living tissues [47].

We expect that further progress in the field will lead to the development of both
soft and hard printable materials that mimic the haptics of biological tissues. The cost-
effective availability of 3D printers may allow practitioners to enhance their surgical skills
on 3D-printed models, with a resolution similar to one of the original dissectible structures.

For the imaging part, future work in this direction in our group includes using com-
bined Optical Coherence Tomography (OCT) [48–50] and 3D CBCT [51] for the assessment
of the results of such clinical procedures, as we have demonstrated both the complementar-
ity [52] and the optimization [53] of the latter imaging technique by using the former.
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