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Amphetamine (AMPH) elicits its behavioral effects by acting on the dopamine (DA) transporter (DAT) to induce DA
efflux into the synaptic cleft. We previously demonstrated that a human DAT construct in which the first 22 amino
acids were truncated was not phosphorylated by activation of protein kinase C, in contrast to wild-type (WT) DAT,
which was phosphorylated. Nonetheless, in all functions tested to date, which include uptake, inhibitor binding,
oligomerization, and redistribution away from the cell surface in response to protein kinase C activation, the truncated
DAT was indistinguishable from the full-length WT DAT. Here, however, we show that in HEK-293 cells stably
expressing an N-terminal-truncated DAT (del-22 DAT), AMPH-induced DA efflux is reduced by approximately 80%,
whether measured by superfusion of a population of cells or by amperometry combined with the patch-clamp
technique in the whole cell configuration. We further demonstrate in a full-length DAT construct that simultaneous
mutation of the five N-terminal serine residues to alanine (S/A) produces the same phenotype as del-22—normal
uptake but dramatically impaired efflux. In contrast, simultaneous mutation of these same five serines to aspartate
(S/D) to simulate phosphorylation results in normal AMPH-induced DA efflux and uptake. In the S/A background, the
single mutation to Asp of residue 7 or residue 12 restored a significant fraction of WT efflux, whereas mutation to Asp
of residues 2, 4, or 13 was without significant effect on efflux. We propose that phosphorylation of one or more serines
in the N-terminus of human DAT, most likely Ser7 or Ser12, is essential for AMPH-induced DAT-mediated DA efflux.
Quite surprisingly, N-terminal phosphorylation shifts DAT from a ‘‘reluctant’’ state to a ‘‘willing’’ state for AMPH-
induced DA efflux, without affecting inward transport. These data raise the therapeutic possibility of interfering
selectively with AMPH-induced DA efflux without altering physiological DA uptake.

Introduction

The dopamine transporter (DAT) plays a critical role in the
synaptic clearance of dopamine (DA) by mediating the
reuptake of DA released into the presynaptic terminal
(Amara and Kuhar 1993; Giros and Caron 1993). It thereby
regulates the strength and duration of the dopaminergic
response. DAT is also the site of action of several psycho-
stimulant drugs, including amphetamine (AMPH) and co-
caine (Kuhar et al. 1991). As a substrate, AMPH competitively
inhibits DA reuptake, thereby increasing synaptic DA
concentration and enhancing the rewarding property of the
dopaminergic system. Additionally, AMPH elicits the release
of DA through the transporter in the brain (Fischer and Cho
1979; Jones et al. 1998) and in heterologous cells expressing
DAT (Eshleman et al. 1994; Wall et al. 1995; Sitte et al. 1998).
AMPH-induced DA efflux is thought to be mediated by a
facilitated exchange diffusion process, in which inward
transport of substrates increases the availability of inward-
facing binding sites of the transporter (Fischer and Cho
1979), which leads thereby to increased efflux of cytosolic
substrates. Emerging evidence, however, indicates that inward
and outward transport of monoamines may differ in more
fundamental ways. In particular, it appears that AMPH-
induced DA efflux does not rely exclusively on the ability of
AMPH to increase the availability of inward-facing DATs

(Chen and Justice 2000) but also relates to the ability of
AMPH to induce uncoupled currents (Sitte et al. 1998) and to
increase intracellular sodium (Khoshbouei et al. 2003) and
kinase activity (Kantor and Gnegy 1998). Although AMPH-
induced currents have been shown to be of physiological
relevance (Ingram et al. 2002), AMPH exerts its primary
behavioral effects by inducing DA efflux (Wise and Bozarth
1987; Sulzer and Galli 2003). In addition, enhanced AMPH-
induced DA efflux is associated with sensitization to repeated
AMPH administration (Robinson and Becker 1986).
DAT is thought to comprise 12 transmembrane segments

with cytoplasmic N-terminal and C-terminal domains (Giros
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and Caron 1993). There are numerous putative phosphor-
ylation sites for various protein kinases in the intracellular
domains (Giros and Caron 1993; Granas et al. 2003; Lin et al.
2003), and multiple protein kinases have been shown to
regulate DAT function (Daniels and Amara 1999; Melikian
and Buckley 1999; Granas et al. 2003). Treatment with AMPH
also leads to increased intracellular accumulation of DAT
(Saunders et al. 2000), and AMPH has been shown to increase
striatal particulate PKC activity (Giambalvo 1992) through a
calcium dependent pathway (Giambalvo 2003). Importantly,
PKC activation leads to N-terminal phosphorylation of DAT
in rat striatum (Foster et al. 2002). Consistent with this
observation, we recently showed that deletion of the first 22
amino acids from DAT essentially eliminates32P incorpora-
tion into DAT in response to PKC activation (Granas et al.
2003). Surprisingly, this truncation did not affect PKC-
induced internalization, thereby demonstrating that N-
terminal phosphorylation of DAT is not essential for
internalization. Since uptake, inhibitor binding, and oligo-
merization of this truncated DAT were also not significantly
different from those of full-length DAT (Hastrup et al. 2001,
2003; Granas et al. 2003), N-terminal phosphorylation has not
yet been associated with a functional effect.

PKC activation, however, has been shown to stimulate
DAT-mediated release of DA (Davis and Patrick 1990;
Giambalvo 1992; Kantor and Gnegy 1998). Moreover,
AMPH-induced DA efflux is inhibited by the introduction
of PKC inhibitors and by downregulation of PKC (Kantor and
Gnegy 1998; Cowell et al. 2000; Kantor et al. 2001), whereas
DA uptake is unaffected by these manipulations. This suggests
that inward and outward transport can be independently
regulated and led us to explore the hypothesis that N-
terminal phosphorylation of DAT may be involved in AMPH-
induced DA efflux. Here we report that deletion of the first
22 amino acids of DAT, as well as mutation of the five N-
terminal serines to alanine, greatly decreases AMPH-induced
DA efflux without affecting uptake. Mutation of these serines
instead to aspartate, thereby mimicking phosphorylation,
preserves efflux, suggesting that phosphorylation of one or
more of these five N-terminal serines is essential for AMPH-
induced DA release.

Results/Discussion

In our previous studies we created a mutant human DAT
construct in which the first 22 amino acids were removed and
replaced by tandem FLAG and HA epitope tags (FLAG-HA-
DAT) (Hastrup et al. 2001, 2003). This construct was created
to tag the protein and to remove Cys6 to facilitate
biochemical studies. FLAG-HA-DAT expressed at wild-type
(WT) levels in the plasma membrane, and we found it to be
functionally normal in terms of uptake, inhibitor binding,
DAT oligomerization, and PMA- and receptor-induced
internalization FLAG-HA-DAT expressed at wilde-type
(WT) levels in the plasma membrane, and we found it to be
functionally normal in terms of uptake, inhibitor binding,
DAT oligomerization, and PMA- and receptor-induced
internalization (Hastrup et al. 2001, 2003; Granas et al.
2003). Since this construct lacks the first five serines in DAT
(Ser2, Ser4, Ser7, Ser12, Ser13) and does not appear to be
phosphorylated by PKC activation (Granas et al. 2003), we
hypothesized that FLAG-HA-DAT might be impaired in

AMPH-induced efflux. In accordance with this prediction,
we found that AMPH-induced DA efflux was decreased by
approximately 80% in the FLAG-HA construct relative to
FLAG-tagged full-length DAT (FLAG-DAT) (Figure 1). This
resulted from a decrease in the maximal rate of DA efflux and
not from a change in the apparent affinity for AMPH in
mediating efflux. In contrast, DA uptake by these two
constructs was not significantly different (Figure 1, legend).
In a cell suspension (or in a population of adherent cells), it

is difficult to assess the potential effects on efflux of a change
in ionic gradients or membrane potential because the
membrane potential and ionic gradients change freely
depending on the stimuli. Indeed, AMPH has been shown
to induce depolarization through a DAT-mediated uncoupled
chloride conductance that can be gated by substrates such as
AMPH (Ingram et al. 2002). Therefore, in order to quantify
these effects under conditions where we could control the
intracellular concentration of the substrates, DA, sodium, and
chloride, as well as the membrane potential, we used
amperometry in conjunction with the patch-clamp technique
in the whole-cell configuration, a method that we have used
previously to study the mechanism of efflux (Galli et al. 1998;
Khoshbouei et al. 2003). We recorded DAT-mediated currents
with the whole-cell pipette by stepping the membrane voltage
from a holding potential of �20 mV to þ100 mV while
simultaneously measuring efflux as assessed by amperometric
currents resulting from the release of DA. Consistent with our
studies with cell populations, we found that AMPH-induced
efflux was decreased at þ100 mV by 91% 6 4% (n = 5) in
FLAG-HA-DAT relative to FLAG-DAT. Surprisingly, the
DAT-mediated whole-cell currents gated by AMPH, which
have been shown to be uncoupled from the transport process
(Sonders et al. 1997; Khoshbouei et al. 2003), were also
reduced to a comparable extent (see below).
This reduction in current and efflux resulted from the N-

Figure 1. N-Terminal Truncation of DAT Impairs AMPH-Induced DA Efflux

Cells were preloaded with 15 lM DA and superfused with AMPH at
concentrations ranging from 1 to 100 lM. AMPH-induced DA efflux
was defined as the amount of DA released in response to the given
concentration of AMPH minus the baseline value. Baseline DA
release did not differ between FLAG-HA-DAT and FLAG-DAT (13.2
6 2.9 and 10.26 1.8, respectively; n = 18). The Vmax of efflux was 31.1
6 4.6 and 128.3 6 12.0 pmol/mg protein/fraction (F(2,27) = 52.6, p ,
0.0001) with a Km for amphetamine of 7.8 6 4.1 and 7.6 6 2.2 lM, for
FLAG-HA-DAT and FLAG-DAT, respectively (n = 4). For [3H]DA
uptake, the Vmax was 15.4 6 2.5 and 18.3 6 2.2 pmol/min/mg protein
with a Km of 1.2 6 0.8 and 1.1 6 0.4 lM for FLAG-HA-DAT and
FLAG-DAT, respectively (F(2,49) = 1.78, p . 0.17).
DOI: 10.1371/journal.pbio.0020078.g001
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terminal deletion and not from the presence of the HA
epitope, since a FLAG-tagged construct lacking the first 22
amino acids of DAT (FLAG-del22-DAT) but without any
other added sequence showed a reduction in current and
efflux similar to that of FLAG-HA-DAT. Figure 2 shows
representative traces for the AMPH-induced current and DA
efflux recorded at þ100 mV obtained from FLAG-DAT
(panels A and B, respectively) and FLAG-del22-DAT (panels
C and D, respectively). In panels B and D, the upward
(positive) deflections indicate DA oxidation and thus reflect
DA efflux. At the onset of the voltage step, the amperometric
electrode recorded an oxidative current (positive), which is
indicative of DA efflux, and at the termination of the voltage
step, the amperometric current relaxed to baseline. At þ100
mV, the AMPH-induced whole-cell and oxidative currents
recorded from FLAG-del22-DAT cells were much smaller
than those recorded from FLAG-DAT cells: in FLAG-del22-
DAT cells, the whole-cell currents were 21.8% 6 7.4%
whereas the amperometric currents were 23.0% 6 2.5% of
the equivalent currents recorded in FLAG-DAT cells (n = 5).

In marked contrast to this approximately 80% reduction,

in the same two sets of stably transfected cells, the Vmax for
uptake of the substrate tyramine by FLAG-del22-DAT was
146% that by FLAG-DAT (Table 1). Neither the Km for
tyramine uptake (Table 1) nor the apparent Ki for inhibition
of tyramine uptake by AMPH (37 6 4 nM and 63 6 18 nM,
respectively; n = 5) or cocaine (214 6 34 nM and 281 6 33
nM, respectively; n = 4) was significantly different in FLAG-
DAT and FLAG-del22-DAT. Cell-surface biotinylation studies
revealed that the increased Vmax in FLAG-del22-DAT was
accounted for by an increased number of DAT molecules at
the cell surface (Table 1) and suggested that the truncation
had a minimal effect on the turnover rate of the transporter.
These results are consistent with our previous studies on the
FLAG-HA-DAT deletion construct expressed in EM4 cells,
which also showed normal tyramine uptake (Hastrup et al.
2001), as well as with the DA uptake studies described above
for FLAG-HA-DAT and FLAG-DAT expressed in HEK-293
cells (see Figure 1, legend).
If the reduction in the AMPH-induced current and efflux

resulted from the loss of phosphorylation of one or more of
the five N-terminal serine residues, then mutation of the
serine(s) that is (are) phosphorylated should lead to an effect
similar to that of the truncation. Since it is not known which
of the serines are phosphorylated, we simultaneously mutated
all five serines to alanine in the full-length FLAG construct
(FLAG-S/A-DAT). To obtain further evidence that phosphor-
ylation of one or more of the N-terminal serines is essential
for AMPH-induced DA efflux, we also created a construct in
which all five of these serines were simultaneously mutated to
aspartate (FLAG-S/D-DAT), in an attempt to simulate
phosphorylation of the serines.
Neither the Km nor the Vmax for tyramine uptake was

significantly different in FLAG-S/A-DAT and FLAG-S/D-DAT
(see Table 1). The small, nonsignificant reduction in uptake
by FLAG-S/A-DAT was accounted for by a similarly decreased
number of DAT molecules at the cell surface (see Table 1),
suggesting that the turnover rate of the transporter was the
same in these two mutants. The apparent Ki’s for inhibition
of tyramine uptake in FLAG-S/A-DAT and FLAG-S/D-DAT by
AMPH (41 6 13 nM and 48 6 7 nM, respectively; n = 3) or by
cocaine (331 6 46 nM and 444 6 47 nM, respectively; n = 4)
were not significantly different.

Table 1. Kinetic Properties of [3H]Tyramine Uptake and Cell-
Surface Localization of FLAG-DAT, FLAG-del22-DAT, FLAG-S/A-
DAT, and FLAG-S/D-DAT

Construct Km (nM) Vmax

(pmol/min/mg
of Protein)

Relative Surface
Biotinylation

FLAG-DAT 490 6 74 8.7 6 0.7 1a

FLAG-del22-DAT 520 6 42 12.7 6 1.6 1.61 6 0.09

FLAG-S/D-DAT 460 6 94 14.0 6 3.3 1a

FLAG-S/A-DAT 610 6 116 11.8 6 2.1 0.83 6 0.12

aThe surface biotinylation data (mean 6 SEM, n = 5) are arbitrary units obtained
from the analysis of immunoblots. Since FLAG-DAT and FLAG-del22-DAT were
studied in parallel, and FLAG-S/D-DAT and FLAG-S/A-DAT were studied in parallel,
the data for each set were normalized to the construct with normal efflux, and
therefore these values are shown as 1. Uptake data represent mean 6 SEM of 5–6
experiments.
DOI: 10.1371/journal.pbio.0020078.t001

Figure 2. N-Terminal Truncation of DAT

Reduces AMPH-Induced Currents and DA

Efflux

Cells were voltage clamped with a whole-
cell patch pipette while an amperometric
electrode was placed onto the cell mem-
brane. The internal solution of the whole-
cell patch pipette contained 2 mM DA.
(A) Representative trace of AMPH-in-
duced whole-cell current obtained from
FLAG-DAT cells upon AMPH (10 lM)
bath application. The membrane poten-
tial of the cell was stepped to þ100mV
from a holding potential of –20 mV.
(B) Oxidation current acquired concom-
itantly to the whole-cell current repre-
sented in panel A.
(C and D) Representative current traces
(whole-cell and amperometric, respec-
tively) obtained from FLAG-del22-DAT
cells using the same experimental pro-
tocol as in (A) and (B).
DOI: 10.1371/journal.pbio.0020078.g002
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Current-voltage and amperometric-voltage relationships
were generated for FLAG-DAT, FLAG-del22-DAT, FLAG-S/
A-DAT, and FLAG-S/D-DAT by stepping the voltage from a
holding potential of �20 mV to voltages between –120 mV
and þ100 mV in increments of 20 mV (Figure 3). In FLAG-
DAT cells, AMPH-induced currents and DA efflux were
voltage dependent, with an increase at positive voltages and
saturation of DA efflux near þ100 mV (Figure 3A and 3B,
filled circles). In contrast, in FLAG-del22-DAT cells, the
AMPH-induced currents and DA efflux were greatly reduced
at all voltages tested (compare Figure 3A and 3B, open circles,
with Figure 3A and 3B, filled circles). This phenomenon was
not likely a consequence of an alteration of ion gradients or
accumulation of intracellular AMPH, because no significant
differences were found between the reversal potentials of the
current obtained from FLAG-DAT cells (24.5 6 5.3 mV) and
FLAG-del22-DAT cells (32.6 6 6.3 mV). In FLAG-DAT cells,
the amperometric current at þ80 mV was 0.305 6 0.079 pA
(mean 6 SEM; n = 6) (Figure 3B, filled circles). In contrast, in
FLAG-del22-DAT cells the amperometric current recorded at
the same potential was significantly reduced (0.077 6 0.028
pA, mean 6 SEM; p , 0.05 by Student’s t-test, FLAG-del22-
DAT versus FLAG-DAT; n = 5) (Figure 3B, open circles).

Similarly, in FLAG-S/D-DAT cells the AMPH-induced
currents and DA efflux were much greater than those
generated in FLAG-S/A-DAT cells (Figure 3C and 3D, filled
triangles and open triangles, respectively). In FLAG-S/D-DAT
cells, the amperometric current atþ80 mV was 0.202 6 0.039
pA (mean 6 SEM; n = 7) (Figure 3D, filled triangles). In
contrast, in FLAG-S/A-DAT cells, the amperometric current
recorded at the same potential was significantly reduced
(0.014 6 0.009 pA, mean 6 SEM; p , 0.05 by Student’s t-test,
FLAG-S/D-DAT versus FLAG-S/A-DAT; n = 5). Thus, the
ability of AMPH to induce DAT-mediated currents and DA
efflux was impaired dramatically, either by N-terminal

truncation, or by substitution of the five N-terminal serines
to alanine. Remarkably, substituting these five serines to
aspartate to mimic phosphorylation restored the ability of
AMPH to induce voltage-dependent DA efflux and to produce
currents, indicating that negative charges in the DAT N-
terminal region are essential for these actions of AMPH.
To explore which serine or serines are critical to the effect

on efflux, we created five additional mutants in the FLAG-S/
A-DAT background in which we mutated each of the five
positions, one at time, to aspartate, and we created stable
pools of EM4 cells expressing each of these mutants. Atþ100
mV the amperometric currents in FLAG-S/A-DAT, FLAG-S/
A-2D-DAT, FLAG-S/A-4D-DAT, and FLAG-S/A-13D-DAT
were 7.4% 6 2.6%, 8.4% 6 5.7%, 11.2% 6 3.1%, and
12.3% 6 7.0%, respectively, of that seen in FLAG-S/D-DAT (n
= 3; not significantly different from FLAG-S/A-DAT by One-
way ANOVA and Tukey’s Multiple Comparison Test). In
contrast, amperometric currents in FLAG-S/A-7D-DAT and
FLAG-S/A-12D-DAT were 29.8% 6 12.6% and 45.1% 6

9.6%, respectively, of that seen in FLAG-S/D-DAT (n = 3; p ,
0.01 compared to FLAG-S/A-DAT by One-way ANOVA and
Tukey’s Multiple Comparison Test). Thus, negative charge at
either position 7 or position 12 restores a substantial fraction
of the efflux seen with aspartate at all five positions, and the
size of the resulting efflux relative to FLAG-S/D-DAT and
FLAG-DAT suggests that both of these serines may be
phosphorylated in vivo (see below).
The differences in AMPH-induced DA efflux between

FLAG-S/A-DAT and FLAG-S/D-DAT could result either from
an altered affinity of DAT for intracellular DA or from a
change in the Vmax of the transport process. At þ80 mV, at
what is a saturating concentration of intracellular Naþ for
FLAG-DAT (see ‘‘Materials and Methods’’), the Km for
intracellular DA was 1.4 6 0.4 mM for FLAG-S/A-DAT and
1.3 6 0.4 mM for FLAG-S/D-DAT. Thus, a change in the Vmax

of the AMPH-induced DAT-mediated efflux is likely respon-

Figure 3. AMPH-Induced Current-Voltage

and Amperometric-Voltage Relationships

Obtained from FLAG-DAT, FLAG-del22-

DAT, FLAG-S/A-DAT, and FLAG-S/D-DAT

(A) Current-voltage relationships of
AMPH-induced current obtained from
FLAG-DAT (filled circles) and FLAG-
del22-DAT (open circles) cells. AMPH
(10 lM) was applied to the bath while the
membrane potential was stepped from
–120 mV to þ100 mV from a holding
potential of –20 mV in 20 mV incre-
ments (n = 5).
(B) Amperometric-voltage relationships
obtained from FLAG-DAT (filled circles)
and FLAG-del22-DAT (open circles) cells
acquired concomitantly to the whole-cell
current of panel A.
(C and D) Current-voltage (C) and
amperometric-voltage (D) relationships
of whole-cell and oxidative currents
obtained from FLAG-S/D-DAT (filled
triangles) and FLAG-S/A-DAT (open
triangles) cells using the same experi-
mental protocol as above.
DOI: 10.1371/journal.pbio.0020078.g003
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sible for the differences between FLAG-S/A-DAT and FLAG-
S/D-DAT.

Our results suggest that phosphorylation of one or more
serines in the N-terminus of the human DAT shifts DAT from
a ‘‘reluctant’’ state to a ‘‘willing’’ state for AMPH-induced DA
efflux. (A related phenomenon has been proposed for
calcium channel regulation [Zhu and Ikeda 1994].) That
DAT is significantly phosphorylated under basal conditions
and that this phosphorylation can be increased by AMPH
(Roxanne Vaughan, pers. comm.) are also consistent with a
role for N-terminal phosphorylation in the AMPH-induced
efflux mechanism. The structural basis for this regulation of
efflux is currently unknown. It may result from a shift in the
voltage or sodium dependence of efflux and thus from an
increase in the fraction of DAT molecules that reorient to the
external milieu empty of DA. Whatever the mechanism,
under unclamped, ‘‘physiological’’ conditions, N-terminal
phosphorylation does not alter significantly any rate-limiting
steps for uptake.

Despite our demonstration that the Vmax for uptake is
unaltered in the mutants, it is possible that phosphorylation
might alter the ionic coupling of DAT. The ratio of whole-cell
to amperometric current (Galli et al. 1997) at þ100 mV was
not different in FLAG-DAT and FLAG-del22-DAT (728 6193
[n = 8] and 835 6 300 [n = 5], respectively; p . 0.05 by
Student’s t test). (Similar results were obtained atþ60 andþ80
mV [data not shown].) This ratio is a microscopic property of
an individual transporter that is inversely proportional to the
fraction of charge carried by dopamine (Galli et al. 1997).
These data, measured in the presence of saturating intra-
cellular dopamine concentrations in the patch pipette, are
consistent, therefore, with a similar ionic coupling in the two
mutants. However, given the lack of stoichiometric coupling
between substrate flux and charge movement (see below), we
cannot absolutely rule out an effect of phosphorylation on
the ionic coupling of flux. To rule out such a change, it would
be helpful to demonstrate that the WT and mutant trans-
porters can generate similar concentration gradients at
equilibrium, even though efflux rates differ. In unclamped
cells, however, the persistent presence of substrate might lead
to changes in membrane potential, and, therefore, such
experiments would best be performed under voltage-clamp
conditions with an amperometric electrode inside the cell to
measure the accumulation of dopamine (Mosharov et al. 2003).

Curiously, AMPH-induced currents, which are largely an
uncoupled chloride conductance mediated by DAT that is
gated by substrates such as AMPH (Ingram et al. 2002), were
reduced in the absence of N-terminal phosphorylation in
parallel with DA efflux. Although the underlying mechanisms
are unclear, these findings are consistent with the findings of
Sitte et al. (1998) that there is a poor correlation between
substrate-induced efflux and the uptake of substrates, but a
good correlation between the ability of substrates to induce
currents and their ability to cause efflux (Khoshbouei et al.
2003).

Regardless of the mechanisms, our findings argue that the
mechanism of DA efflux is to some extent independent from
the inward-transport process. Since truncation of the N-
terminus had the same functional effect as neutralization of
the N-terminal serines, it is likely that an essential interaction
of the phosphorylated N-terminus of DAT must occur to
permit efflux, either with another part of DAT or conceivably

with an associated protein. These results could lead to the
design and synthesis of new therapeutic agents, such as a drug
that blocks the effects of AMPH-like psychostimulants with-
out inhibiting DA uptake. Selective enhancement of DA
release might be achieved by promoting phosphorylation of
the N-terminus of DAT or by modulating critical interactions
of the DAT N-terminus. Furthermore, a polymorphism or
naturally occurring mutation of the N-terminal portion of
DAT could alter efflux in the context of normal uptake, and
this might be associated with human psychiatric or neuro-
logic dysfunction, much as a polymorphism of the norepi-
nephrine transporter has been found to be associated with
orthostatic intolerance (Robertson et al. 2001).
Mutations of Ser7 and Ser12 of DAT were found previously

to affect the response to inhibition of PKC and MEK1/2,
respectively (Lin et al. 2003). We found that negative charge
at either of these positions, but not at the positions of the
three other N-terminal serines at positions 2, 4, and 13,
restored significant AMPH-induced DA efflux. Nonetheless,
the serines that are actually phosphorylated as a result of
activation of PKC or by AMPH have not been identified, and
the kinase or kinases that directly phosphorylate the N-
terminus of DAT are unknown as well. Efforts are underway
to identify directly the serines that are phosphorylated in
vivo, as well as the responsible kinase, and to further uncover
the mechanism by which the phosphorylated N-terminus
makes DAT ‘‘willing’’ to efflux DA.

Materials and Methods

Plasmid construction, transfection, and cell culture. The N-
terminally FLAG-tagged full-length synthetic human DAT (synDAT)
gene in pCIHyg was described previously (Saunders et al. 2000). In the
FLAG-HA-DAT construct, an HA tag followed the FLAG tag and the
first 22 amino acids (MSKSKCSVGLMSSVVAPAKEPN) of human
DAT were deleted (Hastrup et al. 2001). In FLAG-del22-DAT, these 22
amino acids were deleted from the full-length FLAG-DAT, making
this construct identical to FLAG-HA-DAT except for the absence of
the HA-tag sequence. From the FLAG-DAT background, Ser2, Ser4,
Ser7, Ser12, and Ser13 were simultaneously mutated to alanine to
create the FLAG-S/A-DAT construct and to aspartate to create the
FLAG-S/D-DAT construct. The mutant constructs were generated,
confirmed, and expressed stably in human embryonic kidney cells
(HEK-293) or EM4 cells, HEK-293 cells stably transfected with
macrophage scavenger receptor to promote adherence (Robbins
and Horlick 1998), as described previously (Hastrup et al. 2001).

Uptake of [3H]tyramine. Uptake assays with adherent EM4 cells
stably expressing the appropriate DAT construct were performed as
described previously (Hastrup et al. 2001). Tyramine was used as a
radiolabeled substrate because it is not a substrate for catechol-O-
methyl transferase, which is endogenously present in HEK-293 cells
and EM4 cells, and therefore is not subject to degradation that might
complicate the kinetics of uptake (Hastrup et al. 2001). Nonspecific
uptake was determined in the presence of 2 mM tyramine. For
determination of Vmax and Km values, increasing concentrations of
tyramine from 0.02 to 50 lM were used. Km and Vmax values for
[3H]tyramine and [3H]dopamine uptake were determined by non-
linear regression analysis using GraphPad Prism 4. IC50 values were
determined using increasing concentrations of AMPH between 0.002
and 2 lM and of cocaine between 0.001 and 10 lM in competition
with approximately 60 nM [3H]tyramine. Ki values were calculated
from the IC50 values as described by Cheng and Prusoff (1973).

Cell-surface biotinylation and immunoblotting. EM4 cells stably
expressing the DAT constructs were incubated with cleavable sulfo-
NHS-S-S-biotin (Pierce Chemical Company, Rockford, Illinois,
United States) to label surface-localized transporter, and the
biotinylated material was prepared and immunoblotted as described
previously (Saunders et al. 2000).

AMPH-induced DA efflux. Confluent 100-mm plates of HEK-293
cells stably expressing FLAG-DAT or FLAG-HA-DAT were washed
twice with KRH (25 mM HEPES [pH 7.4], 125 mM NaCl, 4.8 mM KCl,
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1.2 mM KH2PO4, 1.3 mM CaCl2, 1.2 mM MgSO4, and 5.6 mM glucose)
and incubated at 37oC with 15 lM DA for 30 min. Following
incubation, cells were washed with KRH, harvested, resuspended in
0.20 ml of KRH and superfused in a Brandel superfusion apparatus
(Brandel SF-12, Gaithersburg, Maryland, United States) as described
by Kantor et al. (2001). The KRH contained 10 lM pargyline, and
AMPH was added at concentrations from 1 to 100 lM for 2.5 min
only. DA was determined by HPLC with electrochemical detection as
described by Kantor et al. (2001).

Electrophysiology and amperometry. Whole-cell and amperomet-
ric currents were recorded as described previously (Khoshbouei et al.
2003). The AMPH-induced whole-cell and amperometric currents
were defined as the current recorded in the presence of AMPH,
minus the current recorded after the addition of cocaine to the bath
with AMPH still present. Previously, we demonstrated that AMPH
increases intracellular sodium and that a high concentration of NaCl
in the recording pipette maximizes DA efflux (Khoshbouei et al.
2003). Thus, to increase the basal and AMPH-induced DA efflux and
to maintain a constant sodium concentration, the whole-cell
electrode was filled with internal solution containing 2 mM DA and
90 mM NaCl substituted with KCl to maintain a constant osmolarity
of 270 mOsm. The dependence of DA efflux on internal DA was
determined by fitting the values of the steady-state amperometric
currents, recorded at different intracellular DA concentrations
(between 500 lM and 4 mM), to a Hill equation by nonlinear
regression. The ratio of whole-cell to amperometric current was

calculated by dividing the average whole-cell current during the last
100 ms of the voltage step by the average amperometric current
during the same time period (Galli et al. 1998).
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