
Research Article
Hesperidin Protects against Acute Alcoholic
Injury through Improving Lipid Metabolism and
Cell Damage in Zebrafish Larvae

Zhenting Zhou,1 Weichao Zhong,1,2 Haiyan Lin,1 Peng Huang,1 Ning Ma,3 Yuqing Zhang,3

Chuying Zhou,1 Yuling Lai,1 Shaohui Huang,1 Shiying Huang,1 Lei Gao,1,4 and Zhiping Lv1

1School of Traditional Chinese Medicine, Southern Medical University, Guangzhou, Guangdong, China
2Department of Liver Diseases, Shenzhen Traditional Chinese Medicine Hospital, Shenzhen, Guangdong, China
3Key Laboratory of Zebrafish Modeling and Drug Screening for Human Diseases of Guangdong Higher Education Institutes,
Department of Developmental Biology, Institute of Genetic Engineering, School of Basic Medical Sciences,
Southern Medical University, Guangzhou, Guangdong, China
4The Key Laboratory of Molecular Biology, State Administration of Traditional Chinese Medicine, School of Traditional Chinese
Medicine, Southern Medical University, Guangzhou, Guangdong, China

Correspondence should be addressed to Lei Gao; rayg@foxmail.com and Zhiping Lv; lzp48241@126.com

Received 22 December 2016; Revised 3 April 2017; Accepted 18 April 2017; Published 17 May 2017

Academic Editor: Elzbieta Janda

Copyright © 2017 Zhenting Zhou et al.This is an open access article distributed under the Creative Commons Attribution License,
which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Alcoholic liver disease (ALD) is a series of abnormalities of liver function, including alcoholic steatosis, steatohepatitis, and
cirrhosis. Hesperidin, the major constituent of flavanone in grapefruit, is proved to play a role in antioxidation, anti-inflammation,
and reducingmultiple organs damage in various animal experiments. However, the underlyingmechanismof resistance to alcoholic
liver injury is still unclear. Thus, we aimed to investigate the protective effects of hesperidin against ALD and its molecular
mechanism in this study. We established an ALD zebrafish larvae model induced by 350mM ethanol for 32 hours, using wild-
type and transgenic line with liver-specific eGFP expression Tg (lfabp10𝛼:eGFP) zebrafish larvae (4 dpf). The results revealed
that hesperidin dramatically reduced the hepatic morphological damage and the expressions of alcohol and lipid metabolism
related genes, including cyp2y3, cyp3a65, hmgcra, hmgcrb, fasn, and fads2 compared with ALD model. Moreover, the findings
demonstrated that hesperidin alleviated hepatic damage as well, which is reflected by the expressions of endoplasmic reticulum
stress and DNA damage related genes (chop, gadd45𝛼a, and edem1). In conclusion, this study revealed that hesperidin can inhibit
alcoholic damage to liver of zebrafish larvae by reducing endoplasmic reticulum stress and DNA damage, regulating alcohol and
lipid metabolism.

1. Introduction

Hepatic steatosis is the early stage of alcoholic liver dis-
ease (ALD) induced by alcoholic consumption. ALD is an
important component of liver diseases [1]. ALD involves the
processes of hepatic pathological states, from simple hepatic
steatosis to progressive fibrosis, cirrhosis, and even liver
cancer [2]. Given that the prevalence of ALD worldwide is
rising these years, exploring an effective treatment is of great
importance.

Hesperidin, a kind of citrus bioflavonoid and abundant
in citrus plants, including grapefruits, oranges, and lemons,

is proved to play a role in antioxidation, anti-inflammation,
and cardiovascular protection [3]. In addition, hesperidin
regulates hepatic cholesterol synthesis by inhibiting the
activity of 3-hydroxy-3-methyl-glutaryl-CoA (HMG-CoA)
reductase [4, 5]. Recently, it is confirmed that hesperidin
protects against fatty liver induced by high-cholesterol diet
through mediating the mRNA expressions of rbp, c-fabp,
and h-fabp, inhibiting synthesis and absorption of cholesterol
[6]. Hesperidin is also capable of attenuating liver fibrosis
by mitigating oxidative stress and modulating proinflam-
matory and profibrotic signals [7]. However, the effects
of hesperidin on alcohol-induced hepatic steatosis need
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further investigation and its underlying mechanisms remain
unknown.

Taking into consideration findings mentioned above, we
investigated the protective role of hesperidin in alcohol-
induced liver injury of zebrafish larvae in the present study.
We revealed the underlying mechanism of hesperidin against
dyslipidemia and hepatocytes damage in ALD by evaluating
the expression of some key genes related to alcohol and
lipid metabolism. Furthermore, morphological observation
of the whole bodies and livers of zebrafish larvae also showed
the protective role of hesperidin in pathological changes
caused by alcohol. First, we investigated the regulation of hes-
peridin on both alcohol metabolism and lipid homeostasis in
zebrafish larvae ALDmodel and further drew the conclusion
that hesperidin could resist to alcohol-induced metabolic
abnormalities. Collectively, the results proved the abilities
of hesperidin to reduce lipid accumulation and further
demonstrated it could improve alcohol and lipid metabolism
as well as hepatic steatosis. In a word, we hypothesize that
citrus flavonoids are an effective treatment of ALD-related
metabolic pathways through the ability of regulation of
hesperidin on alcohol metabolism, lipid homeostasis, and
liver damage.

2. Material and Methods

2.1. Animal Care and Treatment. Wild-type (WT) AB strain
zebrafish and Tg (lfabp10𝛼:eGFP) transgenics, obtained from
Key Laboratory of Zebrafish Modeling and Drug Screen-
ing for Human Diseases of Guangdong Higher Education
Institutes, Southern Medical University and School of Life
Science, Southwest University, respectively, were cultured on
a 14 h light/10 h dark cycle at 28∘C following established
protocols (Westerfield M 2000 The Zebrafish Book: A Guide
for the Laboratory Use of Zebrafish (Danio rerio). Eugene:
Univ. of Oregon Press).The Institutional Animal Care andUse
Committee of Southern Medical University approved all the
protocols of zebrafish operations.

96–98 hours after fertilization (hpf) zebrafish larvae were
first randomly divided into two groups, a control group
treated with system water (water out of the water system
of culture facility for zebrafish) only and a model group
exposed to 350mM ethanol for 32 h [8]. Subsequently, the
control larvae were randomly divided into two groups (𝑛
= 40 in each group): a control group (treated with system
water) and a hesperidin control group (treated with 25𝜇g/mL
hesperidin). Simultaneously, themodel larvaewere randomly
assigned into several groups as followed equally (𝑛 = 40
in each group): a model group (treated with system water)
and 3 hesperidin treated groups (25𝜇g/mL, 12.5 𝜇g/mL, and
6.25 𝜇g/mL). Hesperidin monomer was dissolved in 0.1%
DMSO (diluted in system water). After being incubated
for 48 h, larvae were collected for further detection. The
experimental plan for zebrafish is shown in Figure 1.

2.2. Oil Red O Staining. Zebrafish larvae of each group
were collected and fixed with 4% paraformaldehyde (PFA)
overnight at 4∘C, washed 3 times with phosphate-buffered
saline (PBS), and infiltrated sequentially with 20%, 40%,

80%, and 100% propylene glycol (Sigma, USA) at room
temperature for 15min, respectively. Subsequently, the larvae
were stained with 0.5% Oil Red O (Sigma, USA) in 100%
propylene glycol in the dark for 1 h at 65∘C.Then the samples
were destained by soak sequentially in 100%, 80%, 40%, and
20% propylene glycol for 30min, respectively, and washed 3
times with PBS, followed by storing in 70% glycerol (Sigma,
USA) [9]. The hepatic morphology and lipid droplets in liver
were observed and imaged with microscope (Olympus szx10,
Tokyo, Japan). In this study, staining shade and liver size were
quantized into gray values by Image J software in order to
reflect the degree of hepatic steatosis.

2.3. Nile Red Staining. The procedures were performed as
previously described [10, 11]. Zebrafish larvae were fixed with
4% PFA as described previously and incubated in citric acid
with 0.1% Triton (Sigma, USA) for 2 hours at 65∘C after
being washed with PBS 3 times. DAPI (Solarbio Life Science,
China) was counterstained in the dark for 10minutes at room
temperature to stain the nuclei. Subsequently Nile Red dye
(0.5 𝜇g/mL in acetone, Sigma, USA) was used to stain the
lipid droplets in liver, incubated in the dark for 50 minutes
at room temperature, and washed 3 times with PBS. The
stained larvae were imaged with Confocal Laser Scanning
Microscope (Nikon C2plus, Tokyo, Japan).

2.4. Histologic Analysis. Zebrafish larvae were fixed with 4%
PFA overnight, penetrated with ethanol and xylene respec-
tively, embedded in paraffin, cut into 4 𝜇m thick sections,
stained with H&E, and observed with microscope (Nikon
Eclipse Ni-U, Tokyo, Japan).

2.5. Quantitative Real-Time PCR. The procedure was per-
formed according to the previous study [12]. Total RNA
was extracted from 10 zebrafish larvae using Trizol reagent
(Invitrogen, USA) following the standard procedures and
subsequently reverse-transcribed with qScript cDNA using
PrimeScript�RT-PCRKit (Takara). qPCRwas carried out on
Light Cycler 96 (Roche, Switzerland) using a SYBR Green kit
(Takara Biotechnology, Inc.). The detailed protocol outlined
by the manufacturer’s instructions was followed.The levels of
target genes were calculated by the comparative CT method
andnormalized to the reference gene rpp0 (ribosomal protein
P0). Primers for each gene are listed in Table 1.

2.6. Statistical Analysis. All data are presented as mean ±
standard error of the mean (SEM). Statistical analysis was
carried by SPSS (version 20.0). Statistical differences were
evaluated by Student’s 𝑡-test and one-way ANOVA test. Value
of 𝑃 < 0.05 was considered to be statistically significant.
GraphPad Prism 5 software was used to plot graph.

3. Results

3.1. Alcoholic Fatty Liver Model Was Established in Zebrafish
Larvae. 96–98 hpf zebrafish larvae were chosen to be
exposed to ethanol during a window, which was the stage
from the formation of liver to the full utilization of yolk
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Figure 1: Experimental plan for zebrafish.

Table 1: Primers used to quantify mRNA levels.

Gene FP sequence (5-3) RP sequence (5-3)
cyp2y3 tattcccatgctgcactctg aggagcgtttacctgcagaa
cyp3a65 aaaccctgatgagcatggac caagtctttggggatgagga
hmgcra ctgaggctctggtggacgtg gatagcagctacgatgttggcg
hmgcrb cctgttagccgtcagtgga tctttgaccactcgtgccg
hmgcs ctcactcgtgtggacgagaa gatacggggcatcttcttga
fasn gagaaagcttgccaaacagg gagggtcttgcaggagacag
fads2 tcatcgtcgctgttattctgg tgaagatgttgggtttagcgtg
chop aggaaagtgcaggagctgac ctccacaagaagaatttcctcc
gadd45𝛼a tggctttgtttgtgggactt tggaaaacagtccactgaga
edem1 gacagcagaaaccctcaagc catggccctcatcttgactt
rpp0 ctgaacatctcgcccttctc tagccgatctgcagacacac

(5.5–6 dpf).During this period themetabolic effects of fasting
could be avoided [13]. The acute alcoholic exposure time
of zebrafish larvae was set to 32 hours, which is used to
distinguish it from chronic exposure in alcoholics.

Taking previous studies into account, we discovered that
morphological phenotypes, hepatomegaly, and behavioral
abnormalities occurred in most of the larvae after having
been treated with 350mM ethanol for 32 hours [14, 15].
Histologic examinations of liver stained with H&E and Oil

Red O revealed that severe lipid deposited in the liver tissues
after 32 hours of exposure to 350mM ethanol (Figures 2(a)
and 2(b)). Furthermore, we discovered that 350mM ethanol
could lead to hepatic steatosis in zebrafish larvae after 32
hours of treatment, by quantification of Oil Red O staining
in the liver, performed by Image J software (Figure 2(c)).

3.2. Hesperidin Reduced Hepatic Steatosis in Zebrafish Larvae
Induced by Alcohol. As descried above, there existed severe
lipid deposits in the liver tissues in larvae after alcoholic
exposure. However, it was interesting that hesperidin could
dose-dependently alleviate hepatic steatosis in larvae induced
by alcohol (Figure 3(a)).The development of hepatic steatosis
was quantified into gray level according to the results of
Oil Red O staining by Image J software. The assessment
of gray level further showed that hesperidin could reduce
the development of hepatic steatosis with a dose-dependent
correlation. The dose of 12.5 𝜇g/mL and 25𝜇g/mL almost
reversed the alcoholic lipid deposition in larvae (Figure 3(b)).
On the other hand, using the Nile Red staining, a selective
fluorescent dye for intracellular lipid droplets, we investigated
whether hesperidin had a protective effect on liver of Tg
(lfabp10𝛼:eGFP) larvae after alcoholic exposure. Consistent
with the results ofOil RedO staining, hesperidin (12.5𝜇g/mL,
48 hours) significantly alleviated hepatic lipid droplets
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Figure 2: Alcoholic fatty liver model was established in zebrafish larvae. (a) Oil Red O staining for whole body of zebrafish larvae. (b) H&E
staining for liver sections of zebrafish larvae. (c) Quantitative analysis for the results of Oil Red O staining (𝑛 = 20/group, three experiments).
The data are presented as the means ± SEM (∗𝑃 < 0.05 versus control group).

induced by alcohol in larvae (Figure 3(c)). Furthermore,
paraffin sections of larvae stained with H&E also confirmed
the liver pathological changes consistently (Figure 3(d)).
Additionally, Oil Red O staining and H&E staining showed
that hesperidin does not have any substantial effects on livers
of control zebrafish (Figures 3(a), 3(b), and 3(d)).

3.3. Hesperidin Improved Alcohol Metabolism in Zebrafish
Larvae. We further investigated the effects of hesperidin on
alcohol metabolism. Cytochrome P450 family 2 subfamily E
member 1 (cyp2e1), a crucial enzyme in regulation of oxidative
stress response in alcohol metabolism process, is consid-
ered to be responsible for alcoholic liver injury in mam-
mals. Cytochrome P450 family 2 subfamily Y polypeptide 3

(cyp2y3), a gene homolog of cyp2e1, is essential for alcohol
metabolism in liver of zebrafish [13]. Liver injury is dramat-
ically increased due to the increase of cyp2y3, which could
speed up the rate of alcohol metabolism and accumulation
of acetaldehyde [13]. As showed in Table 2, the expression
of cyp2y3 mRNA was significantly increased compared with
the control larvae. Interestingly, hesperidin intervention nor-
malized the level of cyp2y3 mRNA in larvae. Moreover, a
similar change of the expression of cytochrome P450 family
3 subfamily A polypeptide 65 (cyp3a65) occurred, which is a
homo gene of cytochrome P450 family 3 subfamily A (cyp3a)
primarily in the liver and crucial to the metabolisms of both
endogenous and exogenous substances [16]. These findings
indicated that hesperidin might improve alcohol metabolism
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Figure 3:Hesperidin reduced hepatic steatosis in zebrafish larvae induced by alcohol. (a) Oil Red O staining for whole body of zebrafish larvae.
(b) Quantitative analysis for the results of Oil Red O staining (𝑛 = 20/group, three experiments). (c) Nile Red staining for intracellular lipid
droplets in liver tissues of zebrafish larvae. (d) H&E staining for liver sections of zebrafish larvae. The data are presented as the means ± SEM
(∗𝑃 < 0.05 versus control group; #𝑃 < 0.05 versus 350mM EtOH group).
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Table 2: Hesperidin treatment improved alcohol metabolism in zebrafish larvae.

mRNA level (versus rpp0) Group
Control 350mM EtOH Hesperidin (12.5 𝜇g/mL)

cyp2y3 1.659𝑒 − 4 ± 3.574𝑒 − 5 3.04𝑒 − 4 ± 3.018𝑒 − 5∗ 1.677𝑒 − 4 ± 3.799𝑒 − 5#

cyp3a65 1.565𝑒 − 2 ± 5.0𝑒 − 5 1.77𝑒 − 2 ± 4.0𝑒 − 4∗ 1.135𝑒 − 2 ± 2.5𝑒 − 4∗∗##

𝑛 = 20/group, three experiments; the data are presented as the means ± SEM (∗𝑃 < 0.05 versus control group; #𝑃 < 0.05 versus 350mM EtOH group).

Table 3: Hesperidin treatment improved lipid metabolism in zebrafish larvae against alcoholic injury.

mRNA level (versus rpp0) Group
Control 350mM EtOH Hesperidin (12.5 𝜇g/mL)

hmgcra 1.762𝑒 − 4 ± 8.408𝑒 − 6 5.378𝑒 − 4 ± 1.006𝑒 − 4∗∗∗ 3.048𝑒 − 4 ± 2.663𝑒 − 5#

hmgcrb 3.442𝑒 − 4 ± 7.15𝑒 − 6 6.391𝑒 − 4 ± 1.011𝑒 − 4∗ 2.564𝑒 − 4 ± 3.55𝑒 − 6#

hmgcs 1.575𝑒 − 4 ± 5.5𝑒 − 6 1.87𝑒 − 4 ± 5.0𝑒 − 6 1.305𝑒 − 4 ± 1.15𝑒 − 5#

fasn 6.41𝑒 − 4 ± 3.1𝑒 − 5 8.5𝑒 − 4 ± 6.0𝑒 − 6∗∗ 2.32𝑒 − 4 ± 1.0𝑒 − 5∗∗###

fads2 1.338𝑒 − 4 ± 3.525𝑒 − 5 4.79𝑒 − 4 ± 4.8𝑒 − 5∗ 0.462𝑒 − 4 ± 1.04𝑒 − 5##

𝑛 = 20/group, three experiments; the data are presented as the means ± SEM (∗𝑃 < 0.05 versus control group; #𝑃 < 0.05 versus 350mM EtOH group).

and reduce the accumulation of toxic substances in zebrafish
larvae after exposure to ethanol.

3.4. Hesperidin Protected Zebrafish Larvae against Alcoholic
Injury through Improving Lipid Metabolism. We further
investigated some lipid metabolism related genes (hmgcra,
hmgcrb, hmgcs, fasn, and fads2), which were related to
cholesterol synthesis, fatty acid synthase, desaturase, and
mitochondrial enzyme, in order to confirm whether hes-
peridin could protect against hepatic steatosis by reduction
of lipid metabolism and improvement of lipid homeostasis
[17–20]. The results of qPCR showed that the expressions
of hmgcra, hmgcrb, hmgcs, fasn, and fads2 mRNAs were
significantly increased in larvae after treatment with alcohol.
However, the intervention of hesperidin induced the levels of
these mRNAs above to reversion (Table 3).

3.5. Hesperidin Reduced Endoplasmic Reticulum Stress and
DNADamage Induced by Alcohol in Zebrafish Larvae. Endo-
plasmic reticulum stress and DNA damage play key roles
in various kinds of pathological liver damage induced by
alcohol [21, 22]. We investigated the levels of mRNAs,
DNA damage inducible transcript 3 (chop), growth arrest,
and DNA damage-inducible, 𝛼, a (gadd45𝛼a) and endo-
plasmic reticulum degradation-enhancing 𝛼-mannosidase-
like protein 1 (edem1), which were related to endoplasmic
reticulum stress and DNA damage [22–24]. The results of
mRNAs levels also confirmed that hesperidin normalized the
increased expressions of chop, gadd45𝛼a, and edem1 induced
by alcohol (Table 4). Collectively, these evidences indicated
that hesperidin suppressed endoplasmic reticulum stress and
DNA damage.

4. Discussion

Hepatic steatosis, the earliest manifestation of alcoholism,
can develop into some severe liver diseases [2]. Hepatocytes
are susceptible to damage due to chronic hepatic steatosis,

which is generally the early stage of steatohepatitis and
cirrhosis [25]. Thus, further liver damage induced by alcohol
can be prevented through the blockade of lipid accumulation.
Moreover, it is reported that hesperidin in vivo can improve
certain aspects of lipid homeostasis and reduce inflammation
of adipose tissue [26]. However, there is no study about the
effects of hesperidin on alcohol and metabolic abnormalities.
To our knowledge, it is the first time that we investigated
the effects of hesperidin on regulating alcohol metabolism,
pathology, endoplasmic reticulum stress, and DNA damage
in ALD on zebrafish. In this study, according to previous
findings [14, 15], we successfully established anALD zebrafish
model by exposing zebrafish larvae to 350mM ethanol for
32 hours. In addition, we discovered that the intervention of
hesperidin could inhibit hepatic steatosis and endoplasmic
reticulum stress of hepatocytes induced by acute alcoholic
exposure.

The establishment of ALD zebrafish larvae is easy to
operate and less time-consuming. Given that there exists
difficulties of gaining liver tissues and blood from zebrafish
larvae, we are not able to investigate the expressions of
mRNAs and proteins of liver tissues or the serum levels
of biochemical markers of liver injury directly. However,
zebrafish larvae showmore advantages on short growth cycle
and transparent body, so we can obtain quantities of larvae in
a short time and it is easier to get observation of the overall
staining.

We discovered hesperidin protected against hepatic
steatosis in zebrafish larvae after alcoholic exposure for the
first time in this present study. Larvae stained with H&E
and Oil Red O indicated that hesperidin could attenuate
alcohol-induced hepatic steatosis and its therapeutic effect
was dose-dependent. Moreover, the best and lowest treat-
ment concentration is 12.5𝜇g/mL. Now that the antisteatosis
effect of hesperidin was confirmed, we then investigated the
possible effects of hesperidin against cell death and damage
induced by alcohol. In addition, both chop and gadd45𝛼a
can inhibit cell growth while increasing cell damage [22,
23]. Transcription of lipid metabolism can be regulated by
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Table 4: Hesperidin attenuates endoplasmic reticulum stress and DNA damage in zebrafish larvae with alcoholic injury.

mRNA level (versus rpp0) Group
Control 350mM EtOH Hesperidin (12.5 𝜇g/mL)

chop 7.459𝑒 − 3 ± 2.27𝑒 − 3 13.34𝑒 − 3 ± 5.576𝑒 − 4∗ 7.778𝑒 − 3 ± 1.029𝑒 − 3#

gadd45𝛼a 8.41𝑒 − 4 ± 3𝑒 − 6 12.65𝑒 − 4 ± 4.5𝑒 − 5∗∗ 8.93𝑒 − 4 ± 2.8𝑒 − 5##

edem1 1.739𝑒 − 4 ± 4.2𝑒 − 6 3.007𝑒 − 4 ± 8.3𝑒 − 6∗∗ 1.427𝑒 − 4 ± 1.675𝑒 − 5##

𝑛 = 20/group, three experiments; the data are presented as the means ± SEM (∗𝑃 < 0.05 versus control group; #𝑃 < 0.05 versus 350mM EtOH group).

chop, the upregulation of which can lead to abnormal lipid
metabolism in the liver [27]. Moreover, chop is considered
as a specific transcription factor of endoplasmic reticulum
stress [22]. In another aspect, edem1, a gene essential for the
unfolded protein response, was upregulated markedly with
endoplasmic reticulum stress unbalance [24]. After exposure
to alcohol, the expressions of chop, gadd45𝛼a, and edem1
were significantly increased in larvae, which indicated that
the larvae were going through severe endoplasmic reticulum
stress and DNA damage during that period. To the contrary,
downregulation of chop, gadd45𝛼a, and edem1 were induced
in larvae after being treated with hesperidin. Collectively,
we summed up that hesperidin could inhibit steatosis and
damage of liver in zebrafish larvae after alcoholic exposure.

HMG-CoA reductases are key enzymes in lipid metab-
olism, including HMG Coenzyme A reductase a (hmgcra),
HMG Coenzyme A reductase b (hmgcrb), and 3-hydroxy-
3-methylglutaryl-CoA synthase (hmgcs), mainly regulating
genes related to cholesterol synthesis [14, 17, 28]. Besides,
synthesis and desaturation of fatty acid can be regulated
by fatty acid synthase (fasn) [19]. Fatty acid desaturase 2
(fads2), a gene related to dyslipidemia, primarily participates
in metabolism of unsaturated fatty acids, affecting the
concentrations of total cholesterol, low density lipoprotein
cholesterol, high lipoprotein cholesterol, and triglyceride
[18]. In our study, the expressions of hmgcra, hmgcrb, hmgcs,
fasn, and fads2 genes related to lipid metabolism were
significantly increased in larvae after alcoholic exposure,
which indicated that treatment with alcohol could cause
lipid metabolism disorders in zebrafish larvae. However,
hesperidin markedly ameliorated lipid metabolism through
mediating the expressions of these genes above.

In another aspect, cyp2y3 and cyp3a65, homologous
genes of cytochrome P450 CYP2 (cyp2) and cyp3a, are essen-
tial for alcoholic metabolism mainly in liver of zebrafish. The
closest homolog to cyp2e1 in zebrafish is cyp2y3, which has a
protein similarity of 43% [13]. Alcoholmetabolism and oxida-
tive stress can be decreased by blocking cyp2 homologous
genes. In addition, cyp3a65 is crucial to metabolism of both
endogenous and exogenous substances [16]. Interestingly, we
found that the treatment of hesperidin could reduce the levels
of cyp2y3 and cyp3a65 in larvae, which were upregulated
by alcoholic exposure previously.The underlying mechanism
of the therapeutical effect of hesperidin was likely to be
related to the improvement of alcoholic metabolism and
reduction of toxic substances. Taking all these evidences
above, we discovered that alcohol-induced liver injury of
zebrafish larvae was mainly caused by dysbolisms of lipid
and alcohol. However, these dysbolisms could be improved

by hesperidin, which resisted alcohol-induced steatosis and
injury therefore. Finally, we summarized the protective effects
of hesperidin in zebrafish larvae during acute alcoholic injury
as showed in Figure 4.

In conclusion, we revealed that hesperidin inhibited
hepatic steatosis and injury in zebrafish induced by alcohol,
by ameliorating cell damage and regulating metabolism
of alcohol and lipid. However, the pathways of effects of
hesperidin on reducing cell damage and lipidmetabolism still
need further exploration. Hesperidin is abundant in citrus
fruits and grape fruit [26], which indicates that hesperidin
easily accumulates in the plasma and is available in vivo
when humans intake hesperidin-containing food regularly.
Thus, whether hesperidin is suitable for prevention of ALD
and lipid metabolism syndrome needs further preclinical
investigation.
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Figure 4: A model depicting the protective role of hesperidin in zebrafish larvae during acute alcoholic injury.
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