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Haiyi Deng,1 Yilin Yang,1 Meiling Yang,2 Lianpeng Chang,3 Xin Yi,3 Xuefeng Xia,3 Zhiyi He,2,*

and Chengzhi Zhou1,9,*

SUMMARY

EGFR-TKIswere used inNSCLC patients with actionable EGFRmutations and pro-
long prognosis. However, most patients treatedwith EGFR-TKIs developed resis-
tance within around one year. This suggests that residual EGFR-TKIs resistant
cells may eventually lead to relapse. Predicting resistance risk in patients will
facilitate individualized management. Herein, we built an EGFR-TKIs resistance
prediction (R-index) model and validate in cell line, mice, and cohort. We found
significantly higher R-index value in resistant cell lines, mice models and relapsed
patients. Patients with an elevated R-index had significantly shorter relapse time.
We also found that the glycolysis pathway and the KRAS upregulation pathway
were related to EGFR-TKIs resistance. MDSC is a significant immunosuppression
factor in the resistant microenvironment. Our model provides an executable
method for assessing patient resistance status based on transcriptional reprog-
ramming and may contribute to the clinical translation of patient individual man-
agement and the study of unclear resistance mechanisms.

INTRODUCTION

Lung cancer is the leading cause of cancer death worldwide.1 According to previous reports, approxi-

mately 85% of patients are diagnosed with non-small cell lung cancer (NSCLC).2 With the development

of next-generation sequencing (NGS) technology and biomedicine, the treatment of NSCLC has been

applied from inclusive radiotherapy and chemotherapy to personalized, targeted therapy and

immunotherapy.

Epidermal growth factor receptor tyrosine kinase inhibitors (EGFR-TKIs) have been used in the targeted

therapy for NSCLC patients with activating mutations of EGFR since 2004 with a high response rate

of 80%.3,4 However, most patients treated with EGFR-TKIs developed resistance within a median of

10–14 months5 The most common type of acquired resistance to the first and second generation of

EGFR-TKIs is the EGFR T790M secondary point mutation.6 Although the third-generation EGFR-TKIs

have been clinically used for patients with the EGFR T790Mmutation, the outcome remains disappointing.5

The reported resistance mechanisms also include PIK3CA mutations, BRAF mutations, c-MET amplifica-

tion, AXL overexpression, small-cell lung cancer transformation, epithelial-to-mesenchymal transition

(EMT).7–10 However, the mechanism responsible for approximately 30% of cases of resistance to EGFR-

TKIs remains unclear.11 This suggests that TKIs cannot eliminate 100% of cancer cells, and residual drug-

resistant cells eventually lead to drug resistance in patients. Tumor heterogeneity provides a clear expla-

nation for the level of treatment benefit observed in the patient cohort. Nonetheless, most decisions about

lung cancer treatment are based on knowledge of a single carcinogenic driver without considering the

functional consequences of continued oncogene-specific drug therapy.

Single-cell RNA sequencing (scRNA-seq) offers an opportunity to sample the whole transcriptome of indi-

vidual cells and is one approach to dissect the heterogeneity of complex biological systems.12,13 The one-

class logistic regression (OCLR) machine learning algorithm provides a scalable approach to obtain stem

cell signatures and determine the best base-level classification by extracting transcriptomes and
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differentiated progeny from non-transformed pluripotent stem cells.14 Therefore, we aimed to detect the

resistance of EGFR-TKIs at the single-cell transcriptome level with EGFR-mutated patients and fill the va-

cancy for preclinical research.

In this study, we utilized multiple treatment time points’ single-cell RNA data to develop an EGFR-TKIs

resistance index (R-index) model with an OCLR algorithm for the first time. This model is validated in-

vivo and in-vitro experiments and three large real-world cohorts. Identifying an effective method to assess

reprogramming-based TKI resistance in NSCLC may provide avenues for more durable clinical treatment

of EGFR-mutant patients.

RESULTS

mRNA expression-based R-index model

To explore the resistance of cancer cells to EGFR-TKIs treatment, we enrolled an EGFR-TKIs treatment

(Maynard et al., PRJNA591860) scRNA-seq dataset15 which contain 14 individual patients and 23 samples

with EGFR mutation. The sample information is displayed in Table S1 and Figure S1. We got an R-index

model using the OCLR algorithm.14 The OCLR-based R-index model was first verified in the EGFR-TKIs

treatment cell line, mice model, and real-world clinical patient cohort. Then, we used R-index to explore

the resistance mechanisms in aspects of the pathway, cell interaction, and immunosuppression (Figure 1A).

Identification of the drug resistance transcriptional heterogeneity of cancer cells and R-index

signature genes

A total of 2,080 cancer cells were retained after quality control filtering as described in the star algorithm.

All cancer cells at different treatment states were re-clustered and visualized using the UMAP (Uni-form

Mani-fold Approximation and Projection) method. We hypothesize that only cells resistant to EGFR-TKIs

are likely to survive and proliferate and result in reduced diversity. We find the cell clusters number at

TN, RD, and PD were 4, 7, and 5, respectively (Figures 1B–1D). We also find that the 2-dimensional cell clus-

ters of RD and PD are more diffusely clustered than TN, with each cluster having an independent distribu-

tional space. Indicating differential heterogeneity may be among cancer cells at different treatment time-

points. To quantify the heterogeneity among cancer cells, we calculated the diversity index of H-indexes in

each cluster. The results showed that the H-index order was TN> RD> PD. This suggests that EGFR-TKIs

interventions may affect cancer cell differentiation because of environmental screening, allowing resistant

cells to obtain more competitive advantages over sensitive cells, reducing the diversity of cancer cell

composition.

Trajectory analysis was executed with monocle software to project all cancer cells to explore the heteroge-

neity and the cells that play a significant role in governing the tumor progression (Figure 1E). The distribu-

tion of the three treatment response states (TN, RD and PD) in monocle is also distinguished (Figure 1F).

Firstly, most cancer cells were located in separate trajectory branches, which marked their distinct differ-

entiation states. For example, branch 3 was mainly occupied by cells from PD samples (PDB3, 99.89%),

branch 1 by cells from TN samples (TNB1, 56.55%), and branch 2 by cells from RD samples (RDB2,

56.77%). Secondly, the differentiation direction of cancer cells in treatment time points was heterogeneous.

For example, each branch had cells at various treatment time points except for branch 3 (Figure 1G).

To identify transcriptional signatures defining cellular resistance status in the trajectory, we compared

differentially expressed genes between PDB3 and RDB2, and 1107 candidate genes were selected, in which

348 genes were upregulated in PDB3, and 759 genes were upregulated in RDB2 (Table S2). Considering

that these genes may contain biological features that potentially distinguished the resistant states of the

cancer cells, we applied the OCLR algorithm to build a trained model on PDB3 cells and produced a

weighted 1107 gene matrix to extract transcriptomic features of the drug resistance signature

Figure 1. Development of the Resistance Index (R-index)

(A) Overall methodology. R-index training set and its development, verification, and application.

(B–D) Uniform Mani-fold Approximation and Projection (UMAP) plot and H-index of cancer cells at different treatment time points.

(E and F) The unsupervised transcriptional trajectory of cancer cells with monocle algorithm, colored by states and (F) treatment timepoint.

(G) The relative proportion of cancer cells for three treatment time points in each state.

(H) The workflow for the development and application of the R-index model.

See also Figures S1–S3, and Tables S1, S2, and S3.
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(Table S3). The R-index score was defined as the spearman correlation coefficient of the 1107 gene signa-

ture matrix and gene expression values (Figure 1H).

Assess the predictive ability of R-index for resistance risk in cell lines and mice

Given that the R-index was hypothesized to evaluate the status of resistance of samples to EGFR inhib-

itors, we compared the R-index values of the EGFR-TKIs resistant PC9 cell lines with those of the un-

treated PC9 cell lines in GSE193258, GSE165019, GSE89127, GSE75602, GSE114647, GSE162045. We

found that the EGFR-TKIs resistant cell line had significantly higher R-index values than the untreated

cell line (Figures 2A–2F). We also observed a marginally significant negative correlation between the

R-index and cell number in the intermittent administration (0, 1, 2, 4, 9, and 11 days) of erlotinib

(Figure S4).

Because the cells in culture lacked in-vivo interactions, we applied R-index to investigate the response of

mice to EGFR-TKIs treatment from xenograft data.16,17 Patient-derived xenograft (PDX) models were built

by implanting small pieces (3–5 mm) of adenocarcinomas specimens from patients’ surgically resected tu-

mors (SRT) with EGFR activating mutations (#7, #11) into the subcutaneous flank tissue of female SHOmice

(Crlj: SHO-PrkdcscidHrhr, Charles River). Tumor size was measured with calipers once a week and the mice

were treated by oral gavage with 25 mg/kg per day of osimertinib when tumor volume exceeded 500 mm3.

When tumor volume reached 1500 mm3, mice were killed, and tumors were implanted into new mice. Tu-

mor fragments #7 had EGFR L858R mutation, and #11 had EGFR exon 19 deletion mutation. The R-index

A B C

D E F

Figure 2. Validation of R-index in cell lines

(A–F) The comparison of the R-index in pro- and post EGFR-TKI treatment cell lines, and t-test was used for statistical tests.

See also Figure S4.
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was calculated based on bulk mRNA gene expression. As PDX tumor in case #7 regrew during the contin-

uous osimertinib treatment at the fifth passage, we calculated and found its R-index was higher than that of

SRT. The PDX tumor in case #11 was cured at the third passage, and as expected, the R-index had an

A B

C D

E

F

Figure 3. Validation of R-index in mice model and patients

(A and B) R-index changes in mice between treatment-naive and osimertinib or Erlotinib treatment in-vivo. SRT, surgically

resected tumors; PDX, patient-derived xenografts.

(C) Changes of R-index and prognosis of patients pro- and post EGFR-TKI treatment.

(D) Correlation plot of R-index and PFS.

(E) Correlation of R-index and prognosis of patients’ pro- and post EGFR-TKI treatment and themedian R-index is used to

divide high and low drug resistance groups.

(F) Correlation plot of R-index and PFS.
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opposite result compared with case #7 (Figure 3A). We also observe the same result in the GSE161584 data-

set (Figure 3B).

Correlations of R-index with progression-free survival in the cohort data

After validating the feasibility of the R-index in the cell line and mice, we further verified R-index in real-

world cohort. We found that the time to recurrence was shorter with high R-index values after osimertinib

or erlotinib treatment (Figure 3C). The R-index is negatively correlated with the Progression-Free Survival

(PFS) (Figure 3D). This result is also confirmed in an independent patient treatment cohort published by the

Roper et al. (Figure 3E). Data from Roper et al. showed significant differences in PFS when stratified using

themedian post-treatment R-index value, with longer time to recurrence in patients with low R-index values

(Figure 3E). We also observed a significant negative correlation between R-index and PFS (Figure 3F). To

further verify the relationship between R-index and prognosis, we included three large cohorts for estima-

tion. One transcriptome per patient was available for each cohort. We first calculated the R-index of EGFR

mutant samples from the OncoSG database and dichotomized patients into two equal-size groups using

the median R-index as the threshold. We found that the high R-index group showed a significantly shorter

overall survival time than the low R-index group (p = 0.008, Figure 4A). Similarly, for whole samples of this

cohort, the high R-index was also associated with worse outcomes (p = 0.001, Figure 4B). Another two lung

A B

C D

E F

Figure 4. Validation of R-index in the human cohort

(A–F)EGFR mutation samples and the entire cohort samples in the OncoSG (A and B), TCGA LUAD (C and D), and

GSE31210 (E and F) databases to verify the relationship between R-index and prognosis, and the threshold is the median

R-index of the corresponding cohort.
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adenocarcinoma bulk mRNA gene expression datasets were also used to validate the results further. The

median resistance index was still used as the stratification threshold. As expected, in the datasets of the

TCGA cohort and GSE31210 cohort, we also observed that the high R-index group showed a shorter

overall survival time than the low R-index group, whether for EGFR mutant patients (p = 0.07, TCGA, Fig-

ure 4C; p = 0.07, GSE31210, Figure 4E) or the entire cohort patients (p< 0.001, TCGA, Figure 4D; p< 0.001,

GSE31210, Figure 4F).

Analysis of R-index signature genes functional features in hallmark gene set

Our results show that the R-index related 1107 gene set may be used to assess the EGFR-TKIs resistance

status of cancer cells in preclinical studies. To explore the potential functions of these genes, an fgsea script

was used to analyze R-index signature genes with the hallmark gene set in MSigDB v7.4 and yielded 9

significantly enriched genesets. Metabolism-related glycolysis and signaling-related KRAS signaling up

gene sets were significantly positive-enriched in PDB3 (Figure 5A), and the volcano plot highlighted related

differential genes (Figure 5B).

To verify whether there were consistent results in other database, we estimated the value of each hallmark’s

ssGSEA profile in OncoSG, TCGA, and GSE31210. In line with expectations, glycolysis and KRAS signaling

up expressed significantly higher in the high R-index group using median stratification (Figures 5C–5E). In

addition, we also explored the GSEA enrichment of 1107 genes in the KEGG/GO/Reactome datasets and

A B

C D E

Figure 5. Enrichment of R-index-related functional gene sets

(A) R-index related function enrichment with hallmark gene sets from MSigDB analyzed by fgsea.

(B) The volcano map shows the detailed gene sets of the glycolysis pathway and KRAS upregulation pathway.

(C–E) Glycolysis and KRAS upregulation gene sets are orthogonally verified in public databases. Asterisks indicate pvalues, *p % 0.05; **p % 0.01;

***p % 0.001; ****p % 0.0001.

See also Figures S5 and S6.
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found that cell cycle and stem cell related pathways are significantly enriched in PDB3 (Figure S5). The

expression of the EMT geneset was also higher in the high R-index group (Figure S6).

Intercellular communication and immune microenvironment analysis

Because of the altered tumormicroenvironment (TME) after EGFR-TKIs resistance, we also wanted to inves-

tigate R-index related immune microenvironment. First, we performed cell-cell communication analysis us-

ing CellPhoneDB between cancer cells and other immune cells in the TME. Based on our research pur-

poses, we divided cancer cells into three types according to their evolutionary trajectories, namely PDB3

cells, RDB2 cells (used in the previous analysis), and Other_cancer_cells that did not contain these former

two types of cells. Enriched receptor-ligand interactions network diagrams were derived based on the

expression of receptors and the corresponding ligand between two connected cell types for demon-

strating their extensive communication (Figure 6A). We further utilized receptor-ligand pairs to calculate

the strengths of the interactions within PDB3 and RDB2, finding the close interactions with fibroblast,

MF-Monocytes, endothelial, and dendritic cells in both PDB3 and RDB2. When using the odds ratio to

normalize the receptor-ligand pairs of PDB3 and RDB2, we found that the Neutrophils, B-cells-M (B mem-

ory cell), B-cells-PB (B plasma cell), and T-cells had a higher ratio in the PDB3 state (Figure 6B).

Second, based on the results of quantitative analysis of the receptor-ligand pair, we specifically showed the

interactions of PDB3 and RDB2 with four types of immune-related cells (Neutrophils, B-cells-M, B-cells-PB,

and T-cells) (Figure 6C). We found that immunosuppressive-related receptor-ligand gene ADORA2-

B,18ENTPD1,19CXCR3,20LGALS921 showed solid regulatory relationships with PDB3.

Finally, we explored the immune infiltration between RDB2 and PDB3. With immune surveillance and

escape signatures,22 we observed that PDB3 had higher immune escape ability (Figure 7A). We also exam-

ined the expression of immune checkpoint inhibitor-related genes CD274 and CTLA4 in the public data-

base. We observed that the high R-index group had a significantly higher expression level by median strat-

ification (Figure 7B). In addition, the TMB status had consistent results (Figures S7A and S7B). Considering

that the EGFR-TKIs resistance had immunosuppressive features,15 we used the TIDE algorithm to identify

factors that excluded T cell infiltration into tumors from the large cohort. We found that MDSC (Myeloid-

derived suppressor cells) was significantly higher in the high R-index group, and there was no significant

difference between TAM.M2 (the M2 subtype of tumor-associated macrophages) and CAFs (cancer-asso-

ciated fibroblasts) when using R-index median stratification (Figure 7C). We also observed that MDSC (Fig-

ure S8) and the ROS (reactive oxygen species) pathway (Figure S6) were significantly higher in the high

R-index group by R-index median stratification.

DISCUSSION

EGFR-TKIs increased the five-year survival rate of late-stage patients harboring EGFR activating mutations.

However, patients acquired resistance inevitably after a period of target treatment. At present, the explo-

ration of EGFR-TKIs resistance mechanisms mainly focuses on off-target alterations or overexpression of

several genes.7–10 However, these factors can only be observed after acquired resistance, and there are still

about 30% unknown resistance factors. An effective RNA-based EGFR-TKIs resistance index may help

explore unclear resistance factors and guide treatment strategies in preclinical studies. Using the single-

cell RNA-seq data at three different treatment timepoints, we developed an R-index model trained from

EGFR-targeted therapy samples to evaluate the risk of EGFR-TKIs resistance. The model was validated

with in-vitro and in-vivo datasets and three large cohorts. We also orthogonally verified the performance

of the R-index model by single-cell data and cohort data in the aspects of resistance pathway and immune

microenvironment.

In the in-vitro cell line and in-vivo PDX validation scenario, we found significant differences in R-index be-

tween EGFR-TKIs resistant and untreated cell lines. We also observed consistent results in the PDX model

that R-index increased in resistant mice and decreased in cured mice. It is indicated that the R-index can be

applied to EGFR-TKIs resistance prediction in cell lines and mouse models. In a cell line drug intervention

model at multiple time points, the PC9 cells received intermittent erlotinib treatment at the 0, 1, 2, 4, 9, and

11th days. The results showed that R-index perfectly fit the dynamic changes of cell number under

erlotinib intervention with a clear negative correlation between the cell numbers and the average

R-index of the PC9 cell line. Previous studies proposed an evolution-based treatment23 or the ‘‘drug hol-

iday’’ phenomenon in treatment24 as a conceptual treatment strategy based on Darwinian dynamics of
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intratumoral heterogeneity has developed for many years.25 Clinically, many reports about salvage treat-

ment demonstrated that patients with acquired resistance could re-respond to EGFR-TKIs re-chal-

lenge,26–28 whereas the actual clinical benefit and timing of drug holiday have not been confirmed clearly.

In our study, on day 4, when the number of cells was large and the resistance was theoretically low, the num-

ber of cells decreased significantly after receiving erlotinib. In contrast, the number of cells on day 9 was the

lowest with the highest average R-index, and erlotinib intervention cannot effectively reduce the number of

cells. At this time, stopping erlotinib intervention might be the best choice so that erlotinib-sensitive cells

A B

C

Figure 6. Interaction between cancer cells and tumor microenvironment cells

(A) Intercellular communication between cancer cells and other cells. Each line’s color and thickness indicate the connection and proportion of the ligands

and receptors, respectively.

(B) The bar chart shows the number of ligand-receptor pairs in cancer cells and other cells in PDB3 and RDB2 samples. The dots represent their ratio. The dots

with ratios above 1 was in red and below 1 in black.

(C) Overview of selected ligand-receptor interactions in hallmark gene set between cancer cells and top-four ratio cell type.
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could have a chance to proliferate and allow them to compete with erlotinib-resistant cells. Several cell line-

based studies can also observe consistent results.29 Therefore, the cell line results validated the reliability

of the R-index and showed the potential value of the R-index in clinical decision-making for drug

interventions.

The enrichment of EGFR-TKIs resistance-related pathways reflected R-index performance. Fgsea analysis

showed that the glycolysis metabolism and KRAS upregulate pathways were significantly enriched in PDB3.

We also got consistent results by R-index stratification in the three large cohorts. The Warburg effect de-

scribes the phenomenon that tumor cells increased utilization of glycolysis rather than oxidative phosphor-

ylation to dominate ATP production despite adequate physiological oxygen conditions.30 On the one

hand, glycolysis can depress tumor cell differentiation and apoptosis to promote proliferation.31,32

On the other hand, glycolysis produces excessive lactate to create an acidic tumor microenvironment that

promotes invasion and migration.33 The RAS oncogene was first revealed through its ability to promote

glycolysis and associated with resistance to targeted therapy.34,35 As the downstream mechanism of the

EGFR signaling pathway, the activation of KRAS-RAF-ERK plays a central role in the malignant transforma-

tion of normal cells. We also observed that the EMT geneset (Figure S6) was significantly upregulated in the

high R-index group, which is an apparent EGFR-TKIs resistance factor.36 In three cohorts, the prognosis of

the high R-index group was worse than the low R-index group, which was consistent with the EGFR-TKIs

resistance status, reflecting the dilemma of patient treatment after drug resistance. Several studies demon-

strated that increased glucose metabolism in tumor cells was associated with resistance to EGFR-TKIs

treatment. Thus, the combined use of glucose metabolism inhibitors may be a potential therapeutic strat-

egy.37–39 Inhibition of increased lactic acid production can also affect disease progression.40 KRAS and its

downstream stand-out signaling pathways, such asMAPK, PI3K, and RAL-GDS, have been used as essential

sources to discover treatment opportunities.35,41 These reflect the contribution of new indicators to the

application of innovative therapies.

In analyzing the immunemicroenvironment, we used single-cell data and cohort data to verify that MDSC is

a major immunosuppressive factor orthogonally. We compared the immune escape score22 between PDB3

and RDB2, finding that the PDB3 had a higher immune escape ability. The immune checkpoint genes of PD-

L1 and CTLA4 expression (Figure 7B) and TMB (Figure S7) showed consistent results with significantly

higher values in the high R-index group. Several EGFR-TKIs treatment studies also found that the PD-L1

expression and TMB values of resistant samples increased,42,43 indicating that the R-index has a good pre-

dictive performance. We used the TIDE algorithm to find further that MDSC-mediated immune exclusion

may be a significant factor of immune escape in three cohorts. To our knowledge, MDSC played a vital role

in the resistance of tumor cells against the immune system to specific therapies.44–46 We also observed that

the IN-gamma (INFG) (Figure 7C) and ROS pathway (Figure S6), closely related to MDSC, were significantly

enriched in the high R-index group. In addition, the MDSC-related receptor-ligand pairs such as

ADORA2B-ENTPD47 were significantly enriched in PDB3. The interaction between neutrophils and

PDB3 was also closer than that of RDB2. The neutrophil is an important immune component regulating

the adaptive immune responses by expressing a wide repertoire of cytokines.48 In most human tumors, tu-

mor-related neutrophil infiltration was associated with poor prognosis.49 MDSC-related neutrophils were

associated with immunosuppressive activity.50 The consistency of the results of scRNA and cohort data re-

flected the value of the R-index in the preclinical study of EGFR-TKIs resistance.

Owing to the biological plasticity of cancer cells, effective early treatment often produces drug resistance

in the later stage.51 Several studies have explored the mechanisms by comparing baseline and re-biopsy

tissue specimens.52,53 However, performing surgery or biopsy to obtain tissue from relapsed patients

has many limitations, even in large, well-designed clinical trials.54,55 Identifying the molecular mechanism

of resistance is necessary for effective posterior therapy. Combining glucose metabolism-targeted or

MDSC-targeted therapies with current clinical treatment may be a possible way to overcome EGFR-TKIs

Figure 7. The contributions of R-index stratification to the immune escape

(A) Comparison of Immune escape and Immune surveillance signature scores of PDB3 and RDB2.

(B) Comparison of CD274 and CTLA4 gene expression.

(C) TIDE score in external databases based on R-index stratification.

See also Figures S7 and S8.
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resistance. Based on the prediction accuracy and performance of the R-index, we consider that R-index can

be used as a tool for preclinical research to assess the resistance status of EGFR-TKIs.

Conclusions

Our study provides a potentially clinically applicable EGFR-TKIs resistant biomarker of R-index in NSCLC

patients with actionable EGFR mutations at the transcriptome level, which may contribute to clinical trans-

lation for individual patient management and for the study of mechanisms of resistance that are currently

unclear.

Limitations of the study

There are still several limitations in our study. First, it is difficult to obtain tissue from advanced EGFR-TKIs

resistance patients at multiple timepoints and large-scale prospective validation studies cannot be

completed in a short time. Another shortcoming is that the bulk RNA data of EGFR-TKIs resistance tissue

were scarce, which precluded us from setting a cohort to directly analyze the R-index’s effectiveness. More-

over, our R-index model may currently only be suitable for preclinical exploratory research, and it needs

further evaluation when applied to clinical decision-making.
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Laurent, C., Fournié, J.J., Espinosa, E., and
Poupot, M. (2021). Cancer cells resistance
shaping by tumor infiltrating myeloid cells.
Cancers 13, 165. https://doi.org/10.3390/
cancers13020165.

45. Weber, R., Fleming, V., Hu, X., Nagibin, V.,
Groth, C., Altevogt, P., Utikal, J., and
Umansky, V. (2018). Myeloid-derived
suppressor cells hinder the anti-cancer
activity of immune checkpoint inhibitors.
Front. Immunol. 9, 1310. https://doi.org/10.
3389/fimmu.2018.01310.

46. Li, R., Salehi-Rad, R., Crosson, W.,
Momcilovic, M., Lim, R.J., Ong, S.L., Huang,
Z.L., Zhang, T., Abascal, J., Dumitras, C., et al.

(2021). Inhibition of granulocytic myeloid-
derived suppressor cells overcomes
resistance to immune checkpoint inhibition in
LKB1-deficient non-small cell lung cancer.
Cancer Res. 81, 3295–3308. https://doi.org/
10.1158/0008-5472.can-20-3564.

47. Chen, S., Akdemir, I., Fan, J., Linden, J.,
Zhang, B., and Cekic, C. (2020). The
expression of adenosine A2B receptor on
antigen-presenting cells suppresses CD8(+)
T-cell responses and promotes tumor
growth. Cancer Immunol. Res. 8, 1064–1074.
https://doi.org/10.1158/2326-6066.cir-
19-0833.

48. Scapini, P., and Cassatella, M.A. (2014). Social
networking of human neutrophils within the
immune system. Blood 124, 710–719. https://
doi.org/10.1182/blood-2014-03-453217.

49. Shaul, M.E., and Fridlender, Z.G. (2019).
Tumour-associated neutrophils in patients
with cancer. Nat. Rev. Clin. Oncol. 16,
601–620. https://doi.org/10.1038/s41571-
019-0222-4.

50. Bronte, V., Brandau, S., Chen, S.H., Colombo,
M.P., Frey, A.B., Greten, T.F., Mandruzzato,
S., Murray, P.J., Ochoa, A., Ostrand-
Rosenberg, S., et al. (2016).
Recommendations for myeloid-derived
suppressor cell nomenclature and
characterization standards. Nat. Commun. 7,
12150. https://doi.org/10.1038/
ncomms12150.

51. Yuan, S., Norgard, R.J., and Stanger, B.Z.
(2019). Cellular plasticity in cancer. Cancer
Discov. 9, 837–851. https://doi.org/10.1158/
2159-8290.cd-19-0015.

52. Kobayashi, S., Boggon, T.J., Dayaram, T.,
Jänne, P.A., Kocher, O., Meyerson, M.,
Johnson, B.E., Eck, M.J., Tenen, D.G., and
Halmos, B. (2005). EGFR mutation and
resistance of non-small-cell lung cancer to
gefitinib. N. Engl. J. Med. 352, 786–792.
https://doi.org/10.1056/NEJMoa044238.

53. Yu, H.A., Arcila, M.E., Rekhtman, N., Sima,
C.S., Zakowski, M.F., Pao, W., Kris, M.G.,
Miller, V.A., Ladanyi, M., and Riely, G.J.
(2013). Analysis of tumor specimens at the
time of acquired resistance to EGFR-TKI
therapy in 155 patients with EGFR-mutant
lung cancers. Clin. Cancer Res. 19, 2240–
2247. https://doi.org/10.1158/1078-0432.ccr-
12-2246.

54. Fukuoka, M., Wu, Y.L., Thongprasert, S.,
Sunpaweravong, P., Leong, S.S.,
Sriuranpong, V., Chao, T.Y., Nakagawa, K.,
Chu, D.T., Saijo, N., et al. (2011). Biomarker
analyses and final overall survival results from
a phase III, randomized, open-label, first-line
study of gefitinib versus carboplatin/
paclitaxel in clinically selected patients with
advanced non-small-cell lung cancer in Asia
(IPASS). J. Clin. Oncol. 29, 2866–2874. https://
doi.org/10.1200/jco.2010.33.4235.

55. Lee, S.M., Park, C.M., Lee, K.H., Bahn, Y.E.,
Kim, J.I., and Goo, J.M. (2014). C-arm cone-
beam CT-guided percutaneous transthoracic
needle biopsy of lung nodules: clinical
experience in 1108 patients. Radiology 271,
291–300. https://doi.org/10.1148/radiol.
13131265.

ll
OPEN ACCESS

14 iScience 26, 106584, June 16, 2023

iScience
Article

https://doi.org/10.1186/1471-2407-11-1
https://doi.org/10.1186/1471-2407-11-1
https://doi.org/10.1007/s00280-019-03790-w
https://doi.org/10.1007/s00280-019-03790-w
https://doi.org/10.1016/j.lungcan.2012.01.012
https://doi.org/10.1016/j.lungcan.2012.01.012
https://doi.org/10.1126/scitranslmed.3002356
https://doi.org/10.1126/scitranslmed.3002356
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.123.3191.309
https://doi.org/10.1126/science.1160809
https://doi.org/10.1093/jnci/djj395
https://doi.org/10.1158/0008-5472.can-11-1457
https://doi.org/10.1158/0008-5472.can-11-1457
https://doi.org/10.1073/pnas.82.11.3535
https://doi.org/10.1073/pnas.82.11.3535
https://doi.org/10.1016/j.ccell.2018.08.009
https://doi.org/10.1016/j.ccell.2018.08.009
https://doi.org/10.1016/j.bbcan.2018.10.003
https://doi.org/10.1016/j.bbcan.2018.10.003
https://doi.org/10.1158/0008-5472.can-11-3024
https://doi.org/10.1158/0008-5472.can-11-3024
https://doi.org/10.18632/oncotarget.25994
https://doi.org/10.18632/oncotarget.25994
https://doi.org/10.1158/1535-7163.mct-12-1188
https://doi.org/10.1158/1535-7163.mct-12-1188
https://doi.org/10.1016/j.cmet.2014.03.003
https://doi.org/10.1016/j.cmet.2014.03.003
https://doi.org/10.1038/nm.3392
https://doi.org/10.1038/nm.3392
https://doi.org/10.1186/s12943-019-1073-4
https://doi.org/10.1186/s12943-019-1073-4
https://doi.org/10.1158/1078-0432.ccr-19-2027
https://doi.org/10.1158/1078-0432.ccr-19-2027
https://doi.org/10.3390/cancers13020165
https://doi.org/10.3390/cancers13020165
https://doi.org/10.3389/fimmu.2018.01310
https://doi.org/10.3389/fimmu.2018.01310
https://doi.org/10.1158/0008-5472.can-20-3564
https://doi.org/10.1158/0008-5472.can-20-3564
https://doi.org/10.1158/2326-6066.cir-19-0833
https://doi.org/10.1158/2326-6066.cir-19-0833
https://doi.org/10.1182/blood-2014-03-453217
https://doi.org/10.1182/blood-2014-03-453217
https://doi.org/10.1038/s41571-019-0222-4
https://doi.org/10.1038/s41571-019-0222-4
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1038/ncomms12150
https://doi.org/10.1158/2159-8290.cd-19-0015
https://doi.org/10.1158/2159-8290.cd-19-0015
https://doi.org/10.1056/NEJMoa044238
https://doi.org/10.1158/1078-0432.ccr-12-2246
https://doi.org/10.1158/1078-0432.ccr-12-2246
https://doi.org/10.1200/jco.2010.33.4235
https://doi.org/10.1200/jco.2010.33.4235
https://doi.org/10.1148/radiol.13131265
https://doi.org/10.1148/radiol.13131265


56. Gogleva, A., Polychronopoulos, D., Pfeifer,
M., Poroshin, V., Ughetto, M., Martin, M.J.,
Thorpe, H., Bornot, A., Smith, P.D., Sidders,
B., et al. (2022). Knowledge graph-based
recommendation framework identifies
drivers of resistance in EGFR mutant
non-small cell lung cancer. Nat. Commun. 13,
1667. https://doi.org/10.1038/s41467-022-
29292-7.

57. Gurule, N.J., McCoach, C.E., Hinz, T.K.,
Merrick, D.T., Van Bokhoven, A., Kim, J., Patil,
T., Calhoun, J., Nemenoff, R.A., Tan, A.C.,
et al. (2021). A tyrosine kinase inhibitor-
induced interferon response positively
associates with clinical response in EGFR-
mutant lung cancer. NPJ Precis. Oncol. 5, 41.
https://doi.org/10.1038/s41698-021-00181-4.

58. Rusan, M., Li, K., Li, Y., Christensen, C.L.,
Abraham, B.J., Kwiatkowski, N., Buczkowski,
K.A., Bockorny, B., Chen, T., Li, S., et al. (2018).
Suppression of adaptive responses to
targeted cancer therapy by transcriptional
repression. Cancer Discov. 8, 59–73. https://
doi.org/10.1158/2159-8290.Cd-17-0461.

59. Hata, A.N., Niederst, M.J., Archibald, H.L.,
Gomez-Caraballo, M., Siddiqui, F.M., Mulvey,
H.E., Maruvka, Y.E., Ji, F., Bhang, H.e.C.,
Krishnamurthy Radhakrishna, V., et al. (2016).
Tumor cells can follow distinct evolutionary
paths to become resistant to epidermal
growth factor receptor inhibition. Nat. Med.
22, 262–269. https://doi.org/10.1038/
nm.4040.

60. Raoof, S., Mulford, I.J., Frisco-Cabanos, H.,
Nangia, V., Timonina, D., Labrot, E., Hafeez,
N., Bilton, S.J., Drier, Y., Ji, F., et al. (2019).
Targeting FGFR overcomes EMT-mediated
resistance in EGFRmutant non-small cell lung
cancer. Oncogene 38, 6399–6413. https://
doi.org/10.1038/s41388-019-0887-2.

61. Aissa, A.F., Islam, A., Ariss, M.M., Go, C.C.,
Rader, A.E., Conrardy, R.D., Gajda, A.M.,
Rubio-Perez, C., Valyi-Nagy, K., Pasquinelli,
M., et al. (2021). Single-cell transcriptional
changes associated with drug tolerance and
response to combination therapies in cancer.
Nat. Commun. 12, 1628. https://doi.org/10.
1038/s41467-021-21884-z.

62. Hoadley, K.A., Yau, C., Hinoue, T., Wolf, D.M.,
Lazar, A.J., Drill, E., Shen, R., Taylor, A.M.,
Cherniack, A.D., Thorsson, V., et al. (2018).
Cell-of-Origin patterns dominate the
molecular classification of 10,000 tumors from
33 types of cancer. Cell 173, 291–304.e6.
https://doi.org/10.1016/j.cell.2018.03.022.

63. Okayama, H., Kohno, T., Ishii, Y., Shimada, Y.,
Shiraishi, K., Iwakawa, R., Furuta, K., Tsuta, K.,
Shibata, T., Yamamoto, S., et al. (2012).
Identification of genes upregulated in ALK-
positive and EGFR/KRAS/ALK-negative lung
adenocarcinomas. Cancer Res. 72, 100–111.
https://doi.org/10.1158/0008-5472.can-
11-1403.

64. Stuart, T., Butler, A., Hoffman, P.,
Hafemeister, C., Papalexi, E., Mauck, W.M.,
3rd, Hao, Y., Stoeckius, M., Smibert, P., and

Satija, R. (2019). Comprehensive integration
of single-cell data. Cell 177, 1888–1902.e21.
https://doi.org/10.1016/j.cell.2019.05.031.

65. Qiu, X., Mao, Q., Tang, Y., Wang, L., Chawla,
R., Pliner, H.A., and Trapnell, C. (2017).
Reversed graph embedding resolves
complex single-cell trajectories. Nat.
Methods 14, 979–982. https://doi.org/10.
1038/nmeth.4402.

66. R Core Team (2021). R: A Language and
Environment for Statistical Computing (R
Foundation for Statistical Computing).
https://www.R-project.org/.

67. Korotkevich, G., Sukhov, V., Budin, N., Shpak,
B., Artyomov, M.N., and Sergushichev, A.
(2021). Fast gene set enrichment analysis.
Preprint at bioRxiv. https://doi.org/10.1101/
060012.

68. Love, M.I., Huber, W., and Anders, S. (2014).
Moderated estimation of fold change and
dispersion for RNA-seq data with DESeq2.
Genome Biol. 15, 550. https://doi.org/10.
1186/s13059-014-0550-8.

69. Therneau, T., and Crowson, C. (2013). Using
Time Dependent Covariates and Time
Dependent Coefcients in the Cox Model
(Survival Package).

70. Wickham, H. (2016). ggplot2: Elegant
Graphics for Data Analysis (Springer-Verlag).

71. Hänzelmann, S., Castelo, R., and Guinney, J.
(2013). GSVA: gene set variation analysis for
microarray and RNA-seq data. BMC Bioinf.
14, 7. https://doi.org/10.1186/1471-2105-
14-7.

72. Wu, T., Hu, E., Xu, S., Chen, M., Guo, P., Dai,
Z., Feng, T., Zhou, L., Tang, W., Zhan, L., et al.
(2021). clusterProfiler 4.0: a universal
enrichment tool for interpreting omics data.
Innovation 2, 100141. https://doi.org/10.
1016/j.xinn.2021.100141.

73. Zhang, J. GseaVis: implement for ‘GSEA’
enrichment visualization. R package version
0.0.5. https://github.com/junjunlab/GseaVis.

74. Efremova, M., Vento-Tormo, M., Teichmann,
S.A., and Vento-Tormo, R. (2020).
CellPhoneDB: inferring cell-cell
communication from combined expression of
multi-subunit ligand-receptor complexes.
Nat. Protoc. 15, 1484–1506. https://doi.org/
10.1038/s41596-020-0292-x.

75. Jiang, P., Gu, S., Pan, D., Fu, J., Sahu, A., Hu,
X., Li, Z., Traugh, N., Bu, X., Li, B., et al. (2018).
Signatures of T cell dysfunction and exclusion
predict cancer immunotherapy response.
Nat. Med. 24, 1550–1558. https://doi.org/10.
1038/s41591-018-0136-1.

76. Butler, A., Hoffman, P., Smibert, P., Papalexi,
E., and Satija, R. (2018). Integrating single-cell
transcriptomic data across different
conditions, technologies, and species. Nat.
Biotechnol. 36, 411–420. https://doi.org/10.
1038/nbt.4096.

77. Malta, T.M., Sokolov, A., Gentles, A.J.,
Burzykowski, T., Poisson, L., Weinstein, J.N.,
Kami�nska, B., Huelsken, J., Omberg, L.,
Gevaert, O., et al. (2018). Machine learning
identifies stemness features associated with
oncogenic dedifferentiation. Cell 173, 338–
354.e15. https://doi.org/10.1016/j.cell.2018.
03.034.

78. Sharma, S.V., Lee, D.Y., Li, B., Quinlan, M.P.,
Takahashi, F., Maheswaran, S., McDermott,
U., Azizian, N., Zou, L., Fischbach, M.A., et al.
(2010). A chromatin-mediated reversible
drug-tolerant state in cancer cell
subpopulations. Cell 141, 69–80. https://doi.
org/10.1016/j.cell.2010.02.027.

79. Ramirez, M., Rajaram, S., Steininger, R.J.,
Osipchuk, D., Roth, M.A., Morinishi, L.S.,
Evans, L., Ji, W., Hsu, C.H., Thurley, K., et al.
(2016). Diverse drug-resistance mechanisms
can emerge from drug-tolerant cancer
persister cells. Nat. Commun. 7, 10690.
https://doi.org/10.1038/ncomms10690.

80. Roper, N., Brown, A.L., Wei, J.S., Pack, S.,
Trindade, C., Kim, C., Restifo, O., Gao, S.,
Sindiri, S., Mehrabadi, F., et al. (2020). Clonal
evolution and heterogeneity of osimertinib
acquired resistance mechanisms in EGFR
mutant lung cancer. Cell Rep.Med. 1, 100007.
https://doi.org/10.1016/j.xcrm.2020.100007.

81. Yang, X., Chen, L., Mao, Y., Hu, Z., and He, M.
(2020). Progressive and prognostic
performance of an extracellular matrix-
receptor interaction signature in gastric
cancer. Dis. Markers 2020, 8816070. https://
doi.org/10.1155/2020/8816070.

82. Joshi, K., de Massy, M.R., Ismail, M., Reading,
J.L., Uddin, I., Woolston, A., Hatipoglu, E.,
Oakes, T., Rosenthal, R., Peacock, T., et al.
(2019). Spatial heterogeneity of the T cell
receptor repertoire reflects the mutational
landscape in lung cancer. Nat. Med. 25, 1549–
1559. https://doi.org/10.1038/s41591-019-
0592-2.

83. Charoentong, P., Finotello, F., Angelova, M.,
Mayer, C., Efremova, M., Rieder, D., Hackl, H.,
and Trajanoski, Z. (2017). Pan-cancer
immunogenomic analyses reveal genotype-
immunophenotype relationships and
predictors of response to checkpoint
blockade. Cell Rep. 18, 248–262. https://doi.
org/10.1016/j.celrep.2016.12.019.

84. Liberzon, A., Birger, C., Thorvaldsdóttir, H.,
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RESOURCE AVAILABILITY

Lead contact

Further information and requests for resources and reagents should be directed to and will be fulfilled by

the lead contact, Prof. Chengzhi Zhou (Zhouzhouchengzhi@gird.cn).

Materials availability

This study did not generate new unique materials.

Data and code availability

This paper analyzes existing, publicly available data. These accession numbers for the datasets are listed in

the key resources table.

Code is available from the lead contact upon request.

Any additional information required to reanalyze the data reported in this paper is available from the lead

contact upon request.

EXPERIMENTAL MODEL AND SUBJECT DETAILS

This study did not generate new unique experimental model.

METHOD DETAILS

The maynard et al.’s single-cell RNA sequence (scRNA-seq) data

To screen for EGFR-TKIs resistant cells, the Maynard et al.’s scRNA-seq data15 of multiple EGFR-TKIs treat-

ment timepoints were obtained from Sequence Read Archive (SRA) database of the National Center for

Biotechnology Information (NCBI) under the accession number PRJNA591860. Single-cell annotation files

and EGFR-TKIs therapeutic information files were downloaded from Google Cloud Disk (https://drive.

google.com/drive/folders/1sDzO0WOD4rnGC7QfTKwdcQTx3L36PFwX?usp=sharing). This dataset was

chosen because it is currently the largest number of scRNA-seq samples withmultiple EGFR-TKIs treatment

time points and high sequencing quality, which provides us with the resources to investigate the properties

of EGFR-TKIs resistant cancer cells. The cohort contains 14 advanced-stage NSCLC EGFR-TKIs treatment

individual patients. According to the medication situation, patients were divided into three states: TN (pa-

tients before initiating systemic targeted therapy, TKI naive state), RD (tumor was regressing or stable by

clinical imaging, residual disease state), and PD (subsequent progressive disease as determined by clinical

imaging, progression state). This dataset sets the stage for our investigation into the mechanisms under-

lying differential EGFR-TKIs efficacy. A total of 23 small tissue samples or surgical resections samples were

obtained from lung tissue. Smart-seq2 technology was used to extract the expression profile of single cells

(Table S1, Figure S1).

Maynard et al.’s scRNA-seq data quality control and R-index model

To ensure the quality of data analysis, we performed preliminary quality control of the Maynard et al.’s

scRNA data as follows: 1) Retention of single-cell samples from patients with EGFR mutations; 2) Removal

of potentially double cells; 3) Removal of mitochondrial and ribosomal genes; 4) Ensure single cell nCount

>50000 & nFeature >500. Finally, we obtained 2080 cancer cells from 23 samples belonging to three states,

TN, RD, and PD (Figure S2A). The Seurat v376 R package was used for single-cell RNA-seq analysis.64 First,

the 2080 cancer cells were scaled and normalized according to default parameters, and 2000 hypervariable

genes were selected for subsequent analysis (Figure S2B). principal component analysis (PCA) was used to

reduce feature gene dimension and top 20 PCA (Figure S2C) was selected to execute Shared Nearest

Neighbor (SNN) algorithm cluster with 0.5 resolution (Figure S2D). Then, a 2-dimensional t-distributed Sto-

chastic Neighbor Embedding (tSNE) and Uni-form Mani-fold Approximation and Projection (UMAP) was

used to visualize the distribution of cancer cells at three time points (Figure S3). Cancer cells at each

time point were displayed with UMAP. Second, to identify dynamic gene expression patterns correlated

with clinical efficacy. The cell lineage trajectory was inferred by Monocle265 following the tutorial. We

manually inspected the trajectory and selected the root nodes from the principal points with earlier

development stage (EGFR-TKIs naive, Branch 1) than its nearby neighbors (EGFR-TKIs treatment, Branch

2 and Branch 3). Finally, we used the DESeq2 R package68 to derive DEG(Differential expressed genes)
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from selected branches (PD cancer cells in branch 3, PDB3 vs RD cancer cells in branch 2, RDB2) with the

p-value %0.01 and |log2FC| > 2, and got 1107 DEG (Table S2). To extract the expression characteristics

of EGRF-TKIs resistant cells, a weighted 1107 genes signature array (Table S3) was yielded using OCLR14

algorithm performed by gelnet v1.2.1 R package according to a previous study.77 The calculation process

is as follows: 1) We first extracted the 1107 genes expression information of PDB3. 2) We then use the gelnet

function for 1000 iterations to calculate the weighted value of each gene. 3) The weighted values of 1107

genes were used as expression coefficients for EGFR-TKIs resistance. 4) R-index equals the spearman cor-

relation value of the 1107 gene expression coefficient and corresponding gene expression value.

Cell line validation data

To validate the performance of R-index in EGFR-TKIs treatment cell lines, we obtained RNA-seq

sequencing of PC9 data with pre- and post-EGFR-TKI treatment. PC9 is an NSCLC cell line with EGFR

19del. A previous study has been shown that a small fraction of PC9 cells (�0.5%) can enter a persist state

to evade the intense selective pressure of high concentrations of the EGFR inhibitor erlotinib.78,79 We hy-

pothesize that the cells that remain viable after EGFR-TKIs treatment will be resistant and that the corre-

sponding R-index will be significantly higher. EGFR-TKIs treatment data of the PC9 cell line was obtained

from Gene Expression Omnibus (GEO) database (https://www.ncbi.nlm.nih.gov/geo) under the accession

number GSE149383,61 GSE193258,56 GSE165019,57 GSE89127,58 GSE75602,59 GSE114647,60 GSE162045.

The GSE193258 PC9 cell lines were treated with 500 nM osimertinib for day 0 and day 21. The total RNA

was extracted and performed RNA-seq. The GSE165019 PC9 cell lines were treated with 300 nM Osimerti-

nib for 3 days and total RNA was extracted and performed RNA-seq. This dataset also contains 8

EGFRmutant patients treated with EGFR-TKIs (Osimertinib or Erlotinib), bulk RNA-seq was performed

and progression information was recorded. The GSE89127 PC9 cell lines were treated with Erlotinib at

day 0, day 2, day 7 and total RNA was extracted and performed RNA-seq. The GSE75602 PC9 cell lines

were treated with 1 mM gefitinib and 1 mM WZ4002 for 24 h, respectively. The total RNA was extracted

and performed RNA-seq. The GSE114647 PC9 cell lines were treated with 300 nM gefitinib at day 0, day

1 and day 14. The total RNA was extracted and performed RNA-seq. The GSE162045 PC9 cell lines were

treated with gefitinib at day 0, day 3 and day 9. The total RNA was extracted and performed RNA-seq.

The GSE149383 PC9 cell lines were treated with 2 mM erlotinib at day 0, day 1, day 2, day 4, day9, day

11 and single-cell RNA-seq was performed using Drop-seq.

Mice model validation data

To validate the performance of R-index in mice. Patient-derived NSCLC xenograft models bulk RNA-seq

data were downloaded from the GEO database under the accession numberGSE161584,17

GSE130160.16 The GSE161584 mice model were injected with PC9 cells. When tumors reached

500 mm3, mice were treated daily with erlotinib (50 mg/kg) until resistant (started relapsing or reached

800mm3). Then, the tumor tissue RNAwas extracted and performed RNA-seq. The GSE130160micemodel

was implanted with NSCLC tumor specimens (Exon 19 deletion and L858R mutation) and treated by oral

gavage with 25 mg/kg per day of osimertinib when tumor volume exceeded 500 mm3 until resistant

(reached 1500 mm3).

EGFR-TKIs treatment validation data

To validate the performance of R-index in the real-world clinical treatment of patients. The NSCLC patients

with pre- and post-EGFR-TKIs treatment independent bulk RNA-seq data were also downloaded from the

GEO database under the accession number GSE165019,57 and the dbGaP database under the accession

number phs002001.80 The GSE165019 contains 8 EGFRmutant patients treated with EGFR-TKIs (Osimerti-

nib or Erlotinib), bulk RNA-seq and progression information was obtained. The phs002001 contains 9 first

line of EGFR-TKIs treatment patients, bulk RNA-seq and progression information was obtained.

Cohort validation data

To validate the performance of R-index in prognosis. The OncoSG (Singapore Oncology Data Portal),81

TCGA62 and GSE3121063 bulk RNA-seq data with clinic information was obtained. In these cohorts, one pa-

tient had only one bulk RNA-seq data. The OncoSG cohort was downloaded from cbioportal at (http://

www.cbioportal.org/study/summary?id=luad_OncoSG_2020). This cohort contains 169 lung adenocarci-

noma patients and 94 patients had EGFR mutations. The TCGA cohort were downloaded from cbioportal

at (http://www.cbioportal.org/study/summary?id=luad_tcga_pan_can_atlas_2018). This cohort contains
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510 lung adenocarcinoma patients and 54 patients with EGFR mutations. The GSE31210 cohort was down-

loaded from the GEO database. This cohort contains 226 Japan early lung adenocarcinomas patients and

127 patients with EGFR mutations.

Cancer cell cluster diversity

Wehypothesize that EGFR-TKIs interventions may have a screening effect on cancer cells, resulting in struc-

tural changes in the composition and distribution of cancer cells that may be assessed from a diversity

perspective. We calculated the shannon entropy of cancer cells at the three time points to capture the

contribution of each cancer cell cluster.82 The shannon entropy index is given by

H � index =

� Pn

i = 1

Pilog2ðPiÞ
lnðNÞ

where pi represents the relative abundance ratio of the ith cluster cell number and N is the total number of

clusters. pi is obtained by dividing the number of cancer cells belonging to the ith cluster by the total num-

ber of cancer cell numbers in the states. A large H-index indicates high diversity.

Survival analysis

In the bulk validation cohort OncoSG, TCGA, andGSE31210, Cox proportional hazardmodels were used to

investigate the association between R-index and patient survival. The samples were grouped into high and

low expression groups by the median value. The Kaplan-Meier survival curves were plotted to show differ-

ences in survival time, and log-rank p values reported by the Cox regression models implemented in the R

package survival v3.2.11 were used to determine the statistical significance.69

fgsea analysis

Fgsea was used to explore the MSigDB v7.4 hallmark gene set properties of 1107 EGFR-TKIs resistant

genes in Maynard et al.’s scRNA-seq data with fgsea v1.10.1 R package,67 which had accurate standard ap-

proaches to multiple hypothesis correction, making more permutations, and getting more fine-grained

p-values.

ssGSEA analysis

The ssGSEA algorithm71 was used to quantify the relative abundance of 28 immune cell types83 and 50 hall-

mark gene sets84 with the GSVA v1.36.3 R package. The relative abundance value was represented by an

enrichment score, which was normalized to unity distribution from zero to one.

Gene set enrichment analysis

Gene set enrichment analysis was performed with the R package clusterProfiler v4.2.2.72 The KEGG/GO/

Reactome gene set collection from the Molecular Signature Database85 was used to identify the biological

pathways. Pathways with adjusted p< 0.05 were included and visualized by GseaVis v0.0.5 R package.

Cell-cell interaction analysis

We used CellPhoneDB74 to identify significant ligand-receptor pairs within cells from PD patient and cells

from RD patient. CellPhoneDB is a Python program calculating the interaction between the receptors and

ligands. The cell-type-specific receptor-ligand interactions among cell types were identified based on the

specific expression of a receptor by one cell type and a ligand by another cell type. The interaction score

refers to the total mean of the individual ligand-receptor partner average expression values in the corre-

sponding interacting pairs of cell types. The expression of complexes output by CellPhoneDB was calcu-

lated as the sum of the expression of the component genes.

TIDE analysis

The T cell dysfunction and exclusion status was estimated with Tumor Immune Dysfunction and Exclusion

(TIDE) algorithm75 (http://tide.dfci.harvard.edu) using bulk transcriptome profiles of OncoSG, TCGA and

GSE31210 cohort.
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QUANTIFICATION AND STATISTICAL ANALYSIS

The differences between R-index median stratification groups were analyzed using Mann–Whitney U tests.

The consistency between R-index and cell number was assessed using Spearman correlation analysis.

ggplot2 was used for data visualization.70 All statistical analyses and presentations were performed using

R v4.1.2. Statistical significance was set at p< 0.05.
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