
sensors

Article

An Incremental Clustering Algorithm with Pattern Drift
Detection for IoT-Enabled Smart Grid System

Zigui Jiang 1 , Rongheng Lin 2,* and Fangchun Yang 2

����������
�������

Citation: Jiang, Z.; Lin, R.; Yang, F.

An Incremental Clustering Algorithm

with Pattern Drift Detection for

IoT-Enabled Smart Grid System.

Sensors 2021, 21, 6466. https://

doi.org/10.3390/s21196466

Academic Editor: Antonino Laudani

Received: 27 July 2021

Accepted: 24 September 2021

Published: 28 September 2021

Publisher’s Note: MDPI stays neutral

with regard to jurisdictional claims in

published maps and institutional affil-

iations.

Copyright: © 2021 by the authors.

Licensee MDPI, Basel, Switzerland.

This article is an open access article

distributed under the terms and

conditions of the Creative Commons

Attribution (CC BY) license (https://

creativecommons.org/licenses/by/

4.0/).

1 School of Software Engineering, Sun Yat-Sen University, Zhuhai 519082, China; jiangzg3@mail.sysu.edu.cn
2 State Key Laboratory of Networking and Switching Technology, Beijing University of Posts and

Telecommunications, Beijing 100876, China; fcyang@bupt.edu.cn
* Correspondence: rhlin@bupt.edu.cn

Abstract: The IoT-enabled smart grid system provides smart meter data for electricity consumers
to record their energy consumption behaviors, the typical features of which can be represented by
the load patterns extracted from load data clustering. The changeability of consumption behaviors
requires load pattern update for achieving accurate consumer segmentation and effective demand re-
sponse. In order to save training time and reduce computation scale, we propose a novel incremental
clustering algorithm with probability strategy, ICluster-PS, instead of overall load data clustering to
update load patterns. ICluster-PS first conducts new load pattern extraction based on the existing
load patterns and new data. Then, it intergrades new load patterns with the existing ones. Finally,
it optimizes the intergraded load pattern sets by a further modification. Moreover, ICluster-PS can
be performed continuously with new coming data due to parameter updating and generalization.
Extensive experiments are implemented on real-world dataset containing diverse consumer types
in various districts. The experimental results are evaluated by both clustering validity indices and
accuracy measures, which indicate that ICluster-PS outperforms other related incremental cluster-
ing algorithm. Additionally, according to the further case studies on pattern evolution analysis,
ICluster-PS is able to present any pattern drifts through its incremental clustering results.

Keywords: incremental learning; data stream clustering; load pattern; smart meter data

1. Introduction

The smart grid system has been developing with the integration of massive new tech-
nologies, such as Internet of Things (IoT), Blockchain, and Artificial Intelligence (AI) [1–3].
Diverse IoT devices and frameworks are applied on smart grid to support data collection,
transmission [4], real-time monitoring [5], etc. Blockchain technologies can provide decen-
tralization, trust, and an incentive mechanism for improving the cybersecurity of smart grid
system [6–8]. Compared with AI, the applications of AI methods including machine learn-
ing and deep learning are usually used to process and analyze data for decision-making,
such as electric load forecasting [9,10], electric consumer categorization [11], and anomaly
detection [12]. In such a smart grid system, the smart meter is an essential IoT device
that records energy consumption data for further understanding, managing, planing, and
optimizing power demands of electric consumers [13,14].

Smart meter data, also called electricity load data, are data streams that record the
electricity consumption behaviors of consumers at regular intervals. They can be used for
various studies and applications in smart grid, such as load forecasting, load profiling [15],
anomaly detection [16,17], consumer categorization [18], and energy disaggregation [19].
In the studies of load profiling, one significant purpose is to extract the typical electricity
consumption patterns, which is usually called load patterns, of every consumer based on
load data clustering [20]. Most of works on load data clustering focus on the clustering
problem of static load data. However, we notice that updating load patterns based on
new load data is essential because electricity consumption behaviors may be changeable
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and inaccurate load patterns can cause wrong decisions. Although load patterns can be
updated by conducting repetitive clustering on overall load data including the new ones,
this leads to extra computation and storage, especially in batch-oriented data processing.
In that case, incremental learning, which refers to learning from streaming data that arrive
over time [21], can be a better solution as it can make full use of the historical information,
reduce the training scale, and save training time [22]. Moreover, there are also some special
clustering algorithms designed for data streams mining [23]. However, few of them are
designed for high-dimensional smart meter data streams so that it is necessary to find out
an effective incremental clustering algorithm to update load patterns, especially for end
consumers with limited resources.

In real-world industry and our daily lives, the electricity consumption behaviors of
consumers may change over time. Some consumers keep their patterns for a long period
while others may change frequently. An example of load pattern drift is shown in Figure 1.
Each curve denotes a typical load pattern of the same electricity consumer, and the curves
in the same color in different subfigures indicate the same load pattern. This consumer
has two typical load patterns from January to July, which means that this consumer has a
stable electricity consumption behavior. Then, it can be observed that the load patterns
drift twice. The first drift happened in August shown by the red curve in Figure 1b, which
indicates that this consumer has a new electricity consumption behavior. The second drift
happened in August shown by the cyan curve in Figure 1d. Then, this consumer has four
electricity consumption behaviors since October.
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Figure 1. An example of electricity load patterns drift. (a) Load patterns of load data from January to
July; (b–d) load patterns of load data that increase monthly comparing with the former one. All load
patterns are obtained by daily load curve clustering.

Once we extract the load patterns from the static electricity load data in a certain
period, these load patterns are fixed unless they are updated. It is possible that there are
some new load patterns that denote consumer behavior drift in the following periods, so
that we should update the previously obtained load patterns by adding the new ones.
However, consumer behaviors are complex. It is still uncertain that all coming load patterns
are new, which means that some load patterns may exist in the previously obtained load
patterns and others may not. In that case, we cannot simply add each load pattern extracted
from the new coming data or assign them to any existing load patterns. How to update
load patterns accurately is the main challenge of our incremental clustering problem.

Therefore, this work proposes an incremental clustering algorithm with probability
strategy, which is named ICluster-PS. We assume that this algorithm can deal with smart
meter data streams to update load patterns efficiently for every end-consumer through
facilities with limited time and space. The incremental clustering algorithm of ICluster-
PS includes three phases: load pattern extraction, load pattern intergradation, and load
pattern modification. Load pattern extraction is a preparation to extract load patterns
from new electricity load data, which are preprocessed as daily load curves. Load pattern
intergradation and modification is an novel approach for determining whether or not we
should create a new load pattern and optimize K for the number of updated load patterns.
A short paper of this work is published in [24], and we revise and extend it by adding
more details of the algorithm, experiments and pattern evolution analysis in this paper.
The main contributions of this work are summarized as follows:
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• We consider the problem of load pattern update based on smart meter data streams,
and propose an incremental clustering algorithm for continuously updating load
patterns. It is significantly helpful for learning electricity consumption behaviors in
smart grid field.

• In the incremental clustering algorithm, we propose a probability strategy on distance
measure for optimizing the performance of incremental clustering, and also consider
updating parameter to conduct continuous incremental clustering with new coming
data.

• We evaluate both accuracy and clustering validity of our algorithm on a real-world
dataset, which contains 17,776 commercial and residential electricity consumers in
various districts. The results indicate that ICluster-PS is closed to the performance of
the non-incremental clustering based on overall daily load curves and outperforms
other related incremental clustering algorithm in terms of both clustering validity and
accuracy.

• The load pattern evolution can be clearly presented by the incremental clustering
results, in which we are able to detect any pattern drifts or anomalies of electricity
consumers.

The rest of this paper is organized as follows. Section 2 briefly reviews the related
works. Section 3 provides the preliminary for Section 4, which introduces the details of
the proposed incremental clustering algorithm. Experimental settings are presented in
Section 5, and results with evaluation are discussed in Section 6. Finally, we conclude this
work in Section 7.

2. Related Work

This section briefly reviews the most relevant related works in terms of load pattern ex-
traction, incremental learning algorithms, and data stream clustering. Electricity consumer
load pattern extraction is one of the most important research areas in smart grid, while
incremental learning and data stream clustering are two related research areas in machine
learning and data mining. However, there are few works that consider the problem how
to conduct an incremental learning for electricity consumer load pattern extraction. Some
relevant research works are compared in Table 1.

Table 1. Comparison with existing research works.

Research Works Year Algorithms Unsupervised Data Types Incremental New Class

Xu et al. [22] 2018 SVM-based No Multiple Yes No
Jiang et al. [24] 2019 K-means-based Yes load data No -

Al-Otaibi et al. [25] 2016 feature construction Yes load data No -
Panapakidis et al. [26] 2015 K-means-based Yes load data No -
Marxer & Purwins [27] 2016 RF-based No image data Yes Yes

Zhang et al. [28] 2017 density-based Yes IoT data Yes Yes
Aggarwal et al. [29] 2004 K-means-based Yes data streams - -

Kriegel et al. [30] 2011 density-based Yes data streams - -
Zhang et al. [31] 2016 Fuzzy C-mean-based Yes data streams - -

Braverman et al. [32] 2017 K-median-based Yes data streams - No
Hyde et al. [33] 2017 density-based Yes data streams Yes -
Zhang et al. [34] 2019 density-based Yes trajectory streams Yes -
W. & Berrar [35] 2020 neural network-based Yes noisy data - -
Proposed work 2021 K-means-based Yes load data Yes Yes

Load Pattern Extraction. Load pattern extraction is an unsupervised clustering prob-
lem. There are two types of clustering methods for load data clustering: direct clustering
and indirect clustering [15]. In direct clustering, load data are directly used in clustering
without any additional dimension reduction or data preprocessing methods. There are
many classical clustering algorithms for load data clustering, such as K-means, fuzzy
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K-means, self-organizing map (SOM), and support vector clustering (SCV) [36–38]. As for
indirect clustering, researchers usually pay more attentions to dimension reduction, feature
extraction and feature construction methods for load data preprocessing. In [25], the au-
thors constructed three new types of features. Their work indicates that the clustering
performance of constructed features outperforms the one of default features. In [26], two
variations of K-means algorithm with four proposed dimension reduction methods are
applied to the clustering process in load profiling. A fused load curve clustering algo-
rithm based on wavelet transform (FCCWT) is proposed in our previous work [39]. This
algorithm first applies a multi-level wavelet transform to daily load curves for dimension
reduction, and then fuse the K-means clustering results of both normalized approximation
signals and detail signals, which are two outputs of wavelet transform, to gain an optimized
clustering result.

Incremental Learning Algorithms. In recent years, incremental and online learning
gain more attentions especially in big data and data stream areas [40,41]. There are many
incremental learning algorithms based on ν-support vector regression, support vector ma-
chines (SVM), random forest (RF), neural networks, etc. [27,42–44]. An incremental support
vector machine (ISVM) with Markov resampling (MR-ISVM) is introduced in [22] to study
how dependent sampling methods influence the learning ability of ISVM. However, most
of incremental learning algorithms study supervised classification without adding new
classes. Although an incremental learning based on RF is studied to incrementally learn
new classes for large-scale image [27], this method adds new classes into the trees without
judging whether or not the coming classes are new. In [28], the authors proposed an
incremental algorithm based on fast finding and searching of density peaks (CFS), named
ICFKM, for clustering large data in industrial IoTs. Two challenges—how to integrate
new clusters into the previous one and how to update the clustering centers—are solved
in ICFKM, which seems to be useful for our incremental clustering problem. However,
CFS has relatively strong subjectivity for selecting cluster centers based on the decision
graph [45] so that it cannot applied in batch-oriented data processing. Moreover, CFS does
not work well on relatively high-dimensional data. Many clusters may be missed by CPS
because it only considers the global structure of data [46]. As time-series electricity load
data have relatively high dimensions, ICFKM cannot be directly adopted for updating
load patterns.

Data Stream Clustering. Clustering data streams requires the capability of partition-
ing observations continuously within limited memory and time [47]. Most data stream
clustering algorithms consist of an online step that incrementally processes the data stream
and produces summary statistics, and an offline step that summarizes data to generate
clusters by traditional batch clustering algorithms [48]. There are various classic data
stream clustering algorithms, such as Stream, CluStream, StreamKM++, DenStream, and
HPstream. Both HPstream [29] and incPreDeCon [30] can deal with high-dimensional
data streams. The former algorithm is based on K-means, while the later one is based on
PreDecom which is a density-based clustering algorithm and requires too many parameters
to be run efficiently. In [31], the authors introduced a data stream clustering based on
Fuzzy C-mean algorithm and entropy theory. In [32], the authors developed algorithms
for clustering high-dimensional dynamic data streams, whereas the algorithms are based
on the assumption that no insertions of data that are already in the dataset, which may be
not consistent with our load data. Meanwhile, the efficiency of these proposed algorithms
is only evaluated by a 2D implementation. In [33], a fully online clustering algorithm is
proposed for clustering evolving data streams into arbitrarily shaped clusters (CEDAS),
which is also a density-based clustering algorithm. In [34], a density-based clustering
algorithm called DStream-GC is designed for discovering gradual moving object clus-
ters pattern from trajectory streams. In [35], a self-organizing incremental neural network
(SOINN+) is developed for unsupervised learning clusters with arbitrary shapes from noisy
data. Although some algorithms are incremental methods or declare that they can process
high-dimensional data streams, their validity and efficiency on load pattern extraction
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and update require further evaluation. For example, density-based clustering algorithms
may not achieve an excellent performance in the experiments of high-dimensional load
curve clustering.

In summary, the works on load pattern extraction do not consider the incremental
learning problem in their clustering algorithm, while the existing incremental learning
or data stream clustering algorithms are not designed for load clustering. Therefore, it is
essential to provide an incremental clustering algorithm for our load clustering problem.

3. Preliminary

Before introducing our method, we should first give the problem formulation and
several important mathematical notations, shown in Table 2. We also briefly present
the method used for load pattern extraction, which is the base of electricity consumer
behavior learning.

Table 2. Several important mathematical notations.

Notations Description

X the set of overall daily load curves
Xs the jth set of daily load curves, 0 ≤ s ≤ t
xsi the ith daily load curve in Xs, 1 ≤ i ≤ Ns
d No. of dimensions of daily load curves
t No. of coming new daily load curves

Ns No. of daily load curves in Xs
Cs the set of clusters obtained from a load curve clustering on [X0, X1, · · · , Xs]
Csi the ith cluster in Cs, 1 ≤ i ≤ Ks. The cluster center of Csi is µsi
nsi No. of daily load curves in Csi
As the set of cluster centers, also called load patterns, of Cs
µsi the ith load patterns in As, referring to the cluster center of Csi, 1 ≤ i ≤ Ks
Ks No. of load patterns in As / clusters in Cs
Ps the set of probabilities of load patterns As

psi the probability of µsi, psi ∈ Ps, ∑Ks
i=1 psi = 1

X0 the set of initial daily load curves, X0 ∈ X
X1 the first set of new daily load curves, X1 ∈ X
A0 the set of load patterns obtained from a load curve clustering on X0
a1 the set of load patterns obtained from a load curve clustering on X1

iA1 the set of load patterns obtained from load pattern intergradtion on [A0, a1]
A1 the set of updated load patterns obtained from the incremental clustering on [X0, X1]

3.1. Problem Formulation

For an electricity consumer, let X0 = {x01, x02, . . . , x0N0} ∈ Rd×N0 where x0i is d-
dimensional vector be the electricity load data and N0 be the number of days contained in
the dataset X0. We can extract the load patterns from these data by conducting daily load
curve clustering.

Definition 1 (Daily Load Curve). A daily load curve x0i =<x0i1, x0i2,. . ., x0id> where 1 ≤ i ≤
N0 is a d-dimensional vector that presents the electricity power consumption of one consumer in one
day. It is recorded by a smart meter at a regular interval, which usually is 1 h, 30 min, or 15 min.

Definition 2 (Load Pattern). Given a set of daily load curves X0 = {x01, x02, . . . , x0N0} ∈
Rd×N0 , we apply a load curve clustering to X0 and obtain a set of clusters C0={C01, C02, . . . , C0K0}.
Let A0= {µ01, µ02, . . . , µ0K0} ∈ Rd×K0 be the set of cluster centers of C0, and each µ0i is called a
load pattern that denotes one typical electricity power consumption behavior feature of the consumer.
Every electricity consumer may have one or several load patterns.
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As X0 contains N0 daily load curves which are divided into K0 clusters, let n0i, 1 ≤
i ≤ K0, be the number of daily load curves contained in the cluster C0i ∈ C0, and we obtain
∑K0

i=1 n0i = N0. Then, we can give the definition of the probabilities of load patterns.

Definition 3 (Probability of Load Pattern). The probability of a load pattern µ0i denotes the
percentage of the daily load curves represented by µ0i in the whole daily load curve dataset X0. Let
P0 = {p01, p02, . . . , p0K0} be the set of probabilities of load patterns A0, then

p0i =
n0i
N0

, (1)

where ∑K0
i=1 p0i = 1 and 1 ≤ i ≤ K0.

After obtaining a set of load patterns A0 based on X0, a new set of daily load curves
X1 = {x11, x12, . . . , x1N1} ∈ Rd×N0 comes due to the continuous electricity power consump-
tion. We aim to obtain a set of updated load patterns A1 = {µ11, µ12, . . . , µ1K1} ∈ Rd×K1

based on the existing load patterns A0 and the new daily load curves X1. This means that
we conduct an incremental clustering with X1 and A0 rather than an overall clustering
with [X0, X1].

As new sets of daily load curves continuously come, we can give a generalization of
our incremental clustering problem. Let At−1 = {µt−1,1, µt−1,2, . . . , µt−1,Kt−1} ∈ Rd×Kt−1

be the existing load patterns and Xt = {xt1, xt2, . . . , xtNt} ∈ Rd×Nt be the new set of daily
load curves, we aim at proposing an incremental clustering algorithm that can obtain a set
of updated load patterns At ={µt1, µt2, . . . , µtKt} ∈ Rd×Kt , which equals or approximates
to the load patterns extracted directly from overall daily load curves X = {X0, X1, . . . , Xt}.

3.2. Load Pattern Extraction

Load pattern extraction is based on the clustering of daily load curves in this work.
We adopt a fused load curve clustering algorithm called FCCWT [39] to extract the load
patterns. The diagram of FCCWT is illustrated in Figure 2. This algorithm is designed
specially for load clustering based on time-series electricity load data in our previous
work. It conducts an indirect clustering, in which daily load curves are transformed
into approximation signals and detail signals by a multi-level Harr wavelet before the
load curve clustering for dimension reduction. Moreover, the approximation signals XαL
and detail signals XαH are clustered separately and then fused to avoid information loss
caused by the dimension reduction and improve the clustering performance. Although this
algorithm is non-incremental, it provides a higher clustering validity comparing with other
related methods.

Dimensionality
Reduction

(Multi-level Harr wavelet)

K-means
Clustering

K-means
Clustering

Cluster Fusion

Detail

Approximation

𝑋𝛼𝐻
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Normalization

𝑋$%&

Load Patterns
𝐴'

n-dimensional
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Figure 2. Diagram of non-incremental clustering algorithm FCCWT [39] for load pattern extraction.

4. Incremental Consumer Behavior Learning

In this section, we introduce the incremental clustering algorithm used for electricity
consumption pattern learning. First, we present an overview of the incremental clustering
algorithm. Second, we optimize this algorithm by a novel probability strategy in order to
improve the incremental clustering performance. Third, several parameters are updated
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for the following continuous incremental clustering. Finally, we give the generalization of
our optimized incremental clustering with the analysis of its asymptotic time complexity.

4.1. Incremental Clustering Algorithm

As presented in Section 3, the inputs are the existing load patterns A0 and new daily
load curves X1, while the output is the updated load patterns A1. The main challenge of our
problem is how to determine whether to create a new load pattern. As consumer behaviors
are complex, it is uncertain that there are any different load patterns in X1 comparing
with A0. We cannot conduct a simple clustering by regarding all µ0i ∈ A0 as the cluster
centers. As a result, a novel incremental clustering algorithm is proposed to intergrade the
load patterns of X1 into A0. This model is able to determine whether integrating a load
pattern into a µ0i or keeping it as a new load pattern. An illustration of the incremental
clustering algorithm is presented in Figure 3, which contains three phases: load pattern
extraction, load pattern intergradation, and load pattern modification. As the example
shown in Figure 3, the set of existing load patterns A0, which is extracted from X0, contains
two load patterns. Then, we extract five new load patterns from new daily load curves X1
and intergrade them with the two existing load patterns one by one. For the intergration of
µa1,1, we obtain an existing load pattern and an intergrated load pattern. After five times of
load pattern intergradation and one extra load pattern modification, we finally obtain four
updated load patterns.

SSWC
Judge

Create new

Integrate

K-means

K-means

FCCWT

FCCWT

Modify K by SSWC

3: Load Pattern
Modification

2: Load Pattern
Intergradation

1: Load Pattern
Extraction

𝑋!

𝐴"

𝑋"

𝑖𝐴"

𝐴!

𝑖𝐴"

𝑎"

𝜇#!"

𝜇#!$

𝜇#!%
𝜇#!&

𝜇#!'
wait in line,
one by one

Reset

Figure 3. An illustration of the incremental clustering algorithm, including (1) load pattern extraction,
(2) load pattern intergradation, and (3) load pattern modification. The inputs are the existing load
patterns A0 and new daily load curves X1, and the output is the updated load patterns A1.

Given a set of existing load patterns A0 = {µ01, µ02, . . . , µ0K0} and a set of new daily
load curves X1 = {x11, x12, . . . , x1N1}, we describe these phases in detail.

Load pattern extraction. We need to process the new daily load curves X1 = {x11, x12,
. . . , x1N1} before the load pattern intergradation. A fused load curve clustering algorithm
FCCWT [39], which is our previous work designed specially for daily load curve clustering,
is applied to X1. Then, we obtain the set of its load patterns a1 = {µa11, µa12, . . . , µa1Ka1

}.
The corresponding probability of a1 is Pa1 = {pa11, pa12, . . . , pa1Ka1

}, where pa1i = na1i/N1
and 1 ≤ i ≤ Ka1.

Load pattern intergradation. Let iA1 denote the result of load pattern intergradation,
and iA1 is initialized as iA1 = A0. We combine the ith load pattern µa1i ∈ a1 with
all load patterns in iA1, which is denoted as [iA1, µa1i]. Then, two K-means clusterings
are performed on [iA1, µa1i] with K = K0 and K = K0 + 1, respectively. We evaluate
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their clustering results by the Simplified Silhouette Width Criterion (SSWC), which is
one variant of Silhouette Width Criterion (SWC) index [39,49]. Then, the SSWC values
of the clustering results when K = K0 and K = K0 + 1 are denotes as SSWCK=K0 and
SSWCK=K0+1, respectively.

Given [iA1, µa1i] = {µ1, µ2, . . . , µK0 , µK0+1} and its clustering result C = {c1, c2, . . . , cK}
with the set of corresponding cluster centers A = {µ1, µ2, . . . , µK}, the SSWC is calcu-
lated as the average of the Simplified Silhouette of the individual load pattern µj over
j = 1, 2, . . . , K0 + 1.

SSWCK =
1

K0 + 1

K0+1

∑
j=1

Sµj =
1

K0 + 1

K0+1

∑
j=1

bcr ,µj − acr ,µj

max{acr ,µj , bcr ,µj}
, (2)

where acr ,µj is the distance between µj and the center of cluster cr ∈ C, while bcr ,µj is the
closest distance between µj and the centers of other clusters in C except for cr. They are
calculated as follows:

acr ,µj = dist(µj, µr), (3)

bcr ,µj = min{dist(µj, µw)}, (4)

where 1 ≤ r, w ≤ K and r 6= w. K refers to the parameter of clustering conducted on
[iA1, µa1i]. Then, we obtain SSWCK=K0 and SSWCK=K0+1 according to Equations (2)–(4).
There are two situations when comparing SSWCK=K0 and SSWCK=K0+1.

(1) SSWCK=K0 ≥ SSWCK=K0+1 implies that the clustering performance of K = K0 is
equal or superior to the performance of K = K0 + 1. As a result, we do not keep the ith
load pattern µa1i as a new load pattern, and adopt the set of cluster centers when K = K0
as the integrating result of [iA1, µa1i].

(2) SSWCK=K0 < SSWCK=K0+1 implies that K = K0 + 1 results in a better clustering
performance than K = K0 does. In that case, we keep the ith load pattern µa1i as a new
load pattern, and adopt the set of cluster centers when K = K0 + 1 as the integrating result
of [iA1, µa1i].

After the above comparison and judgment, the set iA1 is reset with the integrating
result of [iA1, µa1i]. Each µa1i over i = 1, 2, . . . , Ka1 with iA is integrated gradually according
to this procedure. Finally, we obtain the intergraded set iA1= {iµ11, iµ12, . . . , iµiKiA1

}.
Load pattern modification. We perform a further modification on the intergraded

set iA1 to obtain an optimal incremental clustering result. As the the number of load
patterns generally is within the range K ∈ [2, 10] [25,39], multiple K-means clusterings are
applied to iA1 with K in the range of 2 to min{KiA1 , 10}, where KiA1 denotes the number
of load patterns in iA1. The SSWCs of min{KiA1 , 10} − 1 times clusterings are calculated
and compared with each other. Then we select the K with the largest SSWC as the optimal
parameter, and regard the set of cluster centers with the selected optimal K as our target
set of updated load patterns A1.

We outline the incremental clustering of A0 and X1 in Algorithm 1, including the three
phase mentioned above. In Algorithm 1, Line 1 is for load pattern extraction, Lines 2–11
conduct load pattern intergradation, and Lines 12–16 are for load pattern modification.
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Algorithm 1: The incremental clustering algorithm
Input: a set of existing load patterns A0, a set of new daily load curves X1;
Output: the set of updated load patterns A1.

1 Apply FCCWT algorithm to X1 to obtain the set of its load patterns
a1 = {µa11, µa12, . . . , µa1Ka1

};
2 Initialize iA1 = A0;
3 for each µa1i do
4 Combine iA1 and µa1i as a set [iA1, µa1i];
5 for K = K0, K0 + 1 do
6 Perform K-means clustering on [iA1, µa1i];
7 Calculate the SSWC of the clustering result;

8 if SSWCK=K0 ≥ SSWCK=K0+1 then
9 Integrate µa1i into an existing load pattern by resetting iA1 with the cluster

centers of K=K0;

10 else
11 Keep µa1i as an new load pattern by resetting iA1 with the cluster centers

of K=K0+1;

12 for K = 2, 3, . . . , min{KiA1 , 10} do
13 Perform K-means clustering on iA1;
14 Calculate the SSWC of the clustering result;

15 Select the K with the largest SSWC as Kopt;
16 Assign the cluster centers of K-means(iA1,Kopt) to A1;
17 return A1.

4.2. Optimization via Probability Strategy

Assume A′1 = {µ′11, µ′12, . . . , µ′1K1
} ∈ Rd×K′1 is the load patterns extracted directly from

the combined set [X0, X1], then A′1 is based on the non-incremental clustering of N0 + N1
daily load curves. On the other hand, the incremental clustering algorithm shown in
Algorithm 1 is based on the fusion of load patterns from both A0 and a1, which refer to
only K0 + Ka1 load patterns. Our purpose is to obtain an A1 that equals or approximates
to A′1. However, the simply K-means clustering algorithm with Euclidean distance is not
appropriate to achieve this purpose.

It should be considered that the load patterns usually have different probabilities so
that we should not treat them equally in the incremental clustering. Thus, an optimized
distance measure with probability strategy is proposed for Algorithm 1, in which Euclidean
distance measure is replaced with the proposed measure when performing both K-means
clustering and SSWC calculation shown in Equation (3). It is assumed that this probability
strategy can optimize Algorithm 1 to achieve an ideal A1. Given a set of load patterns
A = {µ1, µ2, . . . , µK} with the set of corresponding probability P = {p1, p2, . . . , pK}, where
pi = ni/N and N is the number of daily load curves that A refers to, the optimized distance
with probability strategy between µi and µj is calculated as follows:

distp(µi, µj) = pi NpjN||µi − µj||2 = ninj||µi − µj||2, (5)

where ni and nj denote the numbers of daily load curves that µi and µj represent, respectively.
The cluster center µr in K-means clustering with Euclidean distance is calculated as

the mean of the objects that contained in the cluster:

µr =
1

mr
∑

µ∈Cr

µr, (6)



Sensors 2021, 21, 6466 10 of 22

where mr is the number of µ contained in the cluster Cr. We set the probability of µr with
pµr

= 1/N when performing K-means clustering with the optimized distance. As a result,
the optimized distance with probability strategy between µi and µr is calculated as follows:

distp(µi, µr) = pi Npµr
N||µi − µr||2 = ni||µi − µr||2. (7)

Similarly, the calculation of cluster center shown in Equation (6) should be rewritten as

µr =
1

∑µ∈Cr pr N ∑
µ∈Cr

pr Nµr =
1

∑µ∈Cr nr
∑

µ∈Cr

nrµr, (8)

where nr denotes the number of daily load curves that the load pattern µr refers to,
and ∑µ∈Cr nr denotes the total number of daily load curves that all µ ∈ Cr refer to.

4.3. Updating Parameters

As new daily load data continuously grow with the electricity power consumption of
consumers, we should update several essential parameters after one incremental clustering
for the preparation of the next incremental clustering. The sets X0 and X1 contain N0 and
N1 daily load curves, respectively. Their combined set [X0, X1] contains N0 + N1 daily
load curves totally. The incremental clustering on [X0, X1] gives the set of updated load
patterns A1 and the set of its corresponding clustering result C1 = {C11, C12, . . . , C1K1}. Let
P1 = {p11, p12, . . . , p1K1} be the set of corresponding probabilities of A1, the probability of
µ1r ∈ A1 for the rth cluster C1r is updated as

p1r =
n1r

N0 + N1
, (9)

where n1r is the number of daily load curves that the load pattern µ1r represents. We
update n1r as follows:

n1r = ∑
µ0∈C1r

n0r + ∑
µa1∈C1r

na1r, (10)

where ∑µ0∈C1r
n0r denotes the total number of daily load curves that all µ0i ∈ A0 belonging

to C1r represent, and ∑µa1∈C1r
na1r denotes the one that all µa1i ∈ a1 belonging to C1r

represent. After the updating of P1, A1 is ready to be conducted in another incremental
clustering with the next coming data set X2.

4.4. Generalization of Incremental Clustering

In practice, there are continuous coming new daily load data sets X1, X2, . . . , Xt.
The generalization of incremental clustering algorithm, which is based on the existing load
patterns A0 and new daily load curves X = {X1, X2 . . . , Xt}, is outlined in Algorithm 2.
For nsr and psr in the generalized algorithm, the updating equations shown in Equation (9)
and Equation (10) become

psr =
nsr

∑s
i=0 Ni

, (11)

nsr = ∑
µs−1∈Csr

ns−1,r + ∑
µas∈Csr

nasr, (12)

where Ni is the number of daily load curves that Xi contains, and µs−1 and µas are the load
patterns that belong to As−1 and as, respectively.

In Algorithm 2, the incremental clustering is continuously performed with the coming
of Xs. This means that it is performed immediately once Xs comes without waiting all
Xs+1, Xs+2, . . . , Xt come. Therefore, we can obtain the updated load patterns As in time,
and then the algorithm is paused until Xs+1 comes.
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Algorithm 2: The generalization of Algorithm 1
Input: a set of existing load patterns A0 referring to N0 daily load curves; the set

of probabilities P0; t set of new daily load curves X1, X2 . . . , Xt, each Xs
contains Ns daily load curves;

Output: the updated load patterns A1, A2, . . . , At.
1 for Xs over s = 1, 2, . . . , t do
2 Perform Algorithm 1 with the probability strategy based on As−1 and Xs to

obtain As;
3 Update nsr for each µsr in As by Equation (12);
4 Update psr for each µsr in As by Equation (11);
5 return As.

4.5. Complexity Analysis

The time complexity of FCCWT is O(NKT) where N is the number of daily load
curves, K is the number of clusters and T is the number of iterations needed until conver-
gence [39]. The time complexity of K-means is O(NdKT) while the one of SSWC calculation
is O(NdK), where d is the size of dimensions of daily load curves. As the default of maxi-
mum T is usually set as 100, 200, or 300, we assume that all Ts in Algorithm 1 are the same
so that the time complexity can be analyzed more easily. Moreover, we also assume that all
Ks adopt the maximum value 10 due to K ∈ [2, 10].

Based on the above assumptions, the asymptotic time complexities of load pattern
extraction, load pattern intergradation and load pattern modification in Algorithm 1 are
O(KN1T), O((2K3 + 3K2 + K)d(T + 1)) and O(Kd(T + 1)∑K

k=2 k), respectively. Therefore,
the asymptotic time complexity of Algorithm 1 is

O
(

KN1T + (2K3 + 3K2 + K)d(T + 1) + Kd(T + 1)
K

∑
k=2

k
)

= O
(

KN1T + (2K3 + 3K2 + K
K

∑
k=1

k)d(T + 1)
)

.

(13)

The time complexity of updating parameters is O(K) so that the asymptotic time
complexity of Algorithm 2 is

O
((

KT
t

∑
s=1

Ns + (2K3 + 3K2 + K
K

∑
k=1

k)td(T + 1) + Kt
))

, (14)

where O(KT ∑t
s=1 Ns) is the time complexity of t times FCCWT performed on Xs, O((2K3+

3K2+K ∑K
k=1 k)td(T+1)) is the time complexity of t times load pattern intergradation and

modification, and O(Kt) is the time complexity of t times parameter updating.
As for non-incremental clustering, the time complexity of t times FCCWT on

[X0, X1, ·, Xs] over s = 1, 2, · · · , t is

O
(
(N0 +

1

∑
s=0

Ns +
2

∑
s=0

Ns + · · ·+
t

∑
s=0

Ns)KT
)

= O
((

(t + 1)N0 + tN1 + (t− 1)N2 + · · ·+ Nt
)
KT
)

,

(15)

which is sensitive to the size of t. Similarly, the time complexity of t times non-incremental
clustering algorithm K-means on the same data is O(((t + 1)N0 + tN1 + (t− 1)N2 + · · ·+
Nt)dKT). Comparing Equation (15) with the time complexities of two non-incremental
clustering algorithms, it is suggested that the incremental clustering saves time and reduces
the clustering scale when t is relatively large.
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5. Experimental Settings

This section presents the experimental settings including datasets, evaluation cri-
terion, and comparison methods in details. In evaluation criterion, an weighted mean
error measure is proposed to evaluate the accuracy of the load patterns extracted by
incremental clustering.

5.1. Datasets

The dataset used in the experiment refers to 14,976 commercial and 2800 residential
electricity consumers in 936 counties of United States (Available online: https://openei.org/
datasets/files/961/pub/ (accessed on 24 June 2019). Eight of 2808 residential consumers
have missing data so that only the data of 2800 residential electricity consumers are used
in the experiment). It contains 24-value daily load data over one year and records the
electricity power consumption at every 1 h from 1:00 to 24:00 per day. As the proposed
algorithm is designed for learning the electricity consumption patterns of a single consumer,
the data of one electricity consumer can be regarded as a sub-dataset that leads to a sub-
experiment. As a result, we conduct 17,776 sub-experiments totally. Moreover, three
situations are considered for every sub experiment. We select 3 months, 6 months, and 9
months daily load data as the initial set X0, respectively. The remaining data are divided
by month and then regarded as X1, X2, · · · , Xt. For example, in the case of t = 3, daily load
data from January to September are selected as X0, and the data of October, November,
and December are regarded as X1, X2, and X3, respectively.

5.2. Evaluation Criterion

We employ two types of measures including clustering validity indices and accuracy
measures as the evaluation criterion in the experiment. Moreover, we propose an weighted
mean minimum error measure for the accuracy measures.

Clustering validity indices. The clustering performance of the proposed method is
also evaluated by diverse clustering validity indices including Davies–Bouldin index (DB),
Dunn validity index (DVI), and SWC.

Let Cs = {Cs1, Cs2, · · · , CsKs} be the corresponding clustering results of As, the clus-
tering validity indices of Cs follow the equations below:

DB(Cs) =
1

Ks

Ks

∑
r=1

max
w 6=r

{ Csr + Csw

||µsr − µsw||

}
, (16)

DVI(Cs)=

min
0<r 6=w<Ks

{
min

∀xi∈Csr ,∀xj∈Csw

{
||xi − xj||2

}}
max

0<r≤Ks
max

∀xi ,xj∈Csr

{
||xi − xj||2

} , (17)

SWC =
1
N

N

∑
j=1

bCsr ,xj − aCsr ,xj

max{aCsr ,xj , bCsr ,xj}
, (18)

where Csr and Csw is the average within-group distance for Csr and Csw, respectively; xi and
xj denote two daily load curves contained in [X0, X1, . . . , Xs], respectively; N = ∑s

i=0 Ni,
aCsr ,xj denotes the mean distance of xj to all other daily load curves in Csr; and bCsr ,xj
denotes the minimum mean distance of xj to all daily load curves in Csw, w 6= r.

Accuracy measures. As we aim to obtain As = {µs1, µs2, · · · , µsKs} that equals or
approximates to A′s = {µ′s1, µ′s2, · · · , µ′sK′s

}, which is the load patterns extracted directly
from [X0, X1, · · · , Xs], we employ the accuracy measures for time-series forecasting to
evaluate the load patterns in As comparing with those in A′s. Both scale-dependent and
percentage-based measures are employed, including Normalized Root Mean Square Error
(NRMSE), Mean Absolute Error (MAE), and Symmetric Mean Absolute Percentage Error

https://openei.org/datasets/files/961/pub/
https://openei.org/datasets/files/961/pub/
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(sMAPE) [50,51]. However, both As and A′s contain several load patterns so that we propose
a weighted mean minimum error based on the numbers of load patterns in As and A′s.

NRMSE(µ′si, µsj) =

√√√√1
d

d

∑
l=1

(µ′si,l − µsj,l

µ′si,l

)2
, (19)

MAE(µ′si, µsj) =
1
d

d

∑
l=1

∣∣µ′si,l − µsj,l
∣∣, (20)

sMAPE(µ′si, µsj) =
1
d

d

∑
l=1

2 · |µ′si,l − µsj,l |
|µ′si,l |+ |µsj,l |)

. (21)

(1) K′s ≤ Ks indicates that the incremental clustering may cause extra load patterns.
We calculate the minimum error for each µsj ∈ As, which is the error between µsj and its
most similar load pattern µ′si ∈ A′s. Moreover, we weight the mean error by Ks/K′s due to
the extra load patterns.

E(A′s, As) =
Ks

K′s

1
K′s

K′

∑
j=1

min
µsj∈As

{
meas(µ′si, µsj)

}
, (22)

where meas(µ′si, µsj) can be NRMSE, MAE, or sMAPE shown in Equation (19)–(21).
(2) K′s > Ks indicates that the incremental clustering misses some load patterns. We

calculate the minimum error for each µ′si ∈ A′s, which is the error between µ′si and its most
similar load pattern µsj ∈ As. Similarly, we weight the mean error by K′s/Ks due to the
missing load patterns.

E(A′s, As) =
K′s
Ks

1
Ks

K

∑
i=1

min
µ′si∈A′s

{
meas(µ′si, µsj)

}
. (23)

According to the definitions of these indices and measures, smaller Errors indicate
higher accuracy and smaller DB indicates better clustering performance. On the contrary,
the larger the DVI and SWC are the better the clustering performance is.

5.3. Comparison Methods

We adopt two algorithms FCCWT and K-means to conduct non-incremental clustering
on [X0, X1, · · · , Xs] over s = 1, 2, · · · , t, and then regard the load patterns with the optimal
clustering performance as the baseline for evaluating the accuracy of other incremental
clustering methods. Moreover, we also compare the clustering performance of the non-
incremental clustering algorithms with our proposed method and other related incremental
clustering methods. Methods compared in the experiments are summarized in Table 3.

Table 3. Summary of comparison methods.

Method Description Incremental Probability Strategy (PS)

FCCWT The method designed for daily load curve clustering [39] no no
K-means The common K-means algorithm no no

ICluster-PS The proposed method designed for daily load curve clustering yes yes
ICluster The proposed method without PS yes no

IK-means-PS The incremental method that adopts K-means with PS yes yes
IK-means The incremental method that adopts K-means without PS yes no
HPStream The algorithm for high-dimensional data streams [29] yes no
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6. Results and Evaluation

In this section, we first present and discuss the general incremental clustering perfor-
mance and accuracy of comparison methods on data of all consumers. Then, a commercial
consumer is randomly selected as a case for electricity consumption behavior patterns
analysis. We also compare the mean runtime of incremental and non-incremental clustering
algorithms to support the time complexity analysis in the former section. Furthermore, we
conduct pattern evolution analysis based on the incremental clustering results of another
randomly selected residential consumer.

6.1. Incremental Clustering Performance

We conduct the experiments of Algorithm 2 with t = 3, t = 6, and t = 9, which
means that three, six, and nine incremental clustering processes shown in Algorithm 1 are
performed in one experiment, respectively. Both clustering performance and accuracy of
the methods are compared for the incremental clustering performance. Although there
are various types of consumers in the dataset, we still use the mean performance of all
consumers to evaluate the comparison methods because most of the evaluation criteria
are percentage-based.

Table 4 shows the mean clustering performance comparison of the methods on the data
of 17,776 electricity consumers. The former two methods are non-incremental clustering
methods while the later five methods are incremental. We first compare the mean cluster-
ing performance of incremental methods. According to the definitions of three clustering
validity indices shown in Equation (16)–(18), the larger the DVI and SWC are the better
the clustering performance is, while a smaller DB indicates better clustering performance.
The optimal results of incremental methods are displayed in bold. The proposed method
ICluster-PS shows the smallest DB values and largest SWC values in Table 4. Although
the DVI values of ICluster-PS are slightly lower than the ones of HPStream when t = 3
and t = 6, the average clustering performance of ICluster-PS is optimal in all compared
incremental clustering methods. Therefore, these results indicate that the proposed method
ICluster-PS outperforms other incremental methods. The largest improvement of clustering
performance comparing with other incremental clustering methods is 44.2%. On the other
hand, ICluster-PS still requires improvement due to its lower clustering performance com-
pared with the non-incremental clustering FCCWT and K-means that conduct clustering
directly on overall daily load curves.

Table 4. Mean clustering performance comparison of the methods.

Method t = 3 t = 6 t = 9

DB− DVI+ SWC+ DB− DVI+ SWC+ DB− DVI+ SWC+

FCCWT ∗ 0.9033 0.1267 0.5846 0.9066 0.1316 0.5854 0.8932 0.2056 0.5985
K-means ∗ 1.0333 0.1487 0.4778 1.0283 0.1519 0.4802 1.0058 0.2240 0.5110

ICluster-PS 1.3159 0.0624 0.3350 1.2556 0.0707 0.3856 1.1599 0.1322 0.4199
ICluster 1.3369 0.0596 0.3212 1.2821 0.0672 0.3457 1.1924 0.1317 0.3823

IK-means-PS 1.8056 0.0403 0.1129 1.6337 0.0576 0.2776 1.4048 0.0899 0.3655
IK-means 1.7872 0.0422 0.1193 1.6177 0.0578 0.2704 1.4390 0.0917 0.3435
HPStream 2.2739 0.0740 0.3314 1.9913 0.0781 0.3478 1.9131 0.0887 0.3506

Improvement 26.4% −15.7% 1.1% 22.4% −9.5% 10.9% 19.4% 44.2% 19.8%
∗: non-incremental method; −: the minimum is the optimal; +: the maximum is the optimal.

As FCCWT presents the optimal clustering performance in Table 4, we decide to
adopt the load patterns obtained from FCCWT as the baseline for accuracy measure. Then,
we can calculate the mean errors of the five incremental methods based on Equation (22)
and Equation (23) using three different accuracy measures. The results, which are shown
in Table 5, indicate that ICluster-PS has the optimal performance as the minimum error
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denotes the highest accuracy. The improvement of accuracy is between 29.8% and 66.0%
comparing with other incremental clustering methods.

Table 5. Mean error comparison of the methods.

Method t = 3 t = 6 t = 9

NRMSE MAE sMAPE NRMSE MAE sMAPE NRMSE MAE sMAPE

ICluster-PS 0.0436 10.0744 0.0332 0.1008 20.3269 0.0784 0.1363 32.2105 0.1059
ICluster 0.1172 28.7795 0.0907 0.1585 32.2034 0.1239 0.1820 40.9046 0.1424

IK-means-PS 0.0777 17.4945 0.0608 0.1520 29.9669 0.1210 0.1870 40.0440 0.1470
IK-means 0.1161 29.6179 0.0910 0.1939 38.5883 0.1533 0.2204 45.8908 0.1728
HPStream 0.2509 61.8134 0.1888 0.2489 58.7053 0.1942 0.2654 63.7557 0.2082

Improvement 62.4% 66.0% 63.5% 48.0% 47.3% 48.9% 38.2% 29.8% 38.7%

According to the results shown in Tables 4 and 5, the better clustering performance
and smaller errors of methods with probability strategy compared with those without the
strategy prove the optimization of our proposed probability strategy. Moreover, the in-
cremental clustering algorithm of ICluster-PS, especially load pattern intergradation and
modification, improves both clustering performance and the accuracy of K-means based on
the comparisons between ICluster and K-means with or without probability strategy. As for
the three groups of mean errors with different t, it is noticed that the mean errors increase
with the rise of t, which means that the errors may increasingly rise over the continuous
incremental clustering. However, the three groups of the mean clustering performance
present an opposite tendency. Therefore, it can be only suggested that the load patterns
updated by incremental clustering may tend to deviate from the load patterns obtained by
FCCWT over time.

In summary, the proposed incremental clustering algorithm, ICluster-PS, can achieve
an acceptable accuracy with mean error less than 10% and an improved clustering validity
via its designed model and probability strategy. This result indicates that we can provide
an efficient response when consumers require consumption analysis via smart meter or
other facilities with limited resource. Although our experiments set the data of one month
as Xs, it can be set optionally by consumers in practical application.

6.2. Case Analysis

A random electricity consumer is selected to be analyzed in detail for a further
discussion of the proposed method and electricity consumer behaviors. The selected
consumer is a full service restaurant, which have three typical load patterns based on the
overall daily load curves. Figure 4 illustrates the load patterns obtained by ICluster-SP
and FCCWT in the experiment when t = 6. Each subfigure presents both the incremental
and non-incremental cluster centers of the data [X0, X1, · · · , Xs], where 1 ≤ s ≤ t. The load
patterns in solid line style denote the incremental cluster centers of ICluster-SP, while those
in dashed line style denote the non-incremental cluster centers of FCCWT.

According to the clustering performance shown in Table 4, the load patterns of FCCWT
are regarded as the accurate results. Note that these accurate load patterns are relatively
stable and there is no distinct electricity consumption behavior drift happening to this
consumer from July to December. The three typical load patterns of this consumer are
distinct in terms of power degrees, starting time of the increase in the morning and ending
time at night. The possible reasons for these distinctions are daylight saving time and
seasonal influence. As for the incremental clustering results, their load patterns drift once
on August shown in Figure 4b. Therefore, we can find out three typical load patterns in
Figure 4a and four typical load patterns in other subfigures. These updated load patterns
show similar patterns as the accurate ones if the power degrees of them are not taken into
account. However, the distinct starting time of the increase in the morning shown by the
accurate ones are not revealed by those of ICluster-PS until December, shown in Figure 4f.
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Figure 4. Load pattern comparison between ICluster-PS and FCCWT of one randomly selected
electricity consumer when t = 6. (a–f) Curves presenting the load patterns based on incremental or
non-incremental clustering of [X0, X1, · · · , Xs] over s = 1, 2, · · · , t.

In addition, we evaluate the load patterns by the same accuracy measures and cluster-
ing validity indices used in the former evaluation, the results of which are illustrated in
Figure 5. Each curve contains six values which refer to the evaluation of load patterns in
Figure 4a–f, respectively. Figure 5a–c presents the clustering performance of both ICluster-
PS and FCCWT. FCCWT shows a relatively stable clustering performance while ICluster-PS
shows slight fluctuation. The optimal clustering performance, especially for DVI and SWC,
of ICluster-PS is presented in July. On the other hand, Figure 5d–f denotes the accuracy
measures of ICluster-PS comparing with FCCWT so that there is only one curve in each
subfigure. All three curves show an increase at first and then decrease after August. Differ-
ent from the presentation of its clustering performance, their optimal accuracies are shown
in December, which are in accord with the results shown in Figure 4.
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Figure 5. Errors and clustering validity indices comparisons between ICluster-PS and FCCWT of one
randomly selected electricity consumer when t = 6. Each curve contains six values referring to the
evaluation of load patterns in Figure 4a–f, respectively.
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Based on the observation of this case, ICluster-PS can achieve incremental clustering
for load pattern updating, although it may provide an slightly unstable performance in
terms of accuracy and clustering validity. This result is acceptable for providing efficient
and effective updated electricity consumption patterns with time and space constraints.

6.3. Runtime Comparison

Apart from the time complexity analysis of both incremental and non-incremental clus-
tering algorithms in Section 4, we also compare their runtime in the experiment to support
this analysis. The algorithms, which are written in Python and run on 64-bit Windows 10
operating system with Intel Core i5-5300U CPU and 8 GB RAM, are performed on the data
of 16 commercial consumers in a same randomly selected county. Figure 6 shows the mean
runtime comparison of the methods when t = 9. The comparison methods include the pro-
posed incremental clustering algorithm ICluster-PS, and two non-incremental algorithms,
FCCWT and K-means. Each algorithm is run 100 times in every clustering, which means
that we run 16× 9× 100× 3 times non-incremental or incremental clustering algorithms
totally. According to Figure 6, it can be noticed that the runtime of ICluster-PS is stable
and around 0.3 s while the the runtime of other two non-incremental clusterings increase
with the rise of t. This result proves the time complexity analysis in Section 4, which is
that the incremental clustering saves time when t is relatively large because it reduces the
clustering scale. The runtime curve of ICluster-PS shows some slight fluctuations, which
are caused by the small differences of the data in every month.
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Figure 6. Mean runtime comparison of three methods on the data of 16 commercial consumers in
100 time experiments when t = 9 (nine clusterings from April to December).

6.4. Pattern Evolution Analysis

We assume that our incremental clustering algorithm can be used to investigate
the electricity consumption pattern evolution over time when conducting load pattern
updates. As a result, we randomly select a residential consumer, who may have less stable
consumption patterns than a commercial consumer, as a case for pattern evolution analysis.
Figure 7 shows the updated load patterns of the selected residential consumer from April
to December, which means that t = 9 is set in the experiment of this case analysis. Each
subfigure denotes the load patterns of one incremental clustering with one month adding
new data based on the load patterns of previous months. For example, Figure 7a indicates
the load patterns updated by the first incremental clustering based on the existed load
patterns of January to March and new daily load data of April, Figure 7b indicates the load
patterns updated by the second incremental clustering based on the load patterns shown
in Figure 7a and new daily load data of May, etc. In Figure 7, we use curves with different
colors, line styles, and markers to distinguish various types or meanings of updated load
patterns. The curves in blue and solid line style denote the load patterns that exist in last
month, which means that these load patterns are not affected by new adding data and
do not drift in current month. The curves in green and dashed line style denote the load
patterns that are updated by new adding data in current month and have drifts comparing
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with the ones in last month. The curves in red and point line style denote the load patterns
which are completely new and only refer to the days in current month. Markers on curves
are only used to label different load patterns.

Moreover, we draw another figure, Figure 8, to illustrate the pattern evolution of the
case shown in Figure 7. In Figure 8, each circle with a number denotes a cluster or load
pattern, and the number inside the circle denotes the number of days that the load pattern
refers to. There are three types of circles, which represent existed load patterns, updated
load patterns and new load patterns, respectively. The plus and number shown on an arrow
denote the number of new days added to the load pattern after one incremental clustering.
In fact, Figure 8 is in accordance with Figure 7. The first column in left of Figure 8 indicates
two load patterns extracted by non-incremental clustering with load data from January
to March. Other nine columns, each of which denotes four load patterns updated by an
incremental clustering with adding new load data in current month and the load patterns
in last month (shown in left column), are corresponding to Figure 7a–i, respectively.
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Figure 7. Updated load patterns of a residential consumer from April to December (t = 9). Each
subfigure shows the load patterns updated by one incremental clustering with one month adding
new data based on the load patterns of previous months. Load patterns in blue and solid line style
denote existed patterns, those in green and dashed line style denote updated patterns, and others in
red and point line style denote new patterns.



Sensors 2021, 21, 6466 19 of 22

Figure 8. Electricity consumption patterns evolution of the case showed in Figure 7. The first column
(left) denotes the load patterns extracted by non-incremental clustering with data from January to
March. Other columns, each of which denotes the load patterns updated by incremental clustering
based on one month adding new data and the load patterns shown in left column, are corresponding
to Figure 7a–i, respectively.

The electricity consumption pattern evolution of the residential consumer is presented
clearly according to Figures 7 and 8. The residential consumer has two load patterns, which
refer to 36 and 54 days, in the first three months of the year based on a non-incremental
clustering with the data from January to March. Note that the load pattern with 36 days
is unchanged until December. There are 18 new days in December that have similar
shape with this load pattern so that they are added in this pattern and the number of
days included in this pattern becomes 54. Then, it can be found that this load pattern
drifts slightly based on the comparison of the curve with 36 days shown in Figure 7h and
the curve with 54 days shown in Figure 7i. Another load pattern with 54 days at first is
unchanged until August. Then, it is continually updated and merged with new days or
other existed load patterns, and finally becomes a load pattern with 301 days (Jan–Dec),
which is presented by the green dashed curve with star markers shown in Figure 7i. In total,
nine new load patterns emerge in April, June, August, September, October, November, and
December. Most of them are merged with other load patterns in next month. For instance,
a new load pattern with nine days emerges in August, then it is merged with 18 new days
in September and the other load pattern with 74 days (Jan–Aug), and finally becomes an
updated load pattern that refers to 101 days (Jan–Sept). We note that some load patterns
are merged after one or several incremental clustering. Why do different load patterns
become one after one or a few months? The reason is that the increase in the number of
data samples leads to the change of the optimal clustering results.

Based on the pattern evolution analysis and the further analysis on the dates of
all days included in every load pattern, we can find out when and how this residential
consumer drifts electricity consumption behaviors. In that case, this consumer can have
a clear understand of her/his electricity demand and make an effective response to it.
On the other hand, electricity suppliers or other agencies can also detect any anomalies
once electricity consumers, especially commercial or industrial consumers, drift their
consumption patterns significantly.

7. Conclusions and Future Work

This paper aims to achieve efficient demand response and consumer segmentation for
both electricity end consumers and suppliers by incremental consumer behavior learning. It
supposes that an effective incremental clustering algorithm would constantly updated load
pattern data for electricity consumers with limited resource. Moreover, the incremental
clustering algorithm should reduce the training scale and save time comparing with non-
incremental clustering algorithms.
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Therefore, we propose an incremental clustering algorithm with probability strategy,
ICluster-PS, for updating load patterns based on smart meter data. We also provide
parameter updating and algorithm generalization to ICluster-PS in order to continuously
perform our algorithm with new coming data. The proposed algorithm is evaluated on real-
world data. The experimental results prove the accuracy and validity of our incremental
clustering algorithm, especially load pattern intergradation, modification, and probability
strategy. It has less time complexity and runtime than non-incremental clustering algorithm.
On the other hand, although ICluster-PS cannot provide load patterns that are the same
as those extracted directly from the overall electricity load data, it achieves acceptable
updated results when saving time, reducing the clustering scale and even making full use
of the historical information. It also outperforms other related incremental algorithms or
data stream clustering algorithms.

Moreover, we conduct additional case study of pattern evolution analysis by using
our proposed algorithm. The analysis results indicate that our algorithm is able to detect
load pattern drifts through its updated load patterns. In the future work, we plan to
improve the performance of the incremental clustering algorithm and employ incremental
consumer behavior learning for automatic and real-time load pattern evolution analysis
and detection.
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