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Abstract: Atomistic analysis of the ion transport in polymer electrolytes for all-solid-state Li-ion
batteries was performed using molecular dynamics simulations to investigate the relationship be-
tween Li-ion transport and polymer morphology. Polyethylene oxide (PEO) and poly(diethylene
oxide-alt-oxymethylene), P(2EO-MO), were used as the electrolyte materials, and the effects of salt
concentrations and polymer types on the ion transport properties were explored. The size and
number of LiTFSI clusters were found to increase with increasing salt concentrations, leading to a
decrease in ion diffusivity at high salt concentrations. The Li-ion transport mechanisms were further
analyzed by calculating the inter/intra-hopping rate and distance at various ion concentrations in
PEO and P(2EO-MO) polymers. While the balance between the rate and distance of inter-hopping
was comparable for both PEO and P(2EO-MO), the intra-hopping rate and distance were found
to be higher in PEO than in P(2EO-MO), leading to a higher diffusivity in PEO. The results of this
study provide insights into the correlation between the nanoscopic structures of ion solvation and
the dynamics of Li-ion transport in polymer electrolytes.

Keywords: molecular dynamics; polymer electrolyte; lithium-ion battery; salt concentration;
hopping mechanism

1. Introduction

In recent years, with the increase in energy demand and the seriousness of environ-
mental problems, the demand for a new energy production technology that does not use
fossil fuels has been increasing. Li-ion batteries are drawing attention as next-generation
power sources because of their small size, light weight, high energy density, and relatively
high durability [1]. In recent years, numerous studies have investigated solid electrolytes
that do not leak and have a relatively high degree of freedom in design [2]. Various types of
solid electrolyte materials, such as sulfide-based or oxide-based inorganic solid electrolytes
and polymer-based electrolytes, have been widely used. Among them, polymer electrolytes
are drawing attention because of their resistance to mechanical shocks, such as vibration,
and their excellent mechanical properties [3]. One such polymer electrolyte is poly-ethylene
oxide (PEO) [4]. Volel et al. [5] used pulsed-field-gradient NMR (PFG-NMR) measurements
to show that LiTFSI salts in PEO exhibit superior ionic conductivity compared to LiBF4
and LiClO4 salts. Pozyczka et al. [6] showed that the transport number decreased with
increasing salt concentration but started to increase above a certain concentration. Devaux
et al. [7] evaluated the effect of polymer molecular weight on ionic conductivity and trans-
port number in the PEO-LiTFSI system and reported small changes in these parameters
when the molecular weight was of the order of 10 kg/mol. In addition, a study attempted
to improve the performance of the system by inserting additives into it [8].
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Theoretical approaches, such as numerical simulations [9–12] and molecular dynamics
(MD) simulations [13–15], have been extensively used to study ion transport phenomena.
As the ion transport phenomenon in PEO is largely due to the nanoscale structure of
polymer electrolytes, several studies using molecular dynamics (MD) simulations have
been conducted to explore this phenomenon. Brooks et al. [13] performed MD simulations
of the PEO-LiTFSI system and observed that Li ions in the polymer electrolyte are coordi-
nated to oxygen atoms, and proposed three types of transport mechanisms: intra-hopping,
inter-hopping, and co-diffusion. In intra-hopping, Li ions coordinated to oxygen atoms
move along the polymer chain, whereas in inter-hopping, Li ions move to sites of other
polymer chains or distant sites of the same polymer chains. In co-diffusion, Li ions move
with the polymer chain while being coordinated at the same site. Webb et al. [14,15] cal-
culated and compared the ionic conductivity in various polymer electrolytes, including
PEO, using MD simulations but did not find a polymer material superior to PEO. They
also showed that, in the PEO-LiTFSI calculation system, the nanoscale-order time handled
by MD simulation is effective in the sub-diffusion region where the diffusion coefficient
of ions becomes small. However, as the qualitative tendency of the difference in ion
transportability between different polymer species is consistent with that in the diffusion
coefficient at macroscale-order times, it was shown that a qualitative discussion on the
difference in ion transportability between different polymer species was valid even in MD
simulations with relatively small time scales. In recent years, Zheng et al. [16] proposed
poly(diethylene oxide-alt-oxymethylene), P(2EO-MO), a polymer material that may exhibit
better performance than PEO. They measured the Li salt concentration dependence of
ionic conductivity for this polymer by the AC impedance method and evaluated the salt
concentration dependence of transport number by the steady-state current technique. They
reported that although the polymer was inferior to PEO in terms of ionic conductivity, it
was superior in terms of transport number. However, the detailed transport mechanisms
responsible for the differences in ionic conductivity and transport number have not yet
been clarified.

Although the types of macromolecules and ions are different in the present study, in
our previous studies, we analyzed the ion transport phenomena in polymer electrolyte
membranes and polymer thin films with thicknesses of several nanometers in polymer
electrolyte fuel cells using MD simulations; further, we analyzed the correlation of the
polymer structure with the vehicular ion diffusion [17], the structural ion diffusion [18–21],
and the electroosmosis [22]. Based on these findings, the present study aimed to clarify the
effect of nanoscale structural properties on the ion transport properties of the PEO-LiTFSI
system and P(2EO-MO)-LiTFSI system. While the Li-polymer co-diffusion contributes to
the vehicular diffusion of lithium ions over short time scales, inter/intra-hopping is more
important for the overall diffusion process [13]. Therefore, the present study focuses on
investigating the inter/intra-hopping mechanisms. Our simulations provide quantitative
information on the salt clusters and their relation to the inter/intra-hopping behaviors
and the diffusivity, which to our knowledge has not been fully defined previously. The
remainder of the paper is organized as follows. Section 2 describes the details of the
calculation method, including the molecular model and calculation conditions used in
this study. Section 3 describes the results of the salt concentration dependence on the
correlation between structural properties, such as coordination structure around Li ions
and cluster analysis in PEO and P(2EO-MO) electrolytes, and transport properties, such as
diffusion coefficient, hopping frequency, and distance. Section 4 summarizes the results
obtained in this study.

2. Simulation Methods
2.1. Molecular Models

The structural formulas of PEO and P(2EO-MO) are shown in Figure 1a,b. Timachova
et al. [23] conducted PFG-NMR experiments and reported that there was no significant
change in the results of the diffusion coefficient and ionic conductivity when the molecular
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weight was approximately 10 kg/mol or more. Therefore, the number of monomers per
polymer was set at 100 in PEO, in accordance with previous studies [13,24]. P(2EO-MO)
was adjusted to have a similar number of oxygen atoms to PEO, with x = 33, providing a
comparable number of lithium ions at the same salt concentration, so that the results of
cluster analysis can be compared directly between PEO and P(2EO-MO) systems. For the
intramolecular and intermolecular interactions of PEO and P(2EO-MO), the united-atom
(UA) model [14,15], which treats CH2 and CH3 as one particle, was used. The CHARMM
force field [25] was used for the bond parameter, and the TraPPE-UA force field [26] was
used for the angle and torsion parameters. LiTFSI was used as the Li salt, and the non-polar
all-atom model proposed by Wu et al. [27] was adopted. The structural formula of the Li
salt is shown in Figure 1c.
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Figure 1. Structural formulas of (a) PEO, (b) (2EO-MO), and (c) the LiTFSI salt considered in the
present simulations.

2.2. Simulation Conditions

In this study, 30 chains were used for each system of PEO and P(2EO-MO), and the
LiTFSI salt concentrations were set at r = ([Li])/([O]) = 0.01, 0.03, 0.08, and 0.12. Here, [Li]
indicates the molar concentration of Li in the calculation system, and [O] indicates the
molar concentration of the O atom of the polymer. The number of molecules of LiTFSI
for each salt concentration is 30, 90, 240, and 360, respectively. These molecules were
randomly arranged in the calculation area x × y × z = 360 × 360 × 360 Å3 to create an
initial structure. Next, energy minimization was performed by the conjugate gradient
algorithm [28], and then the most stable equilibrium state was achieved according to
the annealing procedure proposed in a previous study [17]. Table 1 shows the density
of the calculation systems after the annealing. Compared with the experimental PEO
density value of 1.13 g/cm3, the system exhibited a relatively good agreement, confirming
the validity of the model. For the density of P(2EO-MO), no experimental value was
found; therefore, the validity of the calculation system was verified based on the structural
information, which is described later. After annealing, the NPT simulations were carried
out for 100 ps under the conditions of P = 1 atm and T = 400 K, after which the positions
of all atoms were recorded at 0.1 ps intervals for 150 ns in the NVT ensemble under the
condition of T = 400 K. Here, N is the number of molecules, V is the volume of the system,
P is the pressure, and T is the temperature. The Nosé–Hoover method [29,30] was used
for temperature control, and the Parrinello–Rahman method [31,32] was used for pressure
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control. The smooth particle mesh Ewald method [33] was used for calculating of the
Coulomb force, and the cutoff distances of the LJ potential and the Coulomb potential were
set at 15 Å. All calculations were performed using the LAMMPS package [34]. Figure 2
shows an example of a final-state snapshot of PEO system at r = 0.01.

Table 1. Density after annealing [g/cm3].

Salt Concentration, r 0.01 0.03 0.08 0.12

PEO 1.09 1.16 1.28 1.37
P(2EO-MO) 1.16 1.22 1.35 1.44
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Figure 2. A snapshot of PEO system at a salt concentration of 0.01. PEO polymer is shown as green
particles and Li and TFSI ions are shown as orange and yellow particles, respectively.

3. Results and Discussion
3.1. Structural Characteristics around Li Ions

Figure 3 shows the results of the radial distribution function between the Li ions
and the oxygen atoms of the polymer at different salt concentrations. For all the cases,
Li ions were found to be coordinated and exist in the vicinity of 2 Å from the O atom of
the polymer, which is in good agreement with the scattering experiment [35]. The small
changes in the first peak height for the different salt concentrations corresponds to the
small changes in the number of coordinated oxygens around a Li ion. This tendency was
found to be in good agreement with the MD simulation results of Zheng et al. [16]. From
these results, 3.25 Å, which corresponds to the first minimum, was used as the threshold
value for determining whether the O atom is coordinated.
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Figure 4 shows the results of the radial distribution function between the N atoms of
Li and TFSI ions at different salt concentrations. Because the first minimum was found to
be at 5.0 Å for all the cases, this value was used as the threshold for determining whether
LiTFSI is dissociated. The smaller peaks at low salt concentrations indicate that both Li and
TFSI ions are well dissociated in both systems, which is consistent with the observation in
the MD simulation by Zheng et al. [16]. The first peak was found to be higher at higher
salt concentrations, indicating that the number of undissociated LiTFSI salts increased as
the salt concentration increased. Particularly, a larger increase in the first peak height with
increasing salt concentration was observed for the P(2EO-MO) system, indicating the Li
and TFSI ions tend to form clusters at higher concentrations in the P(2EO-MO) system.
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From these results, it can be seen that the Li ion always has a strong bond with the
TFSI ions and/or the oxygen atoms of the polymer. Because the oxygen coordination
structure is important for the transport of Li ions by inter/intra-hopping, the results for the
oxygen coordination rate under each condition were obtained, as shown in Figure 5. Here,
the oxygen coordination rate β of Li ions is defined as the fraction of Li ions coordinated
by oxygen atoms of five or more macromolecules among all Li ions. From the figure, it
can be seen that the coordination rate decreases as the salt concentration increases. This
trend is due to the LiTFSI salt formation at a high salt concentration and the decrease in the
coordination number with the oxygen atoms.
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3.2. Cluster Analysis

The transport characteristics of Li ions are considered to be significantly affected by
the number and size of clusters containing multiple Li ions and TFSI ions [6]. In this study,
Li ions or aggregates of TFSI ions with a Li-TFSI distance of 5 Å or less are defined as
LiTFSI clusters. The size of LiTFSI clusters is defined by the number of Li or TFSI ions
contained within them; further, LiTFSI molecules that are not dissociated and exist as
single LiTFSI molecules are also treated as LiTFSI clusters of size 2. The number and size
of LiTFSI clusters are shown in Figure 6. In the high salt concentration range, PEO has
more clusters; however, the average size is smaller. As the cluster size increases, the Li ions
in the cluster are more susceptible to the influence of surrounding molecules. Therefore,
the Li ions in P(2EO-MO), which forms relatively large clusters in high salt concentration
regions, are expected to be more constrained by the influence of the surrounding TFSI salt
than those in PEO, making the Li ions less mobile.
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3.3. Transport Characteristics and Transport Number of Li Ions

Figure 7a shows the results of the self-diffusion coefficient, calculated using the mean
square displacement, for the transport characteristics of Li ions. To calculate the transport
number, the self-diffusivity coefficient of TFSI ions was calculated in the same manner,
and the corresponding results are shown in Figure 7b. It can be seen that the diffusion
coefficient in PEO is high for all ions at any salt concentration and decreases with increasing
salt concentration, regardless of the polymer species. These results are in good agreement
with the experimental results reported by Zheng et al. [16], which showed that PEO has
higher ionic conductivity than that of P(2EO-MO) at any salt concentration. In addition,
as compared to the trends of PEO, the diffusion coefficient of both ions in P(2EO-MO)
decreases significantly and the difference in diffusion coefficient owing to the difference
in polymer species increases as the salt concentration increases. This result is consistent
with the fact that P(2EO-MO) forms a relatively large LiTFSI cluster, particularly in the
high-salt-concentration range; it is suggested that the LiTFSI clusters constrain the ions to
each other and reduce diffusivity. Furthermore, based on these diffusion coefficients, the
transport number was calculated using the following formula:

t+ =
DLi+

DLi+ + DTFSI−
(1)

where, DLi+ indicates the diffusion coefficient of Li ions, and DTFSI− indicates the diffusion
coefficient of TFSI ions. Figure 8 shows the salt concentration dependence of the transport
number, t+. The results are in good agreement with the experimental results reported
by Timachova et al. [23], and the validity of this calculation was verified. The higher the
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salt concentration, the higher the transport number, regardless of the polymer species.
However, the transport number of P(2EO-MO) increased relatively significantly, and the
transport number of P(2EO-MO) was higher than that of PEO at high salt concentrations.
This trend is attributed to the larger decrease in the diffusion coefficient of TFSI at a high
salt concentration in P(2EO-MO) than that in PEO.
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To clarify the transport mechanism in detail, the diffusion coefficient was decomposed
using the oxygen coordination ratio β of Li ion, shown in Figure 5, as follows:

DLi = DLi∈O × β + DLi/∈O × (1− β) (2)

where, DLi∈O and DLi/∈O indicate the diffusion coefficient of Li ions coordinated, and not
coordinated to the oxygen atoms, respectively. Furthermore, based on DLi∈O, among the Li
ions coordinated to the oxygen atom, the ions that are dissociated from TFSI and those that
are part of the LiTFSI cluster can be classified. However, β is relatively high (75% or more)
under all conditions, as shown in Figure 5, and the effect of DLi/∈O on DLi is relatively small.

3.4. Hopping Analysis

For DLi∈O, the inter/intra-hopping number and distance are thought to have a large
effect on the dissociated Li ions. For Li ions that are part of the cluster, the number and
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size of LiTFSI clusters may have an effect in addition to the inter/intra-hopping number
and distance. For DLi/∈O, only the number and size of LITFSI clusters are considered to
have an effect. In this study, we analyzed the effect of inter/intra-hopping on DLi∈O.
The indices of oxygen atoms that are within 3.25 Å of the lithium cation were used to
determine inter/intra-hopping. In particular, each oxygen atom of the polymers was
labeled sequentially, starting at one end of a polymer chain and continuing to the end of
that chain before proceeding to the next; the oxygen atoms were consecutively labeled
from 1 to 3000 for PEO and from 1 to 2970 for P(2EO-MO). This index was outputted every
100 ps, and whether Li ions had caused inter/intra-hopping was determined based on
the change in the oxygen index. Because the typical Li ion is coordinated with around
five oxygens, changes in the oxygen index were smaller than five when a Li ion moves
to the next oxygen site along the chain where new coordinated oxygens include partly
the previous ones. Therefore, we used this threshold to define the inter/intra-hopping
in this study. In other words, when the change was between one and five, it was judged
that intra-hopping occured, and when the change was five or more, it was judged that
inter-hopping occured. Examples of the oxygen index when inter- and intra-hopping
occur are shown in Figure 9. Figure 9a shows the results for P(2EO-MO) at r = 0.01, while
Figure 9b shows the results for PEO at r = 0.12, respectively. In Figure 9a, the oxygen index
changes significantly around 35 ns, indicating that inter-hopping occurred. In Figure 9b,
it can be seen that relatively small changes in the oxygen index occurred intermittently,
indicating that intra-hopping occurred frequently.
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Next, the number of occurrences of inter/intra-hopping and the average hopping
distance were calculated. The number of occurrences of hopping per Li ion was calculated
by dividing the total number of occurrences by the number of Li ions coordinated to the O
atom. The average hopping distance was calculated by dividing the total hopping distance
by the total number of occurrences. The results of the salt concentration dependence of the
number of hopping occurrences and the distance in each polymer are shown in Figure 10. It
can be seen that the number of occurrences decreases, and the distance becomes shorter as
the salt concentration increases, regardless of the type of hopping and the type of polymer.
The fraction of Li ions among the Li ions coordinated to the O atoms that also belong
to LiTFSI clusters increases as the salt concentration increases; therefore, the Li ions are
likely to be constrained to the cluster at high salt concentrations. Thus, the number of
occurrences of hopping is considered to have decreased. Furthermore, it is thought that
the hopping distance decreased because the average distance between Li ions decreased at
high salt concentration; as a result, Li ions were more susceptible to inhibition by other Li



Micromachines 2021, 12, 1012 9 of 11

ions when hopping. This phenomenon led to a decrease in the diffusion coefficient DLi∈O
of the Li ions coordinated to the oxygen atoms and, therefore, a decrease in the diffusion
coefficient of the entire Li ion. Regarding the effect of polymer species on the diffusion
coefficient, it can be confirmed that PEO has a relatively smaller number of occurrences of
inter-hopping compared to P(2EO-MO), but the hopping distance is larger. Therefore, there
is no significant difference between polymer species in terms of the effect of inter-hopping
on diffusivity. In the case of intra-hopping, PEO has a larger number of occurrences and
greater distance compared to those in P(2EO-MO), leading to the larger diffusion coefficient
of PEO.
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4. Conclusions

We analyzed the ion transport inside an all-solid-state lithium-ion battery polymer
electrolyte membrane using MD simulations. We evaluated the salt concentration de-
pendence of ion transport and structural properties in the electrolyte. Furthermore, we
examined the difference in transport mechanism in each electrolyte membrane using PEO,
a representative polymer electrolyte material, and P(2EO-MO), which was proposed as
a new material. From the results of oxygen coordination structure around Li ions and
LiTFSI cluster analysis, it was shown that clusters comprising multiple LiTFSI salts are
formed as the salt concentration increases. It was suggested that P(2EO-MO) limits the
movement of Li ions by forming relatively large clusters in the high-salt-concentration
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region as compared to PEO. From the diffusion coefficient and hopping analysis, it was
confirmed that the diffusion coefficients of both the Li ion and the TFSI ion were superior
to that of PEO, which was in good agreement with the experimental results. Furthermore,
the transport number also showed good agreement with the experimental results, and the
validity of this calculation was verified. Moreover, the number of occurrences of hopping
decreased and the distance became shorter as the salt concentration increased, regardless
of the type of hopping and the type of polymer. In particular, regarding intra-hopping,
PEO had a larger number of hopping events and greater hopping distance, leading to the
larger diffusion coefficient of PEO.
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