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Abstract 13 

Background: Patients at high risk of severe forms of COVID-19 frequently suffer from chronic 14 

diseases, but other risk factors may also play a role. Environmental stressors, such as 15 

endocrine disrupting chemicals (EDCs), can contribute to certain chronic diseases and might 16 

aggravate the course of COVID-19. 17 

Objectives: To explore putative links between EDCs and COVID-19 severity, an integrative 18 

systems biology approach was constructed and applied. 19 

Methods: As a first step, relevant data sets were compiled from major data sources. 20 

Biological associations of major EDCs to proteins were extracted from the CompTox 21 

database. Associations between proteins and diseases known as important COVID-19 22 

comorbidities were obtained from the GeneCards and DisGeNET databases. Based on these 23 

data, we developed a tripartite network (EDCs-proteins-diseases) and used it to identify 24 

proteins overlapping between the EDCs and the diseases. Signaling pathways for common 25 

proteins were then investigated by over-representation analysis. 26 

Results: We found several statistically significant pathways that may be dysregulated by 27 

EDCs and that may also be involved in COVID-19 severity. The Th17 and the AGE/RAGE 28 

signaling pathways were particularly promising.  29 

 30 
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 2 

Conclusions: Pathways were identified as possible targets of EDCs and as contributors to 32 

COVID-19 severity, thereby highlighting possible links between exposure to environmental 33 

chemicals and disease development. This study also documents the application of 34 

computational systems biology methods as a relevant approach to increase the 35 

understanding of molecular mechanisms linking EDCs and human diseases, thereby 36 

contributing to toxicology prediction. 37 

 38 

Keyworks: endocrine disruptor, systems toxicology, integrative computational approach, 39 
network science, OBERON  40 
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Introduction 41 

The COVID-19 pandemic started in the fall of 2019 and spread to a large part of the 42 

world during the winter and spring of 2020. By late June 2020, it had led to more than 43 

500,000 deaths, of which one-fourth in the US and about 175,000 in the EU 44 

(https://coronavirus.jhu.edu/map.html, https://covid19.who.int/). Despite considerable 45 

research activities, there are still many unknowns concerning this infectious disease, 46 

especially with regard to the substantial variability of the disease severity. Following an 47 

initial infectious phase, a “cytokine storm”, leading to pneumonia is observed in severe cases 48 

which may require intensive care. It is still unclear why infections lead to severe cases in 49 

some patients and not in others, but both endogenous and exogenous factors can likely 50 

influence the outcome of the disease.   51 

 In addition to older age and male sex, several comorbidities are associated with 52 

severe COVID-19 and increased mortality risk. Disorders such as cardiovascular disease, type 53 

II diabetes (T2D), obesity, chronic respiratory disease or hypertension are strongly linked to 54 

severe COVID-19 cases (Petrilli et al. 2020)(Zhou et al. 2020)(Stefan et al. 2020). As has 55 

recently been proposed, underlying metabolic and endocrine dysfunctions may be 56 

mechanistically linked to the exacerbation of the coronavirus infection (Bornstein et al. 57 

2020), and these observations may inspire new insight into the pathogenesis of this disease, 58 

including  biological interpretation of the mechanisms involved. Environmental stressors 59 

have already been suggested to contribute to the severity of the disease (Bashir et al. 2020; 60 

Fattorini and Regoli 2020; Zhu et al. 2020), but little mechanistic support for this association 61 

is available.  A relevant approach would be to compare the biological pathways triggered by 62 

environmental stressors with those involved in the COVID-19 severity. If similar pathways 63 

are found, this would increase the likelihood that such stressors may contribute to critical 64 

stages of this disease.  65 

 Given the suspected hormonal mode of vulnerability (Drucker 2020) endocrine 66 

disrupting chemicals (EDCs) could represent important triggers of aggravated infection, e.g., 67 

in the form of phthalates, bisphenols, organochlorine pesticides, and perfluorinated alkane 68 

substances (PFASs) (Trasande et al. 2016; Vandenberg et al. 2016). Exposure to these 69 

substances may affect the immune defense, thus potentially increasing the susceptibility to 70 

develop COVID-19 (Tsatsakis et al. 2020), as supported by experimental studies(Cipelli et al. 71 

2014; Couleau et al. 2015). For example, epidemiological evidence on children exposed to 72 
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PFASs show decreased immune responses to routine vaccines (Grandjean et al. 2012) and a 73 

greater risk of developing infectious disease(Dalsager et al. 2016; Granum et al. 2013).  74 

As promising tools to gain better insight into the possible risk factors and 75 

mechanisms, toxicological and chemical data sources have expanded substantially, thereby 76 

enabling network science and computational systems biology methods to become feasible 77 

(Audouze et al. 2013, 2018; Taboureau and Audouze 2017; Vermeulen et al. 2020; Wu et al. 78 

2020). We have therefore conducted an integrative systems biology exploration to identify 79 

overlapping proteins that are both dysregulated by EDCs and involved in comorbidities 80 

associated with aggravated COVID-19. Based on this tripartite network, integrating protein-81 

EDC associations and protein-disease annotations, we then performed biological 82 

enrichments of pathways to detect the most plausible relationships between EDC exposure 83 

and COVID-19 severity. 84 

 85 

  86 
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Methods 87 

We employed a computational systems biology approach to explore putative linkages 88 

between EDCs and COVID-19 as presented in Figure 1. First, a tripartite network was created 89 

based on known associations between proteins and either COVID-19 comorbidities or EDCs, 90 

as compiled from existing databases (CompTox, DisGeNET, GeneCards) (A). Then, biological 91 

enrichment was performed with the jointly identified proteins (i.e., those retrieved in both 92 

association studies) (B) by over-representation analysis (ORA) to identify the pathways that 93 

were the highly linked to both the diseases and the EDCs (C). As a final step, the biological 94 

pathways were explored with available knowledge regarding COVID-19 mechanisms (from 95 

the literature and the AOP-Wiki database), thereby allowing consideration of hypothetical 96 

linkages between EDCs and COVID-19 (D). 97 

Endocrine-disrupting chemical dataset  98 

A list of 34 commonly used substances known or suspected to act as EDCs was established, 99 

based on knowledge from three data sources: the endocrine disruptor assessment list from 100 

ECHA (https://echa.europa.eu/fr/ed-assessment, as of April 24, 2020), the one from NIEHS 101 

(https://www.niehs.nih.gov/health/topics/agents/endocrine/index.cfm as of April 28, 2020), 102 

and the TEDX database (https://endocrinedisruption.org/interactive-tools/tedx-list-of-103 

potential-endocrine-disruptors/search-the-tedx-list, as of April 24,2020). 104 

To explore as much as possible the chemical diversities, EDCs for this study were further 105 

selected to represent different chemical classes (Table 1). The CAS numbers were used for 106 

data integration. 107 

Disease dataset 108 

Comorbidities known to be associated with obesity or otherwise leading to severe COVID-19 109 

were extracted from a recent study (Stefan et al. 2020), and resulted in a total of 13 110 

disorders for exploration in the integrative systems toxicology (Table2). 111 

Endocrine-disrupting chemical-protein associations 112 

Human proteins known to be associated with each of the 34 EDCs were extracted from the 113 

U.S. Environmental Protection Agency web-based CompTox Chemistry dashboard, which 114 

contains a wide range of data related to chemical toxicity, including in vitro bioassays data 115 

(as of April 30, 2020) (Williams et al. 2017). Each linked protein was matched to a gene 116 

symbol and classified using the Panther (protein analysis through evolutionary relationships) 117 

classification system (version 15, released February 14, 2020) (Mi et al. 2013), a curated 118 
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biological database of gene/protein families, and their functionally related subfamilies that 119 

can be used to classify and identify the function of gene products. 120 

Disease-protein associations 121 

From two human protein-disease databases, proteins known to be linked to the 13 studied 122 

diseases were listed (as of April 29, 2020 for both data sources). The DisGenNet database is a 123 

discovery platform containing one of the largest publicly available collections of genes and 124 

variants associated with human diseases(Piñero et al. 2015). The GeneCards database 125 

contains manually curated information for substances and their associations to genes and 126 

proteins, that are scored (Safran et al. 2010). For the present study, only associations were 127 

kept only for those between human diseases and proteins categorized as coding proteins, 128 

and all non-human information, including gene clusters, genetic locus, pseudogenes, RNA 129 

genes and those uncategorized were disregarded. All listed proteins were matched to their 130 

gene symbol to facilitate further analysis. Each identified protein from both databases, was 131 

categorized into the protein class using the Panther classification (version 15).  132 

Pathways enrichment analysis 133 

To decipher biological pathways potentially linked to the selected EDCs and explore if they 134 

might overlap with the ones known for COVID-19, an ORA was done. Four major sources of 135 

protein-pathway information were independently integrated, i.e., using the Kyoto 136 

Encyclopedia of Genes and Genomes (KEGG), the Reactome, the Wiki-pathways and the 137 

Panther databases(Fabregat et al. 2018; Kanehisa et al. 2019; Mi et al. 2013; Slenter et al. 138 

2018). To assess the statistical significance of the protein-pathway relationships, a 139 

hypergeometric test was used for each of the four sources, followed by a multiple testing 140 

correction of the p-values with the Benjamini-Hochberg method. The ORA was performed on 141 

the common proteins identified to identify the most strongly linked proteins that are 142 

affected by the EDCs and also associated with at least one the 13 comorbidities. As a last 143 

step, manual curation allowed us to consider relevant outcomes for interpretation. The four 144 

data sources provided complementary information, with some overlapping findings. 145 

COVID-19 and biological mechanism of action 146 

Linkage between COVID-19 and potential biological targets and affected pathways were 147 

extracted from the literature (as of May 22, 2020) and the AOP-Wiki database (as of May 22, 148 

2020). 149 

 150 
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Results 151 

Endocrine-disrupting chemical-protein associations 152 

From the CompTox database, information on the links between chemicals and human 153 

proteins were compiled. Data for 30 of the 34 chemicals could be retrieved, and a total of 154 

208 unique human proteins were involved via 1632 associations. No information was 155 

retrieved for hexachlorobenzene, nonylphenol ethoxylate, perchlorate and tributyltin. 156 

Perfluorooctane sulfonic acid (PFOS) targeted the highest number of proteins (113), and 157 

2,2',4,4',5,5'-hexachlorobiphenyl (PCB 153) was associated with only one biological target 158 

(the progesterone receptor). The most frequently affected proteins included the androgen 159 

receptor (AR) and the estrogen receptor-alpha (ESR1), which were each linked to 23 EDCs, 160 

whereas 61 individual proteins were associated with only one EDC. 161 

To identify the biological targets that are most often affected by EDCs, proteins were 162 

grouped in clusters according to their families, as based on the Panther classification system 163 

(Figure 2). The majority of the 208 proteins related to EDCs belonged to 12 classes among 164 

the 23 present in Panther, while the remaining proteins were classified as ‘uncategorized 165 

protein class’. Each protein was assigned to only one category, although only one of them, 166 

HLA-DRA, (HLA class II histocompatibility antigen, DR alpha chain) belonged to the 167 

defense/immunity group. Other immunity-related proteins. such as interleukin 6 (IL-6) or 168 

interleukin 1 alpha (IL-1A), were not associated with any class in the Panther classification. 169 

We therefore manually added all immune system-related proteins to the “uncategorized 170 

class”. Given that Bisphenol A (BPA) increases the release of these proteins(Ben-Jonathan et 171 

al. 2009), and because antibodies to the IL-6 receptor (such as tocilizumab) or to the IL-1 172 

receptor (such as Anakinra) are currently tested for the treatment of COVID-19 patients 173 

(Zhou et al. 2020), we also explored if the proteins selected could be mapped to defense 174 

and/or immunity biological categories. For this purpose, we used the Gene Ontology (GO) 175 

classification (as of May 26, 2020), and among the 208 proteins dysregulated by EDCs, 58 176 

were associated with inflammatory response, 75 with defense response, and 66 with 177 

regulation of immune system process.  178 

Disease-protein associations 179 

Regarding diseases associated with human proteins, two databases were screened. From the 180 

DisGeNET database, we were able to retrieve information for 8 of the 13 diseases, which 181 

were connected to 3262 unique proteins via 7195 links (as of April 29, 2020). The proteins 182 
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were categorized in 22 protein classes using the Panther classification (version 15) (Figure 183 

S1). Proteins that did not belong in any class were again grouped into the uncategorized 184 

class. Obesity and diabetes were linked to proteins belonging to each of the 22 categories, 185 

whereas insulin resistance and dyslipidemia were linked to only half of the categories. 186 

From the GeneCards database, all 13 predisposing diseases were retrieved (as of 29 April 187 

2020), and a total of 115,289 associations were identified between the diseases and 29,094 188 

unique human proteins were extracted. Among them, only protein-coding information 189 

according to HGNC, Ensembl or Entrez Gene were kept (proteins data related to biological 190 

regions, gene clusters, genetic loci, pseudogenes, non-coding RNA genes and uncategorized 191 

elements were not considered), thereby reducing the total number of unique protein to 192 

18,931, representing 97,855 disease-protein links. As a next step, grouping of the proteins 193 

using the Panther classification system allowed identification of 23 clusters correspond to 194 

the 23 different protein classes (Figure S2). Each protein was assigned to only one category, 195 

except for ameloblastin (AMBN), which was associated with both ‘extracellular matrix 196 

protein’ and ‘structural protein’. Proteins not associated with Panther classes, were again 197 

grouped into the uncategorized class. Excluding the viral or transposable element protein 198 

class, all diseases (except dyslipidemia) were associated with all the other Panther classes. 199 

In order to keep the most relevant protein-disease associations obtained from the 200 

GeneCards database, data were filtered based on their scores. The GeneCards scores are 201 

calculated based on publications mentioning a protein and a disease, using a Boolean model. 202 

The higher the score, the more relevant the protein-disease association is. Among the 203 

97,855 links between the 13 diseases and 18,931 proteins, the score values ranged between 204 

0.13 (representing very low association) to 228 (very high evidence for a protein-disease 205 

connection). After evaluation of the extracted data (number of proteins by GeneCards 206 

scores), we selected associations with a score ≥ 20 (see Figure S3). Within this threshold, a 207 

total of 5732 associations were retained that link the 12 diseases with 2079 unique human 208 

proteins (no information was retained for ‘dyslipidemias’ from the GeneCards database). 209 

Generating a tripartite network of protein-EDC-disease associations 210 

A human bipartite associative network of proteins and the 13 diseases was created. Among 211 

the 3262 unique proteins from the DisGeNET, and the 2079 proteins from the GeneCards 212 

databases, 1157 were overlapping proteins and only 922 and 2105 proteins were uniquely 213 

associated with GeneCards or DisGeNET, respectively. All 4184 unique proteins were again 214 
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grouped into 23 clusters using the Panther classification (the class ‘viral or transposable 215 

element protein’ was not kept after the cleaning step. Among the groupings, we retrieved a 216 

cluster of proteins linked to the ‘defense/immunity’ category. These results were merged 217 

with the bipartite protein-EDCs network to develop a tripartite network (Figure 2).  218 

Translation into pathways 219 

To identify biological pathways that may be involved in the predisposing diseases while also  220 

being dysregulated by the EDCs, we first analyzed the overlaps between the two sets of 221 

proteins. Among the proteins identified from the three data sources, 98 were common 222 

(Figure S4), and all of them were mapped to unique Entrez GeneID, and could therefore be 223 

used for biological enrichment analyses, which were performed independently using four 224 

data sources (KEGG, Reactome, Wiki-pathways and Panther).  The ORA analysis revealed 225 

several statistically significant pathways linked to interleukins/cytokines signaling, 226 

intracellular signaling pathways and, regulation of metabolic pathways (Table 3). 227 

Interestingly, the different data sources showed very significant associations with common 228 

pathways, such as interleukins (IL) related pathways: IL-4 and IL-13, IL-10 signaling pathways 229 

(padj < E-16, and padj of 2.85E-09 respectively, Reactome), IL-17 signaling pathway (padj of 230 

1.05E-10, KEGG), IL-3, IL-5 and IL-18 signaling pathways (padj of 1.09E-09, 2.52E-09, 1.49E-08 231 

respectively, Wiki-pathways), the IL-signaling pathways (padj of 1.10E-05, Panther); or the 232 

Toll-like receptor signaling pathway (padj 3.91E-09 for KEGG, padj of 0.99 for Panther and padj 233 

1.93E-08 for Wiki-pathways).  234 

Among the most significant pathways, several were retrieved from each of the data sources 235 

with relation to the AGE/RAGE pathway (i.e. Advanced Glycation End products and its 236 

receptor), which is known to cause cellular stress and inflammation. The AGE are formed 237 

non-enzymatically, by Maillard reaction products (carbohydrates with proteins and/or lipids) 238 

and bind to the RAGE. Formation of AGE has been associated with chronic diseases such as 239 

type 2 diabetes (Cai et al. 2012; Menini et al. 2018). Similarly, the stress or inflammatory 240 

pathways (e.g shear stress, defined as the tangential force exerted by the blood flow on the 241 

vascular endothelium, TNF-alpha) are highlighted by our analysis; the shear stress activates 242 

the AhR signaling pathway, which is also involved in the regulation of IL-17 production by the 243 

Th17 lymphocytes; interleukin 17 has been suspected to be involved in the pathogenesis of 244 

COVID19(Gutiérrez-Vázquez and Quintana 2018; Han et al. 2008; Pacha et al. 2020). 245 

Interestingly, inflammation is suspected to influence insulin resistance.  246 
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Exploration of EDCs linkage to COVID-19 247 

To explore putative links between COVID-19 and exposure to EDCs, we first screened the 248 

AOP-Wiki database, and then further examined the pathways identified using literature 249 

references.  250 

In the AOP-Wiki database, only one AOP was related to COVID-19, and it involves several key 251 

events, such as ‘increased pro-inflammatory mediators’ (KE 1496), ‘increased inflammatory 252 

immune responses’ (KE 1750), which leads to the adverse outcome ‘increased mortality’ (AO 253 

351). Such knowledge-based linear chain of events highlights the importance of the link 254 

between COVID-19 and inflammatory processes. 255 

 256 

  257 
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Discussion 258 

In order to investigate possible links between exposure to EDCs and the severity of COVID-259 

19, we explored a computational systems biology approach. The tripartite network model 260 

first linked EDCs to targeted proteins and then proteins related to diseases that predispose 261 

to more serious COVID-19 development, thereby allowing us to identify common signaling 262 

pathways. The identification of such joint pathways and their role as possible targets of EDCs 263 

highlights the potential links between exposure to environmental chemicals and COVID-19 264 

severity.  265 

This integrative approach can be easily applied as a new approach methodology (NAM) 266 

(Bopp et al. 2019), which may offer support to methods alternative to animal testing or to 267 

identify biological pathways that require more focused laboratory study. Previous studies 268 

have demonstrated that systems chemical toxicology models combined with computational 269 

network biology may help in understanding chemical toxicity in humans (Hartung et al. 2017; 270 

Nie et al. 2015; Taboureau and Audouze 2017). Our tripartite network supports the notion 271 

that exposure to EDCs may contribute to aggravation of COVID-19. Although major links 272 

were identified at extremely low p values, the approach relies on existing information 273 

available in within the very substantive data sources, but some causal associations may have 274 

been overlooked or disregarded because of missing or incomplete information. 275 

To assess the validity of our approach, a more focused expert analysis was attempted, where 276 

we selected the Th17 and the AGE/RAGE signaling pathways because of their 277 

pathophysiological relevance in the context of COVID-19. The interleukin-17 (IL-17) signaling 278 

pathway plays several important roles, and IL-17 is produced by a pro-inflammatory subtype 279 

of T helper lymphocytes named Th17 cells, located at mucosal barriers where they 280 

contribute to pathogen clearance. The IL-17 produced stimulates the synthesis of cytokines 281 

(IL1ß, TNF-alpha…) and chemokines (MCP-1…) by other cell types, thereby favoring the 282 

recruitment of monocytes and neutrophils at inflammatory sites. However, an over-283 

activation of Th17 cells can lead to a hyper-inflammatory state which is deleterious (Pacha et 284 

al. 2020).  285 

The highly variable symptomatology associated with the infection by SARS-CoV-2 depends 286 

on the levels of IL-17 and of other cytokines including IL-1ß, IL-6, IL-15, TNF-alpha and IFNγ. 287 

The most deleterious effect of SARS-CoV-2 in humans is an acute lung injury leading to a 288 

severe acute respiratory syndrome (SARS) that is partly due to IL-17-related excessive 289 

 . CC-BY-NC 4.0 International licenseIt is made available under a 
 is the author/funder, who has granted medRxiv a license to display the preprint in perpetuity. (which was not certified by peer review)

The copyright holder for this preprint this version posted July 15, 2020. .https://doi.org/10.1101/2020.07.10.20150714doi: medRxiv preprint 

https://doi.org/10.1101/2020.07.10.20150714
http://creativecommons.org/licenses/by-nc/4.0/


 12

recruitment of pro-inflammatory cells and production of pro-inflammatory cytokines. 290 

Therefore, an increased basal level of IL-17 (in the absence of infection, for example due to 291 

obesity or to induction by a chemical) might represent a lung injury risk associated with 292 

SARS-CoV-2 infection. Our finding of EDC linkage to this pathway is therefore of high 293 

pathogenetic relevance.  294 

Obesity promotes a high basal level of inflammation which contributes to insulin resistance 295 

and type 2 diabetes(Goldberg 2009). This phenomenon is due to an infiltration of the 296 

adipose tissue (AT) by macrophages and T cells and their production of various pro-297 

inflammatory cytokines, including IL-1ß, TNF-alpha, IL-17 and IL-6. Several EDCs are 298 

suspected to be obesogenic (and are subsequently named obesogens). This has been 299 

demonstrated for several substances (e.g. tributyltin) and linked to the stimulation of pro-300 

adipogenic signaling pathway (e.g. through PPARγ)(Egusquiza and Blumberg 2020). Similarly, 301 

the aryl hydrocarbon receptor (AhR) is highly expressed in Th17 cells and is an essential 302 

contributor to the production of IL-17(Veldhoen et al. 2008). The AhR, known as the 303 

receptor of dioxins and dioxin-like PCBs, is also activated by shear stress (SS), another 304 

pathway highlighted in our computational analysis. Indeed, several studies have shown using 305 

various endothelial models that laminar SS leads to the activation of two target genes of the 306 

AhR, namely CYP1A1 and CYP1B1(Conway et al. 2009). Two recent studies suggest an 307 

indirect link between SARS-CoV-2 and SS by showing that the expression of ACE2 308 

(angiotensin-converting enzyme 2), the receptor of the virus, is increased by SS (Song et al. 309 

2020).  310 

These observations support a dual impact of EDCs on IL-17 production and inflammatory 311 

state; this impact could be indirect due to the effect of these chemicals on obesity or 312 

through a direct stimulation of several signaling pathways, such as AhR or PPARγ, leading to 313 

an overproduction of systemic IL-17; the shear stress pathway represents an additional link 314 

between AhR activation and the EDC/disease connection. The implication of shear stress 315 

also suggests a possible contribution of increased expression of ACE2, the receptor of the 316 

SARS-CoV-2. While the role of these pathways at the nexus between exposure to EDCs and 317 

COVID-19 severity appears to be relevant, their actual contribution remains to be 318 

demonstrated and their putative role as therapeutic targets remains to be further 319 

substantiated.  320 
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Our integrative systems biology study also indicates a strong statistical association between 321 

the AGE/RAGE signaling pathway, chronic diseases and EDC effects. This is likely due to the 322 

well-known links between this pathway and type 2 diabetes(Ravichandran et al. 2019). 323 

Indeed, hyperglycemia leads to increased amounts of glycation products and their 324 

metabolites which results in the activation of the RAGE receptors. The latter are highly 325 

expressed in endothelial cells, and their activation leads to increased oxidative stress and 326 

inflammation and ultimately to endothelial damage, thrombotic disorders and vascular 327 

diseases (Egaña-Gorroño et al. 2020). Other endogenous ligands can also activate RAGE, 328 

among them HMGB1 (high-mobility group box 1), an extra-cellular protein also linked to a 329 

variety of inflammatory responses(Andersson et al. 2020). Interestingly, the AGE/RAGE 330 

signaling pathway is highly expressed in the lung vasculature and has been implicated in 331 

several pulmonary diseases(Oczypok et al. 2017). All these observations support the 332 

implication of the AGE/RAGE signaling pathway in vascular, thrombotic and lung diseases 333 

which are the hallmarks of COVID-19 severity. Interestingly, there are also complex 334 

connections between HMGB1 and ACE2 which is the receptor for SARS-Cov2 and other 335 

coronaviruses(Luft 2016). These results are in accordance with recent proposals in published 336 

commentaries of environmental chemical impacts on COVID-19 progress(Andersson et al. 337 

2020; Rojas et al. 2020). 338 

The three-way approach did not attempt to identify direct immunotoxic effects due to 339 

environmental chemicals otherwise considered to be EDCs. However, some of the EDCs 340 

selected, i.e., PCB-153, PFOA and PFOS, are known to have immunotoxic properties 341 

(Heilmann et al.), and the same is true for some common air pollutants (Tsatsakis et al. 342 

2020). Accordingly, the impact of environmental chemicals on COVID-19 severity demands 343 

attention.  344 

 345 

Conclusions 346 

The results of this computational study appear as a promising initial step toward 347 

systematically linking a major group of environmental chemicals to the severity of COVID-19, 348 

although the findings need to be further supported by high-throughput screening tests, 349 

clinical and experimental data. Nevertheless, these observations bridge environmental 350 

stressors and infectious diseases and support an integrated exposome approach. Preliminary 351 
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focus on the AGE/RAGE and IL-17 pathways illustrates the potential connection between 352 

exposure to EDCs and diseases predisposing to COVID-19 severity.  353 
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Tables 517 

 518 

Table 1. List of the 34 major substances known or suspected to be endocrine-disrupting 519 

chemicals. 520 

CAS chemical.name abbreviation CAS chemical.name abbreviation 

35065-27-1 2,2',4,4',5,5'-Hexachlorobiphenyl PCB-153 446-72-0 genistein - 

1746-01-6  2,3,7,8- Tetrachlorodibenzodioxin  TCDD 3194-55-6 hexabromocyclododecane HBCD 

1912-24-9 atrazine - 118-74-1 Hexachlorobenzene  HCB 

131-56-6 benzophenone-1 - 138261-41-3 imidacloprid - 

117-81-7 Bis (2-ethylhexyl)phthalate  DEHP 625-45-6 methoxyacetic acid  MAA 

620-92-8 bisohenol F BPF 99-76-3 methyl-paraben MEPA 

80-05-7 bisphenol A BPA 68412-53-3 nonylphenol ethoxylate NPEO 

80-09-1 bisphenol S BPS 103-90-2 acetaminophen - 

94-26-8 butyl-paraben BUPA 68631-49-2 PBDE-153 PBDE-153 

57-74-9 Chlordane  - 5436-43-1 PBDE-47  PBDE-47  

2921-88-2 chlorpyrifos  CPF 14797-73-0  perchlorate - 

210880-92-5 Clothianidin - 1763-23-1  

Perfluorooctane sulfonic 

acid  PFOS 

52315-07-8 cypermethrin - 335-67-1 Perfluorooctanoic acid PFOA 

486-66-8 daidzein - 67747-09-5 prochloraz  - 

84-74-2 Dibutyl phthalate  DBP 153719-23-4 thiamethoxam - 

72-55-9 Dichlorodiphenyldichloroethylene DDE 688-73-3 Tributyltin TBT 

50-29-3 dichlorodiphenyltrichloroethane DDT  3380-34-5 triclosan - 

 521 

Table 2. List of the 13 diseases. 522 

Obesity 

Impaired respiratory mechanisms respiratory dysfunction 

Increased airway resistance respiratory dysfunction 

Impaired gas exchange respiratory dysfunction 

Low lung volume respiratory dysfunction 

Low muscle strength respiratory dysfunction 

Cardiovascular disease comorbidities 

Diabetes mellitus comorbidities 

Kidney disease comorbidities 

Hypertension metabolic risk 

Prediabetes metabolic risk 
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Insulin resistance metabolic risk 

Dyslipidemia metabolic risk 

 523 

Table 3. Pathway enrichment for the set of proteins that are linked to  both the 524 

predisposing diseases and to the EDCs. The pathways were extracted from the KEGG, 525 

Panther, Reactome and the Wikipathways database. 526 

Data sources Name of pathways Proteins* P-value FDR** 

KEGG AGE-RAGE signaling pathway in diabetic complications 22 < E-16 < E-16 

KEGG Fluid shear stress and atherosclerosis 20 2.22E-16 1.81E-14 

KEGG TNF signaling pathway 18 8.8E-16 5.79E-14 

KEGG Insulin resistance 17 1.04E-14 5.67E-13 

KEGG Endocrine resistance 15 7.81E-13 2.40E-11 

KEGG MAPK signaling pathway 23 8.84E-13 2.40E-11 

KEGG HIF-1 signaling pathway 15 1.06E-12 2.66E-11 

KEGG Non-alcoholic fatty liver disease (NAFLD) 17 2.83E-12 5.77E-11 

KEGG FoxO signaling pathway 16 5.17E-12 9.36E-11 

KEGG IL-17 signaling pathway 14 6.11E-12 1.05E-10 

KEGG EGFR tyrosine kinase inhibitor resistance 13 1.14E-11 1.85E-10 

KEGG PI3K-Akt signaling pathway 23 3.88E-11 5.51E-10 

KEGG Prolactin signaling pathway 12 4.50E-11 6.12E-10 

KEGG Ras signaling pathway 19 4.91E-11 6.40E-10 

KEGG Thyroid hormone signaling pathway 14 1.32E-10 1.39E-09 

KEGG Toll-like receptor signaling pathway 13 4.08E-10 3.91E-09 

KEGG Insulin signaling pathway 14 1.25E-09 1.07E-08 

KEGG Human T-cell leukemia virus 1 infection 18 1.93E-09 1.57E-08 

KEGG Chronic myeloid leukemia 11 2.02E-09 1.58E-08 

KEGG B cell receptor signaling pathway 10 1.50E-08 1.09E-07 

KEGG T cell receptor signaling pathway 11 4.34E-08 3.01E-07 

KEGG C-type lectin receptor signaling pathway 11 5.90E-08 4.01E-07 

Panther Interleukin signaling pathway 12 1.94E-07 1.10E-05 

Panther Insulin/IGF pathway-protein kinase B signaling cascade 7 1.51E-05 3.42E-04 

Panther Ras Pathway 9 3.61E-05 6.80E-04 

Panther T cell activation 9 6.34E-05 8.95E-04 

Panther PI3 kinase pathway 7 1.12E-04 0.0012 

Panther 

Insulin/IGF pathway-mitogen activated protein kinase 

kinase/MAP kinase cascade 5 5.81E-04 0.0050 

Panther 

Inflammation mediated by chemokine and cytokine 

signaling pathway 13 8.29E-04 0.0062 

Panther B cell activation 6 0.0026 0.0154 

Panther FGF signaling pathway 8 0.0034 0.0183 

Panther EGF receptor signaling pathway 8 0.0063 0.0324 

Panther Interferon-gamma signaling pathway 2 0.1423 0.5544 
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Panther JAK/STAT signaling pathway 1 0.3137 0.9401 

Panther Toll receptor signaling pathway 2 0.3521 0.9947 

Reactome Signaling by Interleukins 31 < E-16 < E-16 

Reactome Interleukin-4 and Interleukin-13 signaling 21 < E-16 < E-16 

Reactome Cytokine Signaling in Immune system 33 5.55E-16 3.20E-13 

Reactome Interleukin-10 signaling 10 1.05E-11 2.85E-09 

Reactome Negative regulation of the PI3K/AKT network 13 1.16E-11 2.85E-09 

Reactome PIP3 activates AKT signaling 18 1.83E-11 3.51E-09 

Reactome PI3K/AKT Signaling in Cancer 12 6.79E-11 1.17E-08 

Reactome Cytochrome P450 - arranged by substrate type 10 3.70E-10 5.81E-08 

Reactome PI5P, PP2A and IER3 Regulate PI3K/AKT Signaling 11 1.43E-09 2.07E-07 

Reactome Signaling by Receptor Tyrosine Kinases 19 2.43E-08 2.70E-06 

Reactome Insulin receptor signalling cascade 8 2.79E-08 2.84E-06 

Reactome Signaling by Insulin receptor 8 5.25E-07 3.27E-05 

Reactome MAPK family signaling cascades 13 2.57E-06 1.14E-04 

Reactome Constitutive Signaling by Aberrant PI3K in Cancer 7 3.66E-06 1.58E-04 

Reactome Immune System 37 7.14E-06 2.94E-04 

Wiki-pathway Netrin-UNC5B signaling Pathway 15 2.22E-16 1.18E-13 

Wiki-pathway Nonalcoholic fatty liver disease 20 3.06E-14 2.71E-12 

Wiki-pathway Aryl Hydrocarbon Receptor Netpath 12 1.32E-12 6.36E-11 

Wiki-pathway AGE/RAGE pathway 13 3.93E-12 1.61E-10 

Wiki-pathway Insulin Signaling 18 5.35E-12 2,03E-10 

Wiki-pathway RAC1/PAK1/p38/MMP2 Pathway 13 7.18E-12 2,38E-10 

Wiki-pathway Relationship between inflammation, COX-2 and EGFR 9 2.42E-11 7,32E-10 

Wiki-pathway IL-3 Signaling Pathway 11 4.31E-11 1.09E-09 

Wiki-pathway Ras Signaling 18 5.70E-11 1.38E-09 

Wiki-pathway IL-5 Signaling Pathway 10 1.09E-10 2.52E-09 

Wiki-pathway PI3K-Akt Signaling Pathway 23 2.10E-10 4.13E-09 

Wiki-pathway Aryl Hydrocarbon Receptor Pathway 10 7.67E-10 1.13E-08 

Wiki-pathway IL-18 signaling pathway 20 1.09E-09 1.49E-08 

Wiki-pathway 

Cells and Molecules involved in local acute inflammatory 

response 7 1.48E-09 1.91E-08 

Wiki-pathway Toll-like Receptor Signaling Pathway 13 1.52E-09 1.93E-08 

*number of proteins from the studied set that is involved in a pathway 527 

** false discovery rate 528 

 529 
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Figure captions 531 

 532 

Figure 1. Overview of the integrative systems toxicology approach. A: Human proteins 533 

known to be dysregulated by endocrine-disrupting chemicals (EDCs) were extracted from 534 

the CompTox database; human proteins linked to obesity or to comorbidities or metabolic 535 

dysfunction known to be associated with obesity were compiled using DisGeNET and 536 

GeneCards. These compiled data were used to develop a tripartite network. B: A set of 537 

proteins was identified that was common to both association studies (proteins targeted by 538 

the EDCs and also involved in comorbidities). C: Biological enrichment was performed for 539 

pathways for each of the four databases, by over-representation analysis (ORA) to identify 540 

potential mechanisms of action related to these proteins, where the biological pathways 541 

were ranked by their statistical significance. D: The most relevant of the potential pathways 542 

were compared to known COVID-19 dysregulated pathways from the literature and the AOP-543 

Wiki database. 544 

 545 

Figure 2. Tripartite network representation of endocrine-disrupting chemicals-proteins-546 

diseases relationships. First, a bipartite network of the 208 human proteins known to be 547 

dysregulated by the 30 endocrine-disrupting chemicals (EDCs) was created as extracted from 548 

the CompTox database. Each yellow diamond node represents an EDC, and edges are the 549 

interactions between EDCs and proteins. Then, a second bipartite network was generated 550 

for the 4184 human proteins known to be linked to the 13 predisposing diseases, as 551 

extracted from the DisGeNET (3262 links) and GeneCards (2079 links) databases. Each red 552 

square node represents a disease, and edges are the interactions between diseases and 553 

proteins. A total of 1156 proteins were overlapping. All proteins were grouped using the 554 

Panther classification system (version 15) and are represented by circles (colors are 555 

according to their Panther family classes).  556 

 557 
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