
Computational and Structural Biotechnology Journal 19 (2021) 3284–3292
journal homepage: www.elsevier .com/locate /csbj
Machine learning applied to serum and cerebrospinal fluid metabolomes
revealed altered arginine metabolism in neonatal sepsis with
meningoencephalitis
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Background: Neonatal sepsis with meningoencephalitis is a common complication of sepsis, which is a
leading cause of neonatal death and neurological dysfunction. Early identification of neonatal sepsis with
meningoencephalitis is particularly important for reducing brain damage. We recruited 70 patients with
neonatal sepsis, 42 of which were diagnosed as meningoencephalitis, and collected cerebrospinal fluid
(CSF) and serum samples. The purpose of this study was to find neonatal sepsis with
meningoencephalitis-related markers using unbiased metabolomics technology and artificial intelligence
analysis based on machine learning methods.
Results: We found that the characteristics of neonatal sepsis with meningoencephalitis were manifested
mainly as significant decreases in the concentrations of homo-L-arginine, creatinine, and other arginine
metabolites in serum and CSF, suggesting possible changes in nitric oxide synthesis. The antioxidants tau-
rine and proline in the serum of the neonatal sepsis with meningoencephalitis increased significantly,
suggesting abnormal oxidative stress. Potentially harmful bile salts and aromatic compounds were signif-
icantly increased in the serum of the group with meningoencephalitis. We compared different machine
learning methods and found that the lasso algorithm performed best. Combining the lasso and XGBoost
algorithms was successful in predicting the concentration of homo-L-arginine in CSF per the concentra-
tions of metabolite markers in the serum.
Conclusions: On the basis of machine learning combined with analysis of the serum and CSF metabo-
lomes, we found metabolite markers related to neonatal sepsis with meningoencephalitis. The character-
istics of neonatal sepsis with meningoencephalitis were manifested mainly by changes in arginine
metabolism and related changes in creatinine metabolism.

� 2021 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and
Structural Biotechnology. This is an open access article under the CC BY license (http://creativecommons.

org/licenses/by/4.0/).
1. Introduction

Sepsis,asystemicinflammatoryresponsesyndromecausedbyvar-
iouspathogen infections, hashighmorbidityandmortality.Approxi-
mately3millionnewbornsworldwidearediagnosedwithsepsisevery
year,andneonatalsepsisisthemostcommoncauseofdeathinpreterm
and term infants [1,2]. Meningoencephalitis（MEN） is a common
complication of severe sepsis and patients with neonatal sepsis are
pronetomeningoencephalitis,whichcanleadtodeathandneurocog-
nitive dysfunction. Sepsis-associated encephalopathyis defined as a
diffuse brain dysfunction secondary to sepsis and without evidence
of a primary CNS infection or encephalopathy due to other reasons
[3].Severecasescanbelife-threateningandoftencausebraindamage
or neurological sequelae, such as cerebral palsy, mental retardation,
anddeafness[4].Therefore,earlyidentificationofneonatalsepsiswith
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meningoencephalitis is particularly important for reducing brain
damage.

Metabolomics technology is widely used to identify disease
markers [5], and has been applied successfully to investigate sepsis
markers [6–12]. Mickiewicz et al. [13] used nuclear magnetic res-
onance (NMR)-based targeted metabolomics and identified 186
metabolites in the serum of patients in a Pediatric Intensive Care
Unit, suggesting that targeted metabolomics analysis may be a
promising approach for the diagnosis and prediction of mortality
in septic shock. Another NMR-based targeted metabolomics study
[14] found that two metabolites (acylcarnitine C10:1 and glyc-
erophospholipid PCaaC32:0) distinguished patients with severe
sepsis from those with systemic inflammatory response syndrome.
Using a targeted metabolomics approach, Fleischmann et al. found
that a regression model based on two metabolites, sphingolipid SM
C22:3 and glycerophospholipid lysoPCaC24:0, was able to diagnose
sepsis with sensitivity of 84.1% and specificity of 85.7%. They also
found that metabolites could effectively distinguish different infec-
tion types of sepsis and, thus, could be used as markers to predict
patient prognosis. Liquid chromatography-tandemmass spectrom-
etry (LC-MS/MS) combines high-performance liquid chromatogra-
phy with electrospray ionization mass spectrometry metabolomics
technology to achieve comprehensive detection of different types
of metabolites in a sample, and has the advantages of high sensitiv-
ity and wide dynamic range over NMR-based targeted metabolo-
mics technology [15].

Screening disease-related metabolite biomarkers and construc-
tion and optimization of diagnostic panels are the preliminary
basis for the translation of laboratory research to clinical applica-
tion research. However, mining metabolome data to discover dis-
ease biomarkers with high sensitivity, high robustness, and high
accuracy still poses considerable challenges. In recent years,
advanced machine learning algorithms have been widely used to
screen medical biomarkers, and have performed well in finding
disease-related metabolite markers [16–18]. The lasso (least abso-
lute shrinkage and selection operator) algorithm is a machine
learning method that simultaneously performs feature selection
and regularization. Lasso can generate a refined linear model by
constructing a penalty function, which also is an effective method
to deal with complex collinearity data. Lasso has been successfully
applied to metabolomics data analysis, and novel metabolite mark-
ers related to liver disease and neurological diseases have been
found [19–21]. The aim of this study was to identify metabolites
that distinguish the presence of meningoencephalitis in patients
with neonatal sepsis from those septic patients without menin-
goencephalitis by performing LC-MS/MS metabolomics and apply-
ing the lasso algorithm.

2. Materials and methods

2.1. Participants

The present study was a retrospective collected analysis of the
clinical data of patients with neonate sepsis, admitted to the
Department of Neonatology at Children’s Hospital of Fudan Univer-
sity (Shanghai, China) from June 2019 to December 2019. Data
were obtained from the medical files, and collected by a trained
doctor. Excluded the following: patients who had hypoxia, pul-
monary infection, urinary tract infection, congenital abnormality,
cerebrovascular accident and pre-existing neurological syndromes.
Diagnostic criteria for neonatal sepsis were, 1) positive blood cul-
ture and 2) non-specific signs and symptoms or focal signs of infec-
tion, and the detection of blood inflammatory response markers,
specifically abnormalities in white blood cell count, C-reactive pro-
tein, procalcitonin, and/or platelet count [4]. Samples that had
cerebrospinal fluid (CSF) puncture failure or contamination were
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excluded. Diagnostic criteria for neonatal sepsis with meningoen-
cephalitis were, 1) positive for pathogens (bacteria or fungi) in
CSF and 2) abnormal neurological symptoms, such as altered state
of consciousness (irritability or unresponsiveness to stimulation),
abnormal tone (hypo/hypertonia, abnormal posturing, decerebrate
rigidity, or extensor response to painful stimulus), seizures, weak
(or no) suck, and/or hypo/hyperventilation. Other patients with
sepsis were considered controls, or septic patients without menin-
goencephalitis. This study was performed in accordance with the
Declaration of Helsinki, and approved by the Ethics Committee of
the Children’s Hospital of Fudan University. Informed written con-
sent was obtained from a parent prior to study enrollment.

2.2. Sample collection

CSF (sterile tube, 0.5 ml) and peripheral venous blood
(ethylenediaminetetraacetic acid tube, 2 ml) were collected simul-
taneously under sterile conditions. CSF and serum samples were
collected immediately from each patient at the same time, the
CSF and whole blood samples were centrifuged (1500 � g for
15 min) within 30 mins after collected. The resulting supernatant
was dispensed and stored at � 80 �C until used.

2.3. LC-MS/MS

First, high-performance liquid chromatography separation was
performed using an Ultimate 3000 LC system (Thermo Scientific,
Waltham, MA, USA) coupled with an Acquity UPLC HSS T3 column
(2.1 mm � 100 mm, 1.8 lm; Waters Corporation, Milford, MA,
USA). Then, mass spectrometry was performed in both the positive
and negative electrospray ionization modes (ESI + and ESI � ) using
an Orbitrap Elite mass spectrometer (Thermo Scientific) following
the manufacturer’s instructions, and as detailed in our previous
studies [22–23].

2.4. Metabolomics analysis

The Massynnx 4.1 software (Waters) was used to obtain the
mass-to-charge ratio and peak intensity of each sample in the
ESI + and ESI � modes. To assess whether the metabolomics data
could distinguish patients with neonatal sepsis without menin-
goencephalitis from those with meningoencephalitis, we per-
formed a sparse partial linear discriminant analysis using the
ggord package in R (version 3.6.3) and a non-metric multidimen-
sional scaling (NMDS) analysis using the vegan and ggplot2 pack-
ages in R. To identify specific metabolites that could distinguish
patients with neonatal sepsis without meningoencephalitis from
those with meningoencephalitis, we used the DESeq2 software
[24] to screen out metabolites that were differentially abundant
between the two groups. Metobolites with DESeq2.fdr � 0.05 and
|log2foldchange| �0.58 were considered to be significantly differ-
entially abundant. Metabolite pathway enrichment analysis of
the differentially abundant metabolites was performed using
MetaboAnalyst 4.0 software [25] (http://metaboanalyst.ca).

2.5. Clinical correlation analysis

Linear relationship analysis between each metabolite and the
clinical phenotype was performed using the lm function in R; p
values < 0.05 were considered significant.

2.6. Receiver operating characteristic (ROC) analysis

To further determine whether the differential metabolites were
useful markers for diagnosis of neonatal sepsis with meningoen-
cephalitis, ROC analysis was performed for clinical inflammatory
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markers and significant metabolite markers using the pROC pack-
age in R. Area under the ROC curve (AUC) and the 95% confidence
interval were obtained.
2.7. Machine learning models

Data preprocessing: Profiling the metabolite markers in serum
and in CSF were selected as the feature and target, respectively.
The log1p function in the NumPy library (version 1.18.5, abbrevi-
ated as np) was used to logarithmically transform the data. The
train_test_split function in the scikit-learn (version 0.23.1)
model_selection module was used to split the data into training
and test datasets, with the parameters set as test_size = 0.2,
random_state = 0.

Linear model comparison: We compared the prediction out-
comes of four linear models, namely, linear regression, lasso
regression, ridge regression, and elastic net regression. The scikit-
learn linear_model module was used to import the LinearRegres-
sion, LassoCV, RidgeCV, and ElasticNetCV functions. First, per the
training dataset, the GridSearchCV function of the scikit-learn
model_selection module was used to find the optimal parameters
for the four regression models; the parameters are poly__degree
[3,2,1], poly__interaction_only [True, False], poly__include_bias
[True, False], and linear__fit_intercept [True, False]. Then, the
regression models, constructed on the basis of the optimal param-
eters, were used for data fitting, and the fitted models were used to
predict the target value of the test dataset. Finally, the pyplot mod-
ule of the matplotlib library (version 3.2.2) was used for data
visualization.

Lasso model prediction: Lasso regression analysis was per-
formed using the lasso function of the scikit-learn linear_model
module. First, the parameters were tuned using the GridSearchCV
function of the scikit-learn model_selection to find the optimal
alpha parameter of the lasso regression model; alpha was set as
[1e � 5, 1e � 4, 1e � 3, 1e � 2, 1, 5, 10, 20]. Then, the lasso regres-
sion model, constructed with the optimal parameters, was used to
fit the training dataset. Finally, the fitted model was used to predict
the target value of the test dataset, and the top 10 lasso regression
coefficients were used for data visualization, which was done using
the barh function of the matplotlib library (version 3.2.2).

XGBoost model prediction: XGBoost (eXtreme Gradient Boost-
ing) regression analysis was performed using the XGBRegressor
module of the XGBoost classifier (version 1.1.1). First, the XGBoost
regression model was built with the parameters set as colsample_
bytree = 0.3, gamma = 0.0, learning_rate = 0.01, max_depth = 4,
min_child_weight = 1.5, n_estimators = 1668, reg_alpha = 1,
reg_lambda = 0.6, subsample = 0.2, seed = 42, and silent = 1. Then,
the built regression model was used to fit the training dataset.
Finally, the fitted model was used to predict the target value of
the test dataset.

Lasso + XGBoost model prediction: Because the performances
of lasso and XGBoost were both good, we combined the two mod-
els for the regression analysis. Considering that lasso performed
better than XGBoost on the training dataset, we set the weight of
lasso as 0.6 and the weight of XGBoost lower as 0.4. The prediction
value of the test dataset was (predictions_test) = np.expm1(0.6 � l
asso_pred_test + 0.4 � y_pred_xgb_test), where np.expm1 is the
inverse operation of the log1p function, lasso_pred_test is the lasso
prediction value, and y_pred_xgost_test is the XGBoost prediction
value.
3. Results

A flowchart of the study design is shown in Fig. 1. A total of 70
patients with neonatal sepsis were enrolled; 42 and 28 patients
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were with meningoencephalitis and without meningoencephalitis,
respectively. The clinical data for these patients are summarized in
Table 1. The CSF and serum samples collected from all 70 patients
with neonatal sepsis were used in the LC-MS/MS-based metabo-
lome assays. A total of 91 metabolites were detected in the CSF
and serum samples by LC-MS/MS; 55 were detected in the
ESI + mode and 36 were detected in the ESI �mode. The linear dis-
criminant analysis showed that the metabolome of the CSF and
serum samples was clearly distinguished in the LD1 dimension
(Fig. 2a), indicating that the overall metabolomes of the CSF and
serum samples were quite different. Furthermore, we also per-
formed a NMDS analysis of the CSF and serum samples, which indi-
cated that the CSF and serum metabolite data clearly distinguished
patients with neonatal sepsis with meningoencephalitis from
those without meningoencephalitis (Supplementary Fig. 1). This
result is consistent with the results of the linear discriminant
analysis.

To discover markers of neonatal sepsis with meningoencephali-
tis, we used DESeq2, a moderated method for differential analysis
based on shrinkage estimation for dispersions and fold changes
[25], together with theWilcoxon rank sum test to identify differen-
tially abundant metabolites in the CSF samples of patients with
neonatal sepsis with meningoencephalitis or without meningoen-
cephalitis. A total of 13 metabolites with significant differences
between the two groups were detected; 9 metabolites were signif-
icantly increased in the group with meningoencephalitis, namely,
pyridoxal, kynurenic acid, homovanillic acid, pyrrolidine, pyruvic
acid, L-proline, dopamine, phenolglyoxylic acid, and glycocholic
acid, and 4 metabolites were significantly decreased in the group
with meningoencephalitis, namely, homo-L-arginine, urea, phos-
phoric acid, and creatinine, compared with their abundances in
the group without meningoencephalitis. Similarly, the differential
analysis of the metabolites in the serum of patients with neonatal
sepsis with meningoencephalitis and without meningoencephalitis
revealed 23 metabolites with significant differences between the
two groups; 9 metabolites were significantly increased in the
group with meningoencephalitis, namely, taurine, glycocholic acid,
Italian acid, arabinosylhypoxanthine, hippuric acid, L-proline,
pregnanetriol, betaine, and palmitic acid, and 14 metabolites were
significantly decreased in the group with meningoencephalitis
compared with neonatal sepsis without meningoencephalitis,
namely, 2-methoxyacetaminophen sulfate, stearoylcarnitine, uric
acid, creatine, 2-phenyl-4-pentenal, L-palmitoylcarnitine, 11-bet
a-hydroxyandrosterone-3-glucuronide, creatinine, 3-hydroxy-5,
8-tetradecadiencarnitine, indoxyl sulfate, androstenedione,
homo-L-arginine, N1, N12-diacetylspermine, hexadecanedioic acid,
and mono-L-carnitine ester, compared with their abundances in
the group without meningoencephalitis. Notably, L-proline and
glycocholic acid were increased significantly and homo-L-arginine
and creatinine were decreased in the CSF and serum samples of
the group with meningoencephalitis compared with their abun-
dances in the group without meningoencephalitis.

To understand the biological roles of the different metabolites,
we conducted a metabolite pathway enrichment analysis and
found that the urea cycle, vitamin B6 metabolism, arginine and
proline metabolism, glycolysis, and cysteine metabolism pathways
were significantly enriched in the CSF samples of the group with
meningoencephalitis compared with their enrichment in the group
without meningoencephalitis (Supplementary Fig. 2a). Interest-
ingly, the urea cycle and arginine and proline metabolism path-
ways, which both involve phosphoric acid, were decreased
significantly in both the CSF and serum samples of the group with
meningoencephalitis. Five pathways were significantly enriched in
serum samples (Supplementary Fig. 2b) as follows: 1) in the cre-
atine deficiency guanidinoacetate methyltransferase deficiency
pathway, which involves creatine, uric acid, and creatinine, the rel-



Fig. 1. Flowchart of the study design. Forty-two patients with neonatal sepsis with meningoencephalitis and 28 patients with neonatal sepsis without meningoencephalitis
were recruited. Cerebrospinal fluid (CSF) and serum samples were collected for LC-MS/MS detection, and metabolome-wide association analysis was performed to identify
significantly different metabolites between neonatal sepsis with meningoencephalitis and without meningoencephalitis. Machine learning methods were used to predict the
concentration of CSF metabolite markers per the determined concentration of these markers in the serum sample.
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ative content of these three metabolites was lower in the serum of
the group with meningoencephalitis compared with the group
without meningoencephalitis; 2) in the celiac disease pathway,
which involves glycocholic acid, L-palmitoylcarnitine, and
stearoylcarnitine, the relative content of glycocholic acid was
higher and the relative content of L-palmitoylcarnitine and
stearoylcarnitine was lower in the serum of the group with menin-
goencephalitis compared with the group without meningoen-
cephalitis; 3) in the argininemia, hyperargininemia, arginase
deficiency pathways, which involve creatine and homo-L-
arginine, the relative content of these two metabolites was higher
in the serum of the group with meningoencephalitis compared
with the group without meningoencephalitis; 4) in the critical ill-
ness (major trauma, severe septic shock, or cardiogenic shock)
pathway, which involves creatine and uric acid, the relative con-
Table 1
Clinical data for the patients with neonatal sepsis enrolled in this study.

Neonatal sepsis with meningoencephalitis (

Serum samples (n = ) 42, LC-MS/MS
CSF samples (n = ) 42, LC-MS/MS
GA (weeks, mean ± SD[range]) 35.76 ± 4.39 [26–41]
BW (g, mean ± SD[range]) 2719.05 ± 1048.52[860–4260]
Gender (n = female/male) 21/21
CRP (mg/l, mean ± SD[range]) 28.59 ± 35.97[8–160]
PCT (ng/ml, mean ± SD[range]) 10.68 ± 23.74[0.07–100]
IL-6 (pg/ml, mean ± SD[range]) 491.44 ± 1270.84[2.62–5000]
MRI abnormal(22),normal(15)
aEEG abnormal(23),normal(6)

Abbreviations: aEEG, amplitude integrated electroencephalography; BW, birth weight; CR
chromatography-tandem mass spectrometry; MEN, meningoencephalitis; MRI, magneti
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tent of these two metabolites was higher in the serum of the group
with meningoencephalitis compared with the group without
meningoencephalitis; and 5) in the methylmalonic aciduria
(MMA) pathway, which involves glycocholic acid, L-
palmitoylcarnitine and stearoylcarnitine, the relative content of
glycocholic acid was higher and the relative content of L-
palmitoylcarnitine and stearoylcarnitine was lower in the serum
of the group with meningoencephalitis compared with the group
without meningoencephalitis.

Machine learning methods have been used successfully to find
disease-related metabolite markers. Considering that it is rela-
tively easier to obtain serum samples from patients with neonatal
sepsis than CSF samples that require lumbar puncture, in this
study, we chose to use serum samples to detect serum metabolic
markers that would have more diagnostic potential in clinical set-
n = 42) Neonatal sepsis without MEN (n = 28) P value

28, LC-MS/MS NA
28, LC-MS/MS NA
38.3 ± 2.93 [29–41] 0.005671572
3223.93 ± 630.6[1365–4200] 0.014384012
14/14 1
17.63 ± 22.88[8–121] 0.129610565
0.32 ± 0.27[0.08–1.08] 0.073222128
108 ± 157.73[5.89–489.6] 0.267581553
abnormal(6),normal(12) 0.089123437
abnormal(10),normal(5) 0.467569421

P, C-reactive protein; CSF, cerebrospinal fluid; GA, gestational age; LC-MS/MS, liquid
c resonance imaging.



Fig. 2. Altered homo-L-arginine levels in neonatal sepsis with meningoencephalitis. (a) Linear discriminant analysis (LDA) clearly distinguished the cerebrospinal fluid (CSF)
and serummetabolomes in the LD1 dimension. (b) Performances of different machine learning models in predicting the homo-L-arginine concentration in the CSF on the basis
of the metabolite marker concentrations in the serum sample. (c) Importance of the contribution of serum metabolite markers to the CSF metabolite concentration using the
lasso model. (d) Predicted homo-L-arginine concentration in the CSF using lasso combined with XGBoost.
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tings than CSF markers. We applied machine learning methods to
predict the concentration of CSF metabolite markers on the basis
of the concentration of serum metabolite markers and compared
the results with the identified meningoencephalitis-related mark-
ers. We compared the prediction results of different linear models
and found that the lasso regression model performed best. Among
the metabolite markers, the homo-L-arginine concentration pre-
dicted in the CSF by the lasso model on the basis of its concentra-
tion in the serum sample was the closest to the true CSF
concentration (R2 = 0.811). The elastic net regression model gave
the next best prediction for the CSF concentration of homo-L-
arginine, whereas the predictions of the linear regression and ridge
regression models were not good (R2 = 0.260 and 0.248, respec-
tively) (Fig. 2b).

The lasso algorithm directly sets the regression coefficient with
a small absolute value to 0 by constructing a penalty function, so
that a more refined regression model can be obtained. This method
is particularly suitable for reducing the number of features and
selecting important features. We evaluated the serum metabolite
markers that contribute to the target CSF metabolite concentration
using the lasso model. We found that the serum concentrations of
homo-L-arginine, hexadecanedioic acid mono-L-carnitine ester,
and uric acid were positively correlated with the CSF concentration
of homo-L-arginine (Fig. 2c).

The XGBoost algorithm is a scalable machine learning method
based on tree boosting that has been applied successfully in omics
[26–28]. We combined XGBoost and lasso to predict the composi-
tion of metabolites in CSF, and found that the CSF concentration of
homo-L-arginine predicted on the basis of its concentration in the
serumwas significantly positively correlated with the actual serum
concentration (Fig. 2d).

Together, these results confirmed that the concentrations of
homo-L-arginine in the CSF and serum samples were significantly
3288
lower in the group with meningoencephalitis compared with the
group without meningoencephalitis (Fig. 3a, b), and that the con-
centration of homo-L-arginine in the CSF of neonates with menin-
goencephalitis was significantly positively correlated with the
concentrations of homo-L-arginine and hexadecanedioic acid
mono-L-carnitine ester in the serum (Fig. 3c, d).

To further evaluate the clinical diagnostic value of the differen-
tially abundant metabolites, we analyzed the ROC curves of these
metabolites and found that the AUC was 76.19% for the serum
metabolite markers (Fig. 4a), and that creatinine was ranked high-
est and homo-L-arginine was ranked in the top 10 by the Random
Forest classifier model (Fig. 4b). The AUC was higher (83.33%) for
the CSF metabolite markers (Fig. 4c), and pyruvic acid was ranked
first and homo-L-arginine was ranked third by the Random Forest
classifier model (Fig. 4d).

Together, these results indicate that the four differentially
abundant metabolites are potential biomarkers for distinguishing
meningoencephalitis in patients with neonatal sepsis.
4. Discussion

4.1. Alterations in arginine metabolism suggest abnormal nitric oxide
synthesis in patients with neonatal sepsis with meningoencephalitis

Arginine is a semi-essential amino acid for healthy adults, but is
essential for premature babies, newborns, or severely ill patients.
Previous studies established the correlation between sepsis and
plasma arginine concentrations. Argaman et al. found that the
plasma arginine concentration was significantly reduced in
severely ill children [29]. Lee et al. found that supplementation of

L-arginine and L-citrulline improved the function of regulatory T
cells and improved the prognosis of sepsis in model mice [30].



Fig. 3. Homo-L-arginine concentrations in serum and cerebrospinal fluid (CSF) of neonatal sepsis with meningoencephalitis and without meningoencephalitis. (a, b) Homo-L-
arginine concentrations in the CSF and serum of neonatal sepsis with meningoencephalitis were significantly reduced. (c, d) Homo-L-arginine concentration in the CSF of
neonates with sepsis was significantly positively correlated with homo-L-arginine and hexadecanedioic acid mono-L-carnitine ester in the serum.
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Yeh et al. found that when sepsis model mice were injected intra-
venously with arginine, the mobilization of circulating angiogenic
cells was enhanced, homeostasis of the angiopoietin (Angpt)/Tie-
2 axis was maintained, and distal organ damage of multiple sepsis
was reduced [31]. Together, these studies indicated that arginine
deficiency may result in unfavorable outcomes of sepsis. Consis-
tent with these studies, we found that the concentrations of
homo-L-arginine in both the CSF and serum samples of the group
with meningoencephalitis were significantly reduced compared
with the concentrations in the group without meningoencephali-
tis. We also found the changes in arginine metabolism in the serum
and CSF were significantly related.

Homo-L-arginine is a non-protein amino acid and an arginine
derivative. Arginine and homo-L-arginine are both direct precur-
sors of nitric oxide (NO) synthesis. NO, as a gas messenger pro-
duced by the enzymatic activity of nitric oxide synthase, was
identified as an important factor in vascular dysfunction in sepsis
[32–34]. Low serum levels of homo-L-arginine has been reported
as a risk factor for cardiovascular disease in adults [35,36], and
targeting NO synthesis is a potential treatment for sepsis [37].
However, little is known about the importance of the L-arginine/
homo-L-arginine/nitric oxide (Arg/hArg/NO) pathway in children,
especially its role in neonatal sepsis. Buck et al. investigated the
Arg/hArg/NO pathway in 106 preterm infants and found that
homo-L-arginine biosynthesis in preterm infants was positively
correlated with gestational age, suggesting that homo-L-arginine
may be involved in fetal growth [38]. McDonald et al. found that
poor delivery outcomes caused by malaria infection during preg-
nancy were related to lower concentrations of arginine and higher
concentrations of endogenous inhibitors of NO biosynthesis, and,
using animal models, they found that supplementing L-arginine
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improved birth outcomes by normalizing the angiogenesis path-
way and enhancing placental vascular development [39].

NO has been reported to be involved in neuronal signal trans-
duction and inflammation. Boyko et al. found that the NO produced
by Arg and homo-L-arginine in the cortex of rats with severe spinal
cord injury was significantly reduced [40]. The changes in arginine
metabolism that we found in the serum and CSF samples in the
group with meningoencephalitis together with the results of the
previous studies confirm the important role of the Arg/hArg/NO
pathway in neonatal sepsis.

4.2. Alterations in creatinine metabolism in neonatal sepsis with
meningoencephalitis suggest imbalance of energy homeostasis linked
to arginine metabolism

Serum creatinine is a marker of acute kidney injury in critically
ill neonates [41]. Legrand et al. found that sepsis can reduce crea-
tinine production [42], but the specific role of changes in serum
creatinine levels in the pathogenesis of sepsis is still unclear. Con-
sidering that arginine can be converted directly to homo-L-arginine
and guanidinoacetic acid (GAA) by arginine:glycine amidinotrans-
ferase, a decrease in the homo-L-arginine level may be accompa-
nied by a decrease in the GAA level. Considering that GAA is the
direct precursor of creatine, we consider that changes in creatine
metabolism may be related to changes in arginine metabolism.

Changes in energy homeostasis have been shown to lead to
sepsis-mediated multiple organ failure, and creatine is important
in maintaining energy balance [5]. Creatine is synthesized in the
liver by GAA through S-adenosylmethionine methylation, and is
essential for muscle activity. Phosphokinase catalyzes creatine to
form high-energy creatine phosphate, and creatine phosphate is



Fig. 4. Metabolites are markers of neonatal sepsis with meningoencephalitis. (a, c) AUC values for serum and cerebrospinal fluid (CSF). (b, d) Importance of metabolite
markers in serum and CSF determined using the Random Forest classifier model.
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hydrolyzed to release energy and creatinine and phosphoric acid
when energy is needed by the body [43]. We found that the serum
phosphoric acid concentration was significantly lower in the group
with meningoencephalitis compared with its concentration in the
group without meningoencephalitis, which suggests the presence
of energy homeostasis in neonatal sepsis with
meningoencephalitis.
4.3. Changes in oxidative stress-related markers and potentially
harmful bile acid and aromatic compounds in neonatal sepsis with
meningoencephalitis

Oxidative stress and the production of intracellular reactive
oxygen species are related to the pathogenesis of sepsis. Xu et al.
found that exogenous and endogenous antioxidants, ascorbic acid,
taurine, and glutathione had beneficial effects on septic rats by
protecting mitochondria [44]. Consistent with this finding, we
found that the concentration of antioxidant taurine in the serum
of the group with meningoencephalitis was significantly increased
compared with its concentration in the group without meningoen-
cephalitis. Proline is considered to be an effective antioxidant, and
a proline–arginine-rich host defense peptide was shown to have
efficacy in rodent bacteremia models [44,45]. Consistent with the
findings of these studies, we found that the proline concentration
was significantly increased in both the serum and CSF samples of
the group with meningoencephalitis compared with its concentra-
tion in the group without meningoencephalitis.

Bile acids, which control inflammation by interacting with sev-
eral receptors, have been reported to play important roles in the
pathogenesis of sepsis [46,47]. We found that the concentration
3290
of glycocholic acid, a cytotoxic bile acid derivative, was signifi-
cantly increased in the group with meningoencephalitis compared
with its concentration in the group without meningoencephalitis.

Abnormal metabolism of aromatic compounds is considered a
potential clinical indicator of sepsis [48]. Bhuiyan et al. found that
Acinetobacter baumannii phenylacetic acid metabolism directly
affected the outcome of the infection by regulating the chemotaxis
of neutrophils [49]. Consistent with this finding, we found that the
concentration of phenylglyoxylic acid, an aromatic compound
involved in phenylacetic acid metabolism pathway, was signifi-
cantly increased in the CSF of the group with meningoencephalitis
compared with its concentration in the group without meningoen-
cephalitis. We also found that the concentration of the aromatic
compound hippuric acid was significantly decreased in the group
with meningoencephalitis compared with its concentration in the
group without meningoencephalitis. Together, these results sug-
gest that the metabolism of aromatic compounds was different in
the groups with meningoencephalitis and septic patients without
meningoencephalitis.

In summary, we speculate that the changes in the CSF and
serum metabolomes of the group with meningoencephalitis were
manifested mainly as changes in arginine metabolism, which were
closely related to changes in creatinine metabolism, oxidative
stress-related markers, and potentially harmful bile acid and aro-
matic compound metabolism, as illustrated in Fig. 5.
4.4. Innovation and limitations

We describe a novel approach in which the CSF and serum sam-
ples were collected from each patient at the same time, non-



Fig. 5. Central role of arginine metabolism in changes in the cerebrospinal fluid and serum metabolomes of neonatal sepsis with meningoencephalitis. Changes in arginine
metabolism were closely related to changes in creatinine metabolism, as well as changes in oxidative stress-related markers and potentially harmful bile acid and aromatic
compound metabolism. Metabolites in red/blue were enriched/decreased in neonatal sepsis with meningoencephalitis. (For interpretation of the references to colour in this
figure legend, the reader is referred to the web version of this article.) (For interpretation of the references to colour in this figure legend, the reader is referred to the web
version of this article.)
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targeted metabolomics testing was performed, and machine learn-
ing methods were used to screen neonatal sepsis markers related
to meningoencephalitis. However, due to the retrospective study,
it was often prone for bias, and not every participants finished
the EEG or MRI examination which could help to identify neonatal
sepsis with meningoencephalitis. Because of differences in the
environments of serum and CSF, there were limitations in finding
common different metabolites in the two environments. The
machine learning method LASSO performed well in predicting
the concentrations of metabolites in CSF on the basis of serum
metabolite levels. Whether neonatal sepsis with meningoen-
cephalitis can be predicted on the basis of serum metabolite con-
centrations needs to be further investigated.

5. Conclusions

Analysis of the serum and cerebrospinal fluid metabolomes
combined with machine learning identified metabolite markers
related to neonatal sepsis with meningoencephalitis. The charac-
teristics of neonatal sepsis meningoencephalitis-were manifested
mainly by changes in arginine metabolism and related changes
in creatinine metabolism.
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