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The ability of bioactive peptides to exert biological functions has mainly

contributed to their exploitation. The exploitation and utilization of these

peptides have grown tremendously over the past two decades. Food-derived

peptides from sources such as plant, animal, and marine proteins and their

byproducts constitute a more significant portion of the naturally-occurring

peptides that have been documented. Due to their high specificity

and biocompatibility, these peptides serve as a suitable alternative to

pharmacological drugs for treating non-communicable diseases (such as

cardiovascular diseases, obesity, and cancer). They are helpful as food

preservatives, ingredients in functional foods, and dietary supplements in

the food sector. Despite their unique features, the application of these

peptides in the clinical and food sector is to some extent hindered by their

inherent drawbacks such as toxicity, bitterness, instability, and susceptibility

to enzymatic degradation in the gastrointestinal tract. Several strategies have

been employed to eliminate or reduce the disadvantages of peptides, thus

enhancing the peptide bioactivity and broadening the opportunities for their

applications. This review article focuses on the current research status of

various bioactive peptides and the strategies that have been implemented

to overcome their disadvantages. It will also highlight future perspectives

regarding the possible improvements to be made for the development of

bioactive peptides with practical uses and their commercialization.

KEYWORDS

food-derived bioactive peptides, inherent drawbacks, bioactivity, modification,

functional foods, therapeutic drugs

Introduction

Among the bioactive substances, bioactive peptides, including those of food origin,

exert the ability to influence human health (1) positively and have caught the spotlight as

potential bioregulators and their utilization in food, cosmetics, and clinical field, has been

massive since their discovery. Food-derived peptides are produced in vivo or in vitro from
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plant, insect, animal, or marine proteins. Thousands of bioactive

peptides with different functionalities have been isolated from

food proteins.

Examples are listed in Table 1. According to PlantPepDB,

there are 3,848 plant-based peptides, among which 2,821 have

been studied at the protein level (1). Plants such as oats,

rice, sorghum, barley, and wheat (11, 12), legumes such as

beans, peas, and lentils (13–15), mushrooms (16), nuts (17),

vegetables such as broccoli (18), and fruits (19) are primary

plant sources of bioactive peptides. Over 253 peptides have

been identified from various marine sources (20), including

fish (several species, e.g., tilapia, carp mackerel), crustaceans,

TABLE 1 Sources of bioactive peptides from food-derived proteins.

Source Protein Production

process

Identification

tool

Peptide/sequence Potential

activity

Reference

Dairy Sheep whey Enzymatic hydrolysis:

trypsin, papain,

alcalase

In silico docking using

Autodock Vina

software

RLYLHENK (RL8)

MQEHFTCCR (MQ9)

Dipeptidyl

peptidase-IV

inhibitor (DPP-IV)

(2)

Goat whey,

casein

Alcalase-assisted

fermentation by

Lactiplantibacillus

plantarum L60 and

Lacticaseibacillus

rhamnosus LR22

liquid

chromatography–

tandem mass

spectrometry

(LC–MS/MS)

FFDDK, NMAHIPR,

SCQDQPTTLAR

Angiotensin-1-

converting enzyme

inhibitior (ACE) and

antioxidant

(3)

Camel and

bovine casein

Simulated

gastrointestinal

digestion

LCMS QTOF FLWPEYGAL, ACGP,

HLPGRG, GPAHCLL

Antidiabetic (4)

Plant Kiwicha In vitro

gastrointestinal

digestion

(LC–MS/MS) FLISCLL, SVFDEELS and

DFIILE

ACE & DPP-IV

inhibition,

antioxidant

(5)

Yam (D.

cayennensis)

In vitro

gastrointestinal

digestion

nanoLC-ESI-MS/MS,

MALDI-TOF-MS, in

silico analysis done

using PEAKS Studio

8.5 software, BIOPEP,

DDCAY, LLTW, LAPLPL,

QLVHESQDQKR, LRPEW

among others.

Antimicrobial,

antioxidant effect,

ACE inhibition and

DNA protection.

(6)

Adzuki Bean Simulated digestion Liquid

chromatography-

tandem mass

spectrometry

(UPLC-MS/MS)

KQSESHFVDAQPEQQQR Anti-inflammatory (7)

Marine Rainbow

trout

Alcalase-hydrolysis,

simulated digestion

NI ACE inhibitor,

antioxidant

(8)

Nile tilapia Trypsin digestion Molecular docking GPEGPAGAR &

GETGPAGPAGAAGPAGPR

ACE- inhibitor (9)

Marine snail Enzymatic hydrolysis nano-LC-ESI-MS/MS YSQLENEFDR

YIAEDAER

ACE- inhibitor,

antioxidant,

antidiabetic

(10)

and algae (21, 22). Marine peptides can also be derived from

fish byproducts such as skin, viscera, scales, and heads (23,

24), usually discarded into the environment, causing pollution.

The utilization of marine peptides is gaining more popularity,

for instance, in the cosmetics industry, due to their anti-

aging and anti-inflammatory properties (25, 26). Bioactive

peptides from dairy sources have been widely exploited and

isolated from milk, meat, cheese, and eggs, among other animal

products (27, 28) and also from byproducts. Due to their

experimentally proven health claims, functional foods and

supplements containing these peptides (based on the bioactivity

of interest) are commercially available. An example of such
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a product is a dietary supplement, “Bioactive Milk Peptides”

containing casein decapeptide intended for stress relief and help

with sleep.

Bioactive peptides are diverse in functionality, conformity,

length, and size. The amino acid composition and sequence

determine the peptides’ physiological function. These

peptides can be classified as antimicrobial (antifungal,

antibacterial) (29, 30), anti-inflammatory (31, 32), anticancer

(33), antihypertensive (34, 35), immunomodulatory (36),

mineral-binding (37), opioids (38), and antidiabetic (39–41),

based on the experimentally determined functionality. It has

been reported that some peptides are multifunctional; thus, they

can exhibit more than one biofunction (5, 42).

Based on the size, the majority of these bioactive peptides

are of small size, typically consisting of 2–20 amino acid residues

and a molecular weight of <6000Da (43). For instance, the

antioxidant peptides are generally small in size (<1000Da),

consisting of 5–16 amino acids per chain, with hydrophobic

amino acids making a more significant proportion of their

composition, contributing to higher antioxidant activity

(44–46). Antihypertensive peptides vary significantly in length

and are classified as tiny, small, medium, and large peptides

based on the number of amino acid residues (47). However,

other peptides, such as the antimicrobial peptides, may consist

of up to 30- 100 amino acid residues (48, 49); an example

of such is PR-39, a proline-rich antibacterial peptide derived

from the pig intestine consisting of 39 amino acids (50).

Several review articles on food-derived bioactive peptides are

available, providing in-depth information on their production,

purification, biological functions, and mechanism of

action (51–55).

Peptides are inactive within their parental protein, thus

requiring hydrolysis of the protein for their release. Peptide

isolation from the native protein is widely conducted using

conventional approaches such as enzymatic hydrolysis and

microbial fermentation, with reports that they are safe (56).

Several reviews have documented the production process of

bioactive peptides, their purification, and analysis (51, 57).

Enzymatic hydrolysis, as the name suggests this approach uses

proteases (such as papain, bromelain, pepsin, trypsin, and

chymotrypsin) to hydrolyze the parental protein, discharging the

peptides of interest (58). Microbial fermentation involves using

microorganisms capable of producing enzymes such as bacterial

cultures of Bacillus subtilis and Lactobacillus plantarum to

induce protein cleavage (59–61). Technology advancement has

made the isolation of peptides from their parent protein possible

through in vitro simulated gastrointestinal digestion, which

involves using models that mimic the human digestion system

to isolate peptides (62–64). Recombinant DNA technology

uses microbial cells (E.coli is the most preferred since

it is easy to culture and has been well characterized)

for peptide yield by adding the peptide into the food

matrix (65, 66).

Compared to the existing bioactive peptides that have

been documented and proved to have potential benefits, it

is noteworthy to mention that the translation of peptides

into commercial products is still lagging. Only a few peptide-

based products for human use are available on the market.

The significant challenges hindering their translation are

their inherent drawbacks (including toxicity, bitterness,

instability, and susceptibility to enzymatic degradation in

the gastrointestinal tract), regulatory obstacles, and higher

production costs (67, 68). Numerous strategies have been

applied to produce modified peptides, such as improved

activity, reduced toxicity, and increased stability, thus subduing

the drawbacks. Such techniques include modification of the

peptide backbone: either by (1) the substitution of the amino

acid residues, (2) insertion of new fragments, or (3) synthesis

of peptidomimetics with similar bioactivity of a particular

peptide of interest; microencapsulation, use of delivery systems

for the release of peptides to the target site, assembly of

peptides into supramolecular structures. This review highlights

the research status of food-derived peptides and discusses

how different techniques have been applied to overcome the

drawbacks native to these peptides. The food-derived peptides

reported in this review are those mainly utilized in the food

and medical fields, with the ability to exert antimicrobial,

antidiabetic, and antioxidant bioactivities, among others. In this

article, the term modified peptides are referred to as the ones

that have been altered to demonstrate improved properties:

reduced toxicity, increased bioactivity, sensory quality,

and stability.

Research status of bioactive peptides

Since their discovery, bioactive peptides have attracted

many researchers and have garnered widespread acceptance.

They have found several applications in the food processing,

cosmetics, and pharmaceutical areas, as shown in the illustration

below (Figure 1), due to their exceptional ability to exert

physiological function(s).

They offer several benefits, such as food preservatives,

dietary supplements, and functional foods in the food sector

(69, 70), and some are commercially available in the market. For

instance, in 2020, BASF launched PeptAlde4.0, a rice-derived

peptide anti-inflammatory product, and intends to launch

two more products: PeptiStrong and PeptiYouth, derived

from fava beans and peas, respectively, later this year (https://

agfundernews.com/nuritas-raises-45-million-to-scale-its-

plant-based-peptides-discovery-platform) [Accessed on April

20, 2022], Creatine PepForm
R©
Peptides, a whey protein derived

food supplement for enhancing muscle mass. Other studies

have reported that peptides from food proteins such as soybean,

milk, wheat germ, peanut, and sesame can be promising

carriers for zinc supplements (71), replacing the salt inorganic
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FIGURE 1

Illustration showing the experimental flow of peptide production, application of peptides and trend of commercial peptide products.

derived supplements, in particular, zinc sulfate, which causes

inflammation of the gastrointestinal tract (72). Nanomaterials

fabricated from food-derived peptides have been applied in food

emulsions (73, 74), act as building blocks for hydrogels (75), and

systems for delivery and improvement of the physiochemical

properties of functional compounds (76–78).

In the therapeutic sector, these peptides are used as leads

for drug design and alternatives to conventional drugs in

treating several non-communicable/lifestyle disorders, such as

obesity and diabetes, and cardiovascular and infectious diseases

(79). The key characteristics that foster their translation into

drugs are their high specificity, low toxicity, and ability to

effectively interact with biological targets (challenging to treat

with small molecules) (80) (see Figure 2). Most synthetic drugs

in the market have been documented to have detrimental

effects on human health. For instance, phentermine, liraglutide,

bupropion/and naltrexone intended for anti-obesity have

side effects; thus, their use is restricted (81). These effects

leave room for the design and adaptation of peptide-based

drugs because they are considered less harmful. After acting

on target molecules, peptides usually disappear rapidly by

proteolytic degradation, their byproducts amino acids with little

toxicity (82).

The growing knowledge about the functions of peptides,

increasing public awareness, and acceptance of health-

promoting bioactive substances and the prevalence of diseases

have boosted the global market for bioactive peptides, with

North America, Europe, and the Asia Pacific being the central

market (https://www.verifiedmarketresearch.com) [Accessed

April 20, 2022]. Approved peptide drugs to treat several diseases

are now common in the market. Peptide-based drugs account

for a remarkable proportion of the pharmaceutical market

income. According to the Verified Market Research (VMR)

report, the revenue was valued at $48.62 billion by 2017 (https://

www.verifiedmarketresearch.com) [Accessed April 20, 2022]

and predicted to earn vast profits of 388 billion by 2024 (83).

Drawbacks of food-derived
bioactive peptides

Bioactive peptides as health-enhancing components are

incorporated as food ingredients, dietary supplements, and

nutraceuticals (84), and lead compounds for the design of

therapeutic drugs intended to promote human health by treating

and reducing the risk of diseases (85, 86). Unfortunately, few

peptides have been successfully translated into drugs, functional

foods, nutraceuticals, and food preservatives due to factors

including bitter taste, high susceptibility to degradation, and

poor water solubility that hinder their intensive application and

commercialization (87). Table 2 contains examples of peptides

with relevant disadvantages.
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FIGURE 2

The advantages of therapeutic peptides over synthetic drugs.

TABLE 2 Examples of bioactive peptides with in vivo drawbacks.

Peptide Drawback(s) Reference

F2,5,12W Poor in vivo stability. Susceptible to enzymatic

degradation and rapid clearance after being

treated with serum for 5 h

(88)

F2,5,12W Cytotoxic toward mammalian cells (89)

BMAP-28 Cytotoxic activity against the human cells

human red blood cells (hRBCs) and 3T3 cells

(90)

Piscidin-1

(fish-derived

AMPs)

Extreme cytotoxic hemolysis of red blood cells (91)

Relatively lower activity

Generally, peptides have lower activity in vivo. Lower activity

could be partly due to their inability to effectively penetrate the

target cell and exhibit their action in the cellular environment.

Cell permeability is an essential factor in designing therapeutic

agents if the molecule is intended to target a component within

the cell (92). Peptides are membrane-impermeable; thus, they

cannot cross the cellular membrane easily. Impermeability limits

their efficacy to the extracellular or transmembrane space. Their

high molecular weight and polarity (due to multiple hydrogen

bonding donors/acceptors in the peptide backbone) account for

their impermeability (93, 94). For instance, some studies have

demonstrated that a vast majority of cyclic peptides, both natural

and synthetic, are cell impermeable, and their impermeability is

intrinsic to the peptide structure (92).

Poor in vivo stability

Peptides are naturally unstable and highly susceptible

to protein degradation. Instability toward proteases in the

biological systems severely hamper the translation of different

bioactive peptides such as antimicrobial peptides (AMPs),

antidiabetic peptides, and other therapeutic drugs. Their

smaller size favors their administration via the oral route, the

accustomed delivery route for small molecules due to patient
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appliance, and the lower production costs of oral drugs (95).

Most peptides, especially those containing basic amino acids

such as lysine and arginine, are highly prone to protease

degradation in the digestive tract, tissues, and plasma (96). Upon

oral administration, they can be readily hydrolyzed in acidic

or enzymatic conditions causing cleavage of their amide bonds.

Such cleavage causes only a tiny portion of the peptide to reach

its target, resulting in low bioavailability (97–99).

Many peptides function as hormones, neurotransmitters,

enzyme substrates or inhibitors, growth promoters (100), or

other regulatory molecules that selectively bind to their target

receptors when necessary. They can be removed rapidly when

their request is expired (101), accounting for their rapid renal

clearance (since the kidney usually filters out molecules below

60kDa) and a shorter half-life lasting for a few minutes, thus

losing their activity (102). Also, upon administration into

the human body, peptides may be susceptible to inactivation

due to the concentration of salts and serum binding (103,

104), limiting their thorough clinical transformation into

novel drugs.

Safety concerns and customer
preference

Since they are isolated from food proteins, most food-

derived peptides are considered safe and insignificantly

toxic, but this concept is still a mystery, and available

evidence of their safety is scarce. Some peptides may induce

toxicity and allergenicity to a certain degree (105). Bioactive

peptides with toxic nature can be produced at various stages:

during protein extraction, pre-treatment, hydrolysis, or upon

intake (106). There are also chances for immunological

uncertainties due to the complex interactions of the peptides

with the host environment (107). Intestinal wall disruption,

lymphocyte toxicity, production of free radicals, cytotoxicity,

and immunopathic tissue damage are the major problems linked

with using peptides in the biological system (108).

Tomeet consumers acceptance, taste is critical in developing

functional foods, including peptide-based foods (68, 109).

Some peptides have a bitter taste upon oral consumption

(110). The bitterness property of peptides could be produced

during enzymatic hydrolysis of the protein hydrolysates

(111), especially those containing amino acid residues with

hydrophobic side chains (109). The bitter taste reduces the

peptides’ sensory quality, limiting the market opportunities

despite their potential health benefits.

Alternative delivery approaches such as subcutaneous and

intramuscular injections are used to administer peptide-based

drugs to avoid biological barriers such as proteases. This route

still has limitations, including a shorter in vivo half-life of

the drugs, thus demanding multiple injections a day, causing

discomfort and poor patient adherence (112).

Strategies employed to modify
bioactive peptides

Peptide-based products legally proved and commercially

available are still few despite their potential benefits. As

discussed in the previous section, several challenges limit

their thorough commercialization. Several strategies have been

employed to overcome the obstacles. Some techniques have

focused on modifying the peptide’s amino acid composition

(such as substituting L- with D- amino acids), terminal regions,

or entrapping peptides into delivery systems resulting in novel

peptide analogs with higher activity, stability, bioavailability,

and reduced toxicity. Numerous bioactive peptides of different

natural protein sources, including food, have been modified in

this manner (113).

Peptide backbone modification

Several bioactive peptides have been modified via selectively

adjusting the peptide backbone. Some synthetic analogs of

natural peptides have also been designed and produced in

this manner. For example, the novel antimicrobial peptide L10

(WFRKQLKW) developed from the amino acid substitution of

the N-terminal domain of bovine lactoferrin (114). Modifying

the primary amino acid sequence can improve the overall

activity, stability, and selectivity and minimize the toxicity

of bioactive peptides. Since only a tiny portion of crucial

amino acids are responsible for its function, some modification

strategies such as the substitution of the other residues

with potential amino acids (for example, D- and unnatural

amino acids), the extension of the peptide chain, and the

introduction of essential fragments can improve the activity

without hindering its primary function (115–117).

Amino acid substitution

Amino acid substitution is one of the common strategies

employed to improve the activity of bioactive peptides. One

of the significant advantages of this strategy is that it does

not cause any remarkable change in the peptide’s secondary

structure. Thus, the peptide’s functionality is intact. Substitution

of amino acids at specific positions within the peptide sequence

may increase the resistance of the peptide toward proteolytic

degradation (118).

For instance, numerous antimicrobial peptides have been

modified and designed via this strategy, as depicted in Table 3.

The functionality of antimicrobial peptides is highly dependent

on their cationic nature, which allows electrostatic binding

to the anionic components of the target cell membrane,

hydrophobicity which prolongs the association of the peptide

with the membrane, and amphipathicity, which enables bilayer
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TABLE 3 Peptide modification via amino acid substitution.

Target peptide Substitution/Insertion Advantage(s) Reference

Sushi 1 peptide from

horseshoe crab hemocyte

Arginine Broader spectrum of antibacterial activity

against both and gram-negative bacteria,

including the methicillin-resistant

Staphylococcus aureus,

(119)

Amyl-1-18, Aspartic acid with arginine Enhanced antifungal activity against Candida

albicans

(120)

buCATHL4B Tryptophan with non-natural amino acid

Azulenyl-Alanine

Enhanced proteolytic stability and

cytocompatibility with human cells.

(121)

HPA3N-T3 Arganine and Tryptophan with lysine and

leucine, respectively

Significant decrease in hemolytic activity

than the native peptide

(122)

HPA3NT3-A2 l-Lysine residues with d-Lysine residues Enhanced stability and antimicrobial activity

against E. coli, S. aureus in serum,

(123)

RRWWRWWRR Tryptophan with histidine Increased antimicrobial activity, lower

cytotoxic and hemolytic activity

(124)

WRWRW N-terminal arginine residue with a

metallocene moiety

Improved antibacterial activity (125)

F2,5,12W Phenylalanine→ Tryptophan Enhanced antimicrobial activity against

bacteria Bacillus anthracis and Yersinia pestis,

increased LPS neutralizing activity, and

decreased salt sensitivity.

(88)

F2,5,12W Insertion of cysteine Increased plasma stability (126)

AMP Jelleine-1 Arginine and tryptophan Higher antimicrobial activity toward the

multidrug-resistant P. aureginosa

(127)

CAMP Incorporation of non-natural amino acid

residues

Increased hydrophobicity and enzymatic

stability

(128)

Pep05. Substitution of L-Arg & L-Lys residues with

D- and unnatural amino acids (D-Lys, D-

Arg)

Significant protease resistance and acute

toxicity in vitro

(129)

Piscidin-1 Threonine residues with lysine Reduced cytotoxicity, higher antibacterial

activity than native peptide

(130)

CPF-C1 Introduction of Lys, tryptophan, and

D-amino acids

Enhanced antimicrobial activity against

multidrug-resistant strains

(131)

Chicken cathelicidin-2 D-amino acid substitution Improved serum stability (132)

penetration and disruption causing cell death (133, 134). The

substitution with amino acid residues such as arginine (Arg),

lysine (Lys), and tryptophan has been shown to positively

influence the factors mentioned above, thus improving the

activity of AMPs (134–138). In contrast, the replacement of

arginine and tryptophan in the peptide chain has enhanced

peptides’ antimicrobial activity (see Table 3). L-amino acids,

unlike D-amino acids, are easily susceptible to enzymatic

degradation by proteases. Due to its spatial configuration, which

is not recognized by proteases or immune receptors, Peptides

with D- amino acids are characterized by increased resistance

toward proteases degradation (139, 140). Previous studies

demonstrated that D-substitution was a convenient technique

to heighten the in vivo activity of antimicrobial peptides (141,

142). Substitution with bulky aromatic amino acids produces

modified peptides with higher functionality and increased

stability in physiological conditions, for example, salt (143). The

replacement of tryptophan residues with bulky aromatic amino

acids in the antimicrobial peptide FKCRRWQWRMKKLGA

derived from Lactoferricin bovine (LFB) enhanced the peptide’s

antibacterial activity (144).

Chemical modification

Chemical modification of peptides has significantly

improved their enzymatic stability and intestinal

permeability. Conjugation of therapeutic peptides with

potent macromolecules and metals seems ideal for delivering
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TABLE 4 Chemical modification of food-derived bioactive peptide (s).

Peptide Chemical modifier Outcome Reference

PMAP-37 (F34-R) Cholesterol fragments binded to the

N-terminal

Enhanced antibacterial and anti-biofilm

activities, improved stability, wound healing

activity in vivo

(148)

Clavanin A

VFQFLGKIIHHVGNFVHGFSHVF-

NH2),

Zn 2+ A remarkable increase in antimicrobial

activity,

(149)

AWKR6 XTEN generating a potent XTENylated

-AWKR6 conjugate

Prolonged plasma half-life by nearly 5-fold,

higher GLP-1R-binding

(150)

Exenatide mPEG Improved hypoglycemic activity, (151)

Bac7 (1–35) PEG through a cleavable ester bond or

through a non-hydrolyzable amide bond

Reduced renal clearance (152)

peptides and protein-based peptides and improving the

pharmacokinetic properties of peptides, including their in

vivo stability and overall activity (145). Conjugation with

macromolecules may bestow peptides with increased resistance

to protease hydrolysis since macromolecular chains can shield

the enzymatic sites on peptides (126). Peptide-conjugates can

be formed via attachment of the macromolecules to peptides

either through cleavable or non-cleavable linkers, resulting

in releasable and stable conjugates. Releasable conjugates

as the term suggests, the drug is separated and released

from the carrier in its native form. In comparison to stable

conjugates, releasable conjugates are more effective. Loss of

drug potency is a major drawbacks associated with the use

of stable conjugates. The bulky PEG moiety tends to reduce

drug activity, and higher concentration of the conjugate is

needed so as to maintain the drug activity (146). Conjugation

with albumin-binding molecules is commonly used to increase

peptides’ half-life and in vivo stability (147). Examples of

such molecules include polyethylene glycol polymers (PEG),

[COSAN]- and XTEN. Table 4 shows examples of chemically

modified peptides.

PEGylation

PEGylation, a process that involves the addition of a

polyethylene glycol chain to a biomolecule, has been the first

and most frequently applied approach to enhance peptide

and proteins’ pharmacokinetic (PK) properties drugs for over

25 years (153). PEG polymer is FDA-approved, non-toxic,

non-immunogenic, and highly water-soluble. The polyethylene

glycol (PEG) moiety is typically attached to peptide and

protein drugs shielding the surface and increasing its molecular

size, lowering its susceptibility toward proteolytic degradation

and the clearance rate via renal ultrafiltration. Generally,

PEGylation improves the in vivo efficacies of these peptides

and peptide-based drugs by conveying its physio-chemical

characteristics to the peptides without interfering with their

biological function(s) (154).

A massive trend in the development of PEGylated drugs

has been observed since the launch of ADAGEN (pegademase

bovine), the first approved PEGylated protein manufactured

by Enzon Pharmaceuticals in 1990 (155). PEGylated protein

and peptide therapeutics are available on the market, and many

more are still under development and clinical trials. Over the

predicted period of 2021-2026, the market for PEG protein

therapeutics is expected to rise at a compound annual growth

rate (CAGR) of 9.3%. The rise in the number of chronic diseases

(such as kidney diseases, cancer, and rheumatoid arthritis),

awareness of detrimental effects of chemo and radiotherapy

treatments (for instance, in cancer treatment), and the demand

for drugs with suitable pharmacological activity attribute to

the rapid increase of PEG protein therapeutics (https://www.

mordorintelligence.com/industry-reports/pegylated-proteins-

market) [Accessed April 22, 2022].

Several reviews have discussed PEG-peptide conjugates,

their advantages over native peptides, and their application in

drug delivery (99, 156, 157). The majority of the PEGylated

drugs on the market have shown the benefits of improved

pharmacological activity such as in vivo stability (e.g., Cimzia,

Neulasta, PegIntron, Adynovate, Oncaspar), circulation time

(e.g., Eligard, Renagel), delivery to target (e.g., Eligard),

extended-release and reduced toxicity (e.g., AmBisome,

Albecet). However, despite the successful application of PEG

in the pharmaceutical field, PEG has been known to raise

some safety concerns. Zhang and colleagues have discussed

the drawbacks of PEG in-depth, highlighting that it is both

immunogenic and antigenic, non-biodegradable, and growing

concerns about the effects of its remains (158).
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XTENylation

The conjugation of therapeutic peptides with XTEN

has been reported to exhibit an extended half-life and

reduced clearance from circulation compared to the native

non-conjugated peptides. XTEN is a hydrophilic and

biodegradable non-structural protein-polymer designed to

mimic the biophysical properties of PEG (159). XTEN offers

a biodegradable alternative to PEG. It is stable in serum

conditions, but unlike PEG, it can be easily degraded by

proteolytic enzymes after subsequent internalization into

cells, reducing the risk of kidney vacuolation resulting from

continuous treatments. Also, its biodegradable nature reduces

its accumulation in tissues, preventing toxicity under normal

circumstances (160). So far, no evidence has been documented

on the adverse effects of XTEN.

Modification of the terminal regions

Functionalization of the terminal regions of the peptide

chain may help shield the peptidefrom proteolysis degradation,

thus increasing its stability in vivo (161). For instance, the

modifications of the extremes through acetylation of the N-

terminus and transformation of the C-terminus into a primary

amide can increase peptides’ overall stability and activity,

given that these two regions are not involved in binding

interactions (94).

Synthetic peptidomimetics

Peptidomimetics are tiny, protein-like chains that mimic

traditional peptides and retain the ability to interact with

biological targets and produce a similar natural effect. They

offer advantages that make them excellent candidates over

the physiologically active peptides in the pharmacology field.

These functional mimics circumvent the pharmacokinetic

hurdles of native peptides (162, 163), such as their prolonged

stability in biological matrices (164). Peptidomimetics have

gained much attention, and to date, numerous mimics in the

market developed, some being analogs of food-derived bioactive

peptides that function as mediators and are helpful in therapy.

Cyclizing the linear peptide and coupling unnatural amino

acids are common preparations for peptidomimetics. Significant

advancement has been attained in the past concerning

the development of peptidomimetics, for instance, those

that mimic the bactericidal activity and mode of action

of AMPs (165).

Cyclization of peptides

Studies have confirmed that cyclization increases the

resistance of peptides toward enzymatic degradation since

the amide bond of the peptide is hidden inside the helix,

thus increasing resistance toward proteases (94, 166). Cyclic

peptides, as the name suggests, these peptides take up a

cyclic ring structure and are formed by linking together

the two side chains of the same peptide via a stable bond

(such as amide, disulfide, ether) to maintain and stabilize the

helical structure of the chain (167). For instance, stapling

is a cyclization technique that provides the peptide with

an external brace that limits its flexibility and improves its

affinity and selectivity to the target. This closed conformation

hides the amide bond inside the helix, increasing resistance

toward proteases and allowing an easier permeation into

the target cellular membrane (94, 166). Among the nine

overall methods for synthesizing cyclic peptides, head-to-

tail fashion is the most straightforward and frequently used

cyclization technique in which the linear peptides are stapled

via the C- and N- terminals (168). The application of cyclic

peptides (both naturally occurring and synthetic) as novel

therapeutic paradigms in the modern pharmaceutical field has

proliferated. For instance, from 2006 to 2015, nine cyclic

peptide drugs have been approved and are currently available

in the market (https://www.biochempeg.com/article/121.html)

[Accessed April 22, 2022] with a wide range of biological

functions such as enzyme inhibition, antimicrobial, anticancer,

and antidiabetic. Cyclic peptides are characterized by increased

cell permeability, protease stability, and pharmacological activity

(higher retention time in blood, oral absorption) compared

to their linear counterparts (169). The absence of amino and

carboxyl ends accounts for the resistance of the cyclic peptides

toward exogenous proteases. The increased cell permeability of

these cyclic peptides results from exposure of the hydrophobic

region to the surface while the hydrophilic regions are concealed

inside the structure. Despite being suitable drug-like substances,

it has been reported that cyclic peptides are not generally cell-

permeable compared to their liner equals and have poor oral

bioavailability (170, 171).

Extended-release technology

Excellent drug delivery systems shield the therapeutic

molecule from premature degradation upon administration,

enhance drug activity and reduce the occurrence of toxicity

(172). Such delivery systems are the controlled release systems,

which have been studied as an effective means for drug delivery

compared to conventional delivery systems (capsules, tablets,

ointments, granules, syrup, medicated gums). In traditional

delivery, drugs are rapidly eliminated from the body; thus,

a frequent dosage is required to maintain its therapeutic

index, unlike in a controlled release system, whereby drugs

are delivered at a specific target site and at a controlled rate

while offering the intended therapeutic effect. The decrease in

total dosage, such that a drug is administered weekly, monthly,

or quarterly, is a significant advantage associated with the

controlled release of drugs (173). Examples of delivery systems
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TABLE 5 Examples of controlled delivery systems for bioactive peptides.

Delivery

system

Example

material

General features Clinical

application(s)

Drawback(s) Reference

Hydrogels Chitosan-based,

alginate-based,

hyaluronic based

Three-dimensional

polymer, its high

affinity for water

absorption gives it a

resemblance to living

tissues, higher

compatibility to

biological systems

than other synthetic

polymers,

biodegradability

Localized drug

delivery: can deliver

the drug through the

hostile environment

of the stomach and at

specific sites within

the gastrointestinal

tract (GI) such as the

colon. Also valuable

for diagnostics and

tissue engineering as

scaffolds.

Conventional

hydrogels are

associated with

toxicity, challenging

to sterilize, limited

curative use

(174, 175)

Liposomes siRNA Possess the ability to

capture both

hydrophilic &

lipophilic molecules,

Reduces systemic

toxicity of peptides,

efficient delivery of

the peptide to its

target site.

Poor stability and

circulation time in the

blood, rapid clearance

(176)

Nanoparticles Acrylic-based

polymers, polyanions

(e.g., Eudragits),

polycations (e.g.,

chitosan)

Stable in the GI tract Encapsulate drugs

hence protecting

them from low pH

conditions and

enzymatic

degradation

(177)

Microencapsulation

(Microsphere,

microcapsules,

microparticles)

Hyaluronate, calcium

alginate

(CA)-carboxymethyl

cellulose, PGLA

Good compatibility Improves stability,

target delivery of

drugs

Water insolubility,

anaphylactic

reactions, poor

mechanical strength

(178)

such as microcarriers, hydrogels, liposomes, and nanoparticles

have been used for the controlled release of peptides into the

human body, as shown in Table 5.

Peptide self-assembly

Self-assembled peptides, both natural and synthetic,

have become a popular hotspot in pharmaceutical and

food processing, among other industries, due to their

advantageous features such as resistance to proteolytic

degradation, biocompatibility, and biodegradability (179–181).

Apart from the self-assembled peptides which occur naturally

in a food protein matrix (180), single peptides can be modified

depending on the amino acid sequence via non-covalent

interactions such as hydrogen bonding, aromatic stacking, and

Van der Waals forces to form supramolecular nanostructures

such as nanofibers, nanoparticles, hydrogels, and nanovesicles

with specific properties (182, 183). This can be initiated through

the chemical addition of a moiety, for instance, using protected

amino groups or lipids to provide the driving force necessary

to foster self-assembly (184). The activity (185), cell selectivity,

and stability (186) of several antimicrobial peptides have been

enhanced through self-assembly. An in-depth review of the self-

assembled peptides, their types, their characteristics, and their

applications has been made by several scholars (181, 187–189).

Despite its remarkable features, the self-assembly of peptides is

associated with some limitations, for instance, difficulty in the

purification of the nanostructures, their lower stability under

physiological conditions, and safety-related concerns (75). The

peptide hydrogels can instigate biofilm formation, thus causing

an imbalance of microorganisms in humans (190).

Other techniques

Among other factors, instability, bitter taste, and

hygroscopicity limit the direct application of peptides in the

development of functional foods (191). Studies have reported
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that encapsulation of peptides can overcome these challenges,

thus improving peptides’ sensory property, bioactivity, and

stability (87). The stability of antioxidant peptides from flaxseed

protein was improved via spray-drying encapsulation of the

peptide along with the use of surfactants (192). Bitter peptides

were less bitter and had improved gastrointestinal stability

following their encapsulation in water-in-oil high internal phase

emulsions (193). The entrapment of egg white-derived peptides

into chitosan- tripolyphosphate nanoparticles improved its

bioavailability (194).

The chelation of bioactive peptides with metals also

enhances the activity affecting the peptide’s structure, charge,

and mode of action. Binding divalent metals such as copper

and zinc have regulated the antimicrobial activity of the peptide.

Piscidin 1& 3 peptides from fish mast cells had improved

antibacterial activity, membrane insertion, and increased

cytotoxicity against cancer cells when chelated with copper

Cu2+ (195, 196). The antibacterial activity was improved upon

the zinc Zn2+ to ClavaninA, demonstrating the ability to cleave

the bacterial chromosomal DNA (197).

Future perspective and conclusion

Generally, the advancement and development of technology

have facilitated the research and utilization of bioactive peptides.

The availability of peptide-based products: therapeutic drugs,

functional foods, and additives in the modern market is a

vivid outcome of the tremendous progress made. Despite

their limitations, bioactive peptides have great potential.

As discussed in the previous section, peptides have been

modified using several methods to eliminate their disadvantages.

The modification of bioactive peptides has been successful

to a satisfactory level, in enhancing the bioactivity and

physiochemical properties of peptides. However, more studies

need to be conducted since the outlined strategies have

limitations also.

Addressing the peptides’ intrinsic drawbacks alone does

not foster their translation into commercial products. Other

hindrances, including manufacturing costs and regulatory

challenges, are yet to be overcome since they impede the

commercialization of peptides. Establishing universal criteria

for approval of peptide-based products will expand the

international market for these products. Time is yet another

significant obstacle facing manufacturers since it takes a

relatively long time to approve a peptide drug legally. The

10–12-year lag between a peptide drug candidate passing into

clinical trials and potential approval (https://www.polypeptide.

com/wp-content/uploads/2019/10/1401702726538c49464a6f5.

pdf) [Accessed April 22, 2022] is somewhat challenging. Even

after peptide drugs are approved for treatment, they can still

be withdrawn/recalled from the market due to drug failure.

Such circumstances become a burden on the manufacturers

due to the costs incurred in producing the drugs. An example

of this was the withdrawal from the market of Omontys

(Peginasatide), a peptide drug intended to treat symptomatic

anemia and related chronic kidney disease, due to reports of

hypersensitive reaction associated with the drug (https://www.

takeda.com/en-us/newsroom/news-releases/2014/affymax-and-

takeda-announce-termination-of-omontys-peginesatide–produ

ct-collaboration-and-license-agreement/) [Accessed April 22,

2022].

Also, the information on the peptides’ mode of action in

vivo, their specific safety level, and their interaction(s) with

the human systemis scarce; this calls for more investigation

to be carried out. Addressing these challenges and discovering

new bioactive peptides brightens the future for bioactive

peptides, which could result in extensive utilization and huge

market demand.
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