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Standing balance relies on the integration of multiple sensory inputs to generate themotor

commands required to stand. Mechanical and sensory perturbations elicit compensatory

postural responses that are interpreted as a window into the sensorimotor processing

involved in balance control. Popular methods involve imposed external perturbations

that disrupt the control of quiet stance. Although these approaches provide critical

information on how the balance system responds to external disturbances, the control

mechanisms involved in correcting for these errors may differ from those responsible

for the regulation of quiet standing. Alternative approaches use manipulations of the

balance control loop to alter the relationship between sensory and motor cues. Coupled

with imposed perturbations, these manipulations of the balance control loop provide

unique opportunities to reveal how sensory andmotor signals are integrated to control the

upright body. In this review, we first explore imposed perturbation approaches that have

been used to investigate the neural control of standing balance. We emphasize imposed

perturbations that only elicit balance responses when the disturbing stimuli are relevant

to the balance task. Next, we highlight manipulations of the balance control loop that,

when carefully implemented, replicate and/or alter the sensorimotor dynamics of quiet

standing. We further describe how manipulations of the balance control loop can be

used in combination with imposed perturbations to characterize mechanistic principles

underlying the control of standing balance. We propose that recent developments in the

use of robotics and sensory manipulations will continue to enable new possibilities for

simulating and/or altering the sensorimotor control of standing beyond compensatory

responses to imposed external perturbations.

Keywords: imposed perturbations, ongoing human in the loop manipulations, balance control, quiet standing,

robotics, sensory stimulation
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INTRODUCTION

Our ability to stand upright requires accurate estimation
about the orientation of the body with respect to gravity
as well as the relative relationships between body segments.
These estimates are formed through multisensory integration
of information arising from visual, vestibular, somatosensory
and auditory sensory systems. Imposed perturbations of the
sensory/motor systems and manipulations of the balance control
loop provide methods of disrupting and/or modifying the
balance controller. These approaches, however, differ. Imposed
perturbations (transient or continuous) evoke external error
signal inputs while manipulations of the balance control loop
are designed to modify the sensorimotor relationships required
to control quiet stance. Both approaches have proven critical
in unraveling fundamental sensorimotor principles underlying
standing balance. In this review, we explore perturbation and
manipulation approaches used to probe the balance system. We
first provide an overview of the sensorimotor and mechanical
characteristics that are relevant for the control of standing
balance. Then, we discuss imposed external perturbations
that have enabled researchers to investigate how the balance
system responds to these unexpected disturbances. Here, we
operationally define imposed perturbations as methods which
disrupt quiet standing behavior and represent external error
signals for the balance system. As such, the parameters of
the imposed external perturbations are designed exclusively by
the experimenter. We subsequently present manipulations of the
balance control loop that can be implemented to alter sensory
feedback and/or their relationships with motor outputs during
the ongoing control of quiet standing balance. Importantly,
although these techniques can involve physical and/or sensory
alterations, we define them as manipulations (rather than
perturbations) as they are designed to modify relationships
within the balance control loop such that their effects are a
function of the action of the subject (i.e. human in the loop
manipulations). Finally, we emphasize how manipulations of the
balance control loop altering ongoing feedback can be combined
with imposed perturbations to reveal sensorimotor principles
of standing balance. Throughout this review, we prioritize
information gained from experimental approaches applied to
healthy human volunteers. Where appropriate, we relate these
findings to observations gathered from clinical populations (e.g.,
persons with vestibular loss), whose behavior may complement
our insight into the control of standing balance.

SENSORIMOTOR AND MECHANICAL
ASPECTS OF STANDING BALANCE

The upright bipedal posture adopted for standing balance is
mechanically unstable. When the vertical projection of the
whole-body deviates from the ankle joint center of rotation,
gravity acting on the body increases the magnitude of the
toppling torque and must be compensated by active and passive
forces. Consequently, although standing may be referred to as
quiet stance or static balance, the acceleration of the whole-body
center of mass is constantly varying in three-dimensional space.

The mechanics of standing balance involve both large and fine
adjustments used to stabilize the whole-body and the relative
orientation of body segments (1–4). The mechanics of standing
balance are often simplified by assuming that movement only
occurs around a limited number of joints. In the anteroposterior
direction, the standing body is commonly represented using
a single-link inverted pendulum model where whole-body
movements occur mainly around the ankle joints (5–8). In the
mediolateral direction, an inverted pendulum with dual links
(i.e., both limbs) has been proposed (9–11), with whole-body
motion occurring around both the ankle and hip joints. The
differential equation of an inverted pendulum is therefore used
to describe the relationship between the net torque and whole-
body angle when a person stands; explaining how body inertia
mechanically filters muscle activation during standing, resulting
in low frequency movements of the whole-body (typically below
0.5Hz for quiet standing sway) (8, 12–14).

Given that forces are developed when musculoskeletal tissues
are deformed, it has been proposed that tonic muscle activity
may be sufficient to maintain standing balance passively (11,
15). For balancing along the anteroposterior direction, however,
the toppling gravito-inertial torque associated with whole-body
movements exceeds the intrinsic stabilizing torque developed
by the viscoelastic forces during deformation of ankle tissues
(16, 17). Consequently, active neural control of the ankle and
hip muscles (as well as those acting at other joints) is required
to stabilize the body and modulate the net forces and torques
delivered through the feet onto the support surface (18–23). The
active maintenance of standing balance involves a sensorimotor
control loop that detects body orientation/motion and generates
the stabilizing forces and torques required to remain upright
(Figure 1). Information regarding the orientation of the body
with respect to gravity and the relative relationship between body
segments is provided by integrating multiple cues from sensors
located throughout the body. In the following paragraphs, we
describe briefly the balance-relevant sensory code provided by
these sensors as they relate to the frequency characteristics of
standing balance.

Balance-Relevant Sensory Code
Sensory inputs from the visual, vestibular, somatosensory and
auditory systems all contribute to the control of standing balance.
The information provided by individual sensory cues is shaped by
the dynamics of each sensor and the coordinate system in which
they are referenced [for a review of sensory dynamics related to
standing balance, see (24)]. To be relevant for standing balance, a
sensor must be capable of encoding frequencies up to and beyond
those comprising the dynamics of the standing body; i.e., the
dynamics of a sensor must be greater than the actuator, which
must be greater than the mechanical system being controlled
(25–27). Therefore, sensors that primarily encode low frequency
(and static) information may be more likely to contribute to the
low frequency control of quiet standing balance whereas those
encoding higher frequencies may be more helpful in responding
to imposed external perturbations.

The somatosensory system refers to a group of receptors
found throughout the muscles, joints, and skin of the body.
Several of these mechanoreceptors relay position and motion
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FIGURE 1 | Schematic of the balance control loop depicting the relationship between motor command, sensory feedback and multisensory integration. Sensory cues

convey information about the external world and the body’s orientation within it. This information is integrated with motor commands to estimate sensory prediction

errors. Because these aspects of the balance control loop are not the focus of this review, they have been grayed out in the figure [see (24) for a more detailed

exploration of these principles]. Mechanical and sensory inputs to the control loop illustrate a conceptual representation of imposed perturbations or manipulations of

the balance control loop applied to understand the control of standing balance. Details on the implementation of imposed perturbations or manipulations of the

balance control loop are presented in Figure 2. Portions of this figure were adapted from Forbes et al. (24).

cues referenced to the body and its different segments, also
known as proprioception [(28–33); for a comprehensive review,
see (34)]. Collectively, muscle and joint receptors encode
static and dynamic joint angle and/or muscle force. Although
cutaneous receptors may also encode joint angle (35), those
located in the glabrous skin of the foot sole act as an interface
between the external world and the body. They can sense
contact forces and texture of the support surface that may be
used for standing balance (36, 37). The visual system encodes
cues referenced to the external world derived from our field
of view. From visual inflow, motion signals of the surrounding
world (object-motion) and of the body within the world (self-
motion) are extracted and provide cues to stabilize the upright
body (38). The accessory optic system (a series of nuclei in
the midbrain with efferent connections to the brainstem and
cerebellum) likely plays an important role for balance control
given its preference for low frequency stimuli and interaction
with vestibular inputs (39, 40). Visual signals further provide
cues on the spatial orientation of objects in our surroundings
that may be used for controlling posture and responding to
disturbances (41, 42). The vestibular end organs, which are
fixed within the inner ears, sense three dimensional orientation
and inertial cues of the head-in-space (43). Two subtypes of
end organs, the otoliths and the semicircular canals, allow the
vestibular apparatus to encode translational and angular motion,
respectively (44). Because otoliths also encode head orientation
relative to gravity, the distinction between head orientation with
respect to gravity and head acceleration signals can be achieved
by the integration of otolith and canal cues along with visual and
somatogravic ones (45–49). Hence, information derived from the

peripheral vestibular apparatus provides important cues needed
for the control of standing balance. The auditory system, often
overlooked for its role in balance control, is situated alongside the
vestibular apparatus in the inner ear. Auditory cues can be used
for spatial localization of the head-in-space and produce illusions
of self-motion (50, 51), most prominently in the absence of vision
(52). When standing, stationary sound cues that are coherent
with other sensory signals of balance allow subjects to construct
spatial auditory maps that improve postural stability [see review
by Campos et al. (53)].

Various imposed stimuli or sensory manipulations of the
balance control loop can be used to investigate the role of sensory
cues in balance control. In the following sections, we first describe
imposed external perturbations that have been used to study the
reactive control of standing balance. We emphasize that stimuli
of this type evoke compensatory postural responses to external
disturbances. Therefore, a particular focus is put on stimuli that
specifically target balance control as opposed to methods that
evoke responses irrespective of the need to balance upright (e.g.,
stretch reflexes). We subsequently present and propose methods
that alter the ongoing control of quiet standing balance in order
to assess the organization and potential adaptability of the neural
control of standing balance.

IMPOSED EXTERNAL PERTURBATIONS
TO CHARACTERIZE STANDING BALANCE

Imposed perturbations have been applied extensively to assess
the control of standing balance. These perturbations are
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often designed by experimenters to be similar to disturbances
experienced during daily activities (e.g., standing on a bus
that suddenly accelerates) and can have a range of amplitudes,
velocities and/or accelerations. Carefully applied perturbations
have been used to reveal important aspects of standing
balance. For example, using imposed external perturbations
researchers have estimated the passive and active mechanisms
underlying standing balance and revealed how error signals
are integrated and transformed to maintain upright stance
(see subsections below). A point to consider, however, is that
imposed perturbations represent an external error signal that
is independent from the quiet standing balancing task (see
Figure 2A). Quiet standing balance behaviors can be described
using numerical models that also characterize responses to
imposed perturbations (54, 55), but it cannot be assumed that
the neural processes involved in these two scenarios are identical.
Consequently, perturbations imposed on standing participants
inform a researcher on how individuals respond to an external
disturbance as opposed to how they integrate and combine
multisensory cues to maintain quiet stance. Specifically, imposed
perturbations may evoke responses originating from sensory
cues activated by the perturbation that may not contribute
to the control of quiet upright stance. Furthermore, it is
currently not possible to estimate the contributions of ongoing
sensory feedback involved in maintaining quiet standing balance
by introducing additional sensory inputs through imposed
perturbations [see (56) for locomotor analogy]. Nevertheless,
there are certain imposed perturbations that only evoke whole-
body responses when participants are engaged in standing
balance and these may reveal fundamental principles underlying
its control. We will discuss these different approaches in the
following paragraphs but the reader is invited to consult (57–59)
for comprehensive reviews of imposed perturbation approaches.

Mechanical Perturbations
A wide variety of mechanical perturbations have been used to
study compensatory responses during standing balance. Popular
approaches include rotating (60–63) or translating (64–67) the
support surface of standing subjects, while others use forces
or torques applied to specific points on the body (68–70).
When applied as discrete physical perturbations to standing
participants, mechanical perturbations evoke stereotypical
transient muscle and whole-body responses (71–76). To align
better with the continuous control of standing balance and
to characterize muscle and whole-body responses to ongoing
disturbances, other researchers have used prolonged mechanical
oscillations to study standing balance (20, 77–79). Using specific
perturbation frequencies and magnitudes, the relationship
between oscillatory perturbations and muscle/postural responses
can be estimated (80–82). Coupled with sensorimotor modeling,
the input/output estimates from prolonged perturbations can
reveal fundamental properties of upright stance such as stiffness,
damping and time delays of the balance control loop. In animal
models, mechanical support surface perturbation approaches
have also led to the characterization of synergistic muscle
responses in balance control (83–86). Coordinated patterns
of muscle activity (i.e. “synergies” or “motor modules”) are

thought to be flexibly combined by the nervous system to
facilitate functional motor control, and account for spatial,
temporal and postural strategy variability in human responses
to multidirectional imposed perturbations (87, 88). Mechanical
perturbations can also be applied to perturb somatosensory
cues of motion without physically moving the whole-body or
its support surface. For instance, in “light touch” experiments,
perturbations are provided through motion of an external
reference that a subject is in contact with (often with a finger)
that does not provide mechanical support (89–91). Recently,
Asslander et al. (92) perturbed the touch surface that subjects
contacted with a finger at different positions with respect to their
body. The authors proposed that the brain transforms sensory
information derived from light touch into a reference frame
for standing balance by estimating the distance between the
whole-body center of mass and the finger.

Mechanical stimuli can also be applied to activate cutaneous
or muscle receptors. For example, vibration stimuli can be
delivered at the foot soles or muscle tendons and adjusted
(amplitude and frequency) to elicit responses in cutaneous
(primarily fast-adapting) and muscle spindle (primarily Ia)
afferents (93–95). When applied to standing participants, these
stimuli evoke well-defined and direction-specific whole-body and
muscle responses (96–99). Simultaneous vibration of cutaneous
and muscle receptors elicits body tilts equal to the vector
summation of individual responses (100), suggesting a linear
combination of these specific stimuli. However, vibration and
stretch stimuli are unspecific to balance control because they can
elicit muscle responses in participants not maintaining standing
balance (101–103). Consequently, it is not clear what (if any)
principles specific to the control of quiet standing can be gained
from mechanical vibrations targeting muscle(s) or cutaneous
receptors.

Visual Perturbations
Visual perturbations can induce illusions of self-motion (i.e.,
vection) because retinal signals encode motion of the body
and/or the environment. The brain must disambiguate these
visual signals in order to control standing balance. For example,
when standing on an idle train and viewing another train
moving slowly, a perception that your train is moving may
emerge. Researchers have exploited this ambiguity to investigate
the role of visual cues on postural orientation and control
of standing balance by imposing discrete translation or rotary
visual perturbations (e.g., movements of the walls within a
room or projected image). Standing participants exhibit well-
defined compensatory balance responses (and illusions of self-
motion) to discrete visual perturbations (104–109). The whole-
body responses occur in the same direction as the visual
motion (104, 110, 111). One explanation for this response
is that the imposed visual stimuli are partially interpreted
as a consequence of body motion. Hence, when the visual
surround moves backwards (i.e., toward a subject), the balance
system interprets the perturbation as self-motion in a forward
direction which is corrected by leaning backwards. Consequently,
visual perturbations provide a window into how visual signals
of self-motion contribute to the control of standing balance.

Frontiers in Neurology | www.frontiersin.org 4 October 2018 | Volume 9 | Article 899

https://www.frontiersin.org/journals/neurology
https://www.frontiersin.org
https://www.frontiersin.org/journals/neurology#articles


Rasman et al. Manipulating the Balance Control Loop

Balance

Controller

Neuro-muscular

Dynamics

Body

Dynamics

Balance

set-point

A

B

+++++

_ T

θ-

L

Sensory

Dynamics

Frequency [Hz]

G
a

in
 

[s
p

/s
/°

/s
]

 P
h

a
se

 [
°]

Neuro-muscular

Dynamics

Body

Dynamics

T

θ-

L

Sensory

Dynamics

Frequency [Hz]

G
a

in
 

[s
p

/s
/°

/s
]

 P
h

a
se

 [
°]

Motor 

command

Torque

Balance Feedback

yrosneSyaws ydoB

inputs

Balance

Controller

Balance

set-point +

_
Motor 

command

Torque

Balance Feedback

yrosneSyaws ydoB

inputs

Actuators

Force
plates

Ankle tilt
platform

EMG

T

Lm

EMG

Muscle-to-

torque
Vm

ωhead

EVS

Vestibular

transfer

function

FIGURE 2 | Imposed perturbations and manipulations of the balance control loop. (A): Mechanical and/or sensory perturbations can be imposed at the various stages

of the control loop to produce external error signals independent from the ongoing control of quiet standing. Imposed perturbations can be delivered as discrete (e.g.,

square wave signal) or continuous (oscillatory signal) disturbances to evoke compensatory postural responses. (B) Manipulations of the balance control loop aim to

simulate and/or modify the relationship between sensory and motor cues of ongoing balance control (i.e. human in the loop manipulations). These manipulations can

be used to mimic or alter the dynamics of different components of the balance system through the use of robotic systems and sensory stimulation techniques. Transfer

functions characterizing muscle contraction (electromyography [EMG], muscle length [Lm] and muscle velocity [Vm]) to torque output can be used to manipulate the

ongoing effect of motor command (left). Similarly, a robotic balance simulator can be used to mimic and manipulate balance mechanics (middle). Torque delivered by

the subject is used to control platform motion: this places the subject in-the-loop and allows for ongoing manipulation of standing balance. In addition, manipulations

to sensor dynamics can be achieved, for example, by using instantaneous head velocity and transfer functions of the vestibular system to deliver an electrical

vestibular stimulus that modulates the ongoing vestibular afferent firing rates (right). ωhead, head rotational velocity; EVS, electrical vestibular stimulation.

Visually-induced balance responses decrease as the amplitude
of visual motion increases (20, 112–115). Dokka et al. (114)
proposed that because slow visual signals of whole-body
motion are more probable than faster motion, the slower
visual signals are more likely to be interpreted as originating
from self-motion. Day et al. (115) further reported a later
visually-evoked balance response (∼0.7 s latency) that increases
with stimulus velocity. They suggested that the later visually-
evoked balance response is related to the alignment of the
body to the erroneous estimate of gravity, an estimate that
is biased by a prolonged stimulus of visual motion (107,
110, 115). This concept is reminiscent of the multisensory
integration processes required to estimate the orientation of
gravity from the otolith signals that can lead to an erroneous
interpretation of translation (49, 116–119). It further highlights
the usefulness of visual perturbations to explore and reveal
physiological principles underlying the control of standing
balance.

Vestibular Perturbations
Natural activation of the vestibular system requires movements
of the head-in-space. Imposed head movements to examine
the role of vestibular inputs on standing balance, however,
have a limited use because head motion typically results in
concomitant activation of other sensory signals. An isolated
vestibular perturbation can be achieved by delivering electrical
vestibular stimuli (EVS) through electrodes applied over the
mastoid processes (assuming subjects keep their eyes closed).
Application of such electrical stimuli modulates the activity of
all vestibular afferents (increasing firing rates of all afferents
under the cathodal electrode and decreasing under the anodal
electrode), without having to move the head in space (120–
124). Based on the anatomy and physiology of the vestibular
system, bilateral binaural EVS is assumed to generate a vestibular
error signal of head roll velocity around an axis pointing
posterior and ∼18◦ up from Reid’s plane (125–128). Although
EVS represents a non-physiological stimulus (i.e., activation of all
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vestibular afferents), responses elicited by EVS are only present
in appendicular muscles when subjects are actively engaged in
the task of balancing the whole-body (129–131). Hence, EVS can
be used to investigate the vestibular control of balance and how
vestibular signals are integrated, processed and relied upon for
balance control [see reviews, (24, 125)]. We note, however, that
this task dependency is not a ubiquitous feature because EVS
evokes vestibulocollic reflexes in neck muscles even when the
head and body are fully supported (132).

In standing participants, EVS evokes an unexpected vestibular
error signal that requires a compensatory balance response to
maintain an upright posture (125, 129, 133). The EVS-evoked
error signal of head motion is head-referenced, such that its
influence on standing balance depends on the orientation of
the head with respect to the feet. Consequently, vestibular-
evoked muscle and whole-body balance responses are spatially
transformed based on head orientation with respect to the
feet (134–137). This indicates that the whole-body responses
evoked by an isolated vestibular perturbation (EVS) involve
multisensory integration of information related to head-on-
feet posture (e.g., via proprioceptive inputs) with vestibular
cues of motion. Furthermore, the direction of the vestibular-
evoked balance responses is influenced by body stability, whereby
muscle and balance responses evoked by EVS are larger in
the direction where postural stability is reduced (138, 139).
This directional modulation of the vestibular-evoked balance
responses based on balance stability without changes in sensory
feedback may confound conclusions regarding sensory up-
weighting of vestibular signals associated with experimental
changes in sensory information (e.g., sway referencing or closing
the eyes). This is because altering sensory information while
balancing may decrease postural stability (i.e., increase sway),
making it difficult to attribute the modulation of vestibular-
evoked responses to changes in relative sensory information
or changes in postural stability and upright position (140).
Finally, the task-dependent characteristics of vestibular-evoked
balance responses further suggest that they are not indicative of
simple reflex arcs but instead reflect organized balance responses
involving the integration of multiple sensory and motor cues
(139, 141, 142).

SENSORIMOTOR MANIPULATIONS
TARGETING THE ONGOING CONTROL
OF STANDING BALANCE

As discussed in section Imposed External Perturbations to
Characterize Standing Balance, imposed perturbations enable
the identification and modeling of fundamental principles
underlying standing balance. But these approaches must be
interpreted within the framework of disturbances external to
ongoing control of quiet standing. An alternative approach
involves continuous sensory and/or mechanical manipulations
of the balance control loop aimed at simulating or modifying
the ongoing control of quiet standing balance (see Figures 2B,
3). In other words, these manipulations are designed to modify
feedback relationships within the balance control loop such

that their effects are a function of the action of the subject
(i.e. human in the loop manipulations). In addition, they
must carefully match the dynamics of the sensory, motor and
mechanical systems involved in standing balance, often requiring
detailed knowledge of the neural code to be mimicked or
elaborated by devices to induce these manipulations. Here, we
review sensory and mechanical manipulations of the balance
control loops that allow participants to experience controlled
aspects of standing balance or altered sensorimotor conditions.
Specifically, we discuss how replicating the sensors dynamics
of standing balance can reveal how a specific cue is integrated
and processed to maintain upright stability. In addition, we
draw parallels between sensorimotor manipulations and specific
clinical populations who can balance in the absence of specific
sensory feedback cues (e.g., large-fiber sensor neuropathy or
vestibular-loss). Where appropriate, we discuss limitations of
sensorimotor manipulations and identify where additional work
is needed.

Somatosensory Cues
The role of somatosensory cues in the control of standing
balance can be partially investigated using ongoing mechanical
manipulation of the support surface. Continuous manipulation
of the support surface can be adjusted based on the participants’
torque production and whole-body postural oscillations to
minimize ankle plantar- and dorsi-flexor movements. This sway-
referencing of the support surface reduces the contribution
of lower limb receptors encoding ankle angle to the control
of standing. The increase of whole-body oscillations observed
under this condition has been interpreted as supporting the
role of ankle somatoreceptors in the control of standing balance
(144–147). Reports from the clinical literature add support to
the importance of somatoreceptors in upright postural control:
patients with large diameter afferent neuropathy (complete
loss of proprioception) are unable to stand or walk without
vision (148, 149). Sway-referencing the support surface to the
postural oscillations, however, has mechanical consequences that
must be taken into account when interpreting the standing
balance behavior to this modified ankle somatosensory feedback.
Because the ankle joint angle remains relatively constant as
the body oscillates back and forth, minimal deformation of the
ankle tissues (muscles, tendons, ligaments, skin) occurs. This
prevents the development of length and velocity dependent
passive forces that normally contribute to the stabilizing
torque required to remain upright (17). Considering that
passive forces are estimated to contribute between 10 and
90% of the net torque required to stand (16, 17, 20, 150),
it is not clear what portion of the postural stability changes
observed during sway-referencing are due to the contribution
of ankle somatosensors versus the modulation of the active
component of standing to compensate for a reduction in
passive forces contributing to standing. A potential approach
to explore these possibilities could involve simulating/altering
the muscle activation to muscle torque transfer functions using
robotic devices replicating the control of standing balance
(13, 151, 152) (see Figure 2B and Mechanical and Sensory
Approaches).
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The isolated contribution of somatosensory cues to standing
balance has been assessed using balance control of a body-
equivalent load (8). Participants supported by a rigid frame with
their head immobile (minimizing visual and vestibular cues)
balanced a load with their feet that mimics the dynamics of
an inverted pendulum (8, 130, 146, 153–155) (see Figure 3B).
To distinguish contributions from muscle proprioceptors and
foot sole cutaneous cues, skin receptors have been minimized
by cooling or anesthetizing the feet (153, 156). The general
consensus from these experiments is that ankle muscle receptors
provide adequate inputs for maintaining standing balance.
Although the range and variability of the body-equivalent load
oscillations were larger than for natural standing balance (where
all cues are available), participants could stabilize the load with
only cues from the ankle muscle proprioceptors (153). The
similar frequency characteristics of “whole-body” sway between
these conditions further supported the conclusion that ankle
muscle receptors are sufficient to maintain standing balance.
Confirmatory findings by other groups provide additional
validation regarding this conclusion (147, 157).

Additional somatosensory information may be incorporated
within the balance control loop through the use of light touch.
When subjects make light contact with a stationary external
reference—typically with a finger—postural sway is reduced
despite the negligible mechanical stabilizing effect of touch (158,
159). This suggests that cues encoded from low contact forces
are incorporated as a sensory signal contributing to the balance
control loop. Improved standing balance stability has also been
observed when two standing subjects make light finger contact
with one another (160–162). Using a simple modeling approach,
Reynolds and Osler (162) suggested that interpersonal contact
while standing is beneficial even if the balance controller does not
distinguish self and partner motion. Taken together, these studies
highlight the potential for light touch to alter sensory feedback
within the balance control loop.

Visual Cues
A simple method to manipulate visual cues is to have subjects
stand with the eyes closed or in the dark. Compared to eyes open,
eyes closed (or darkness) increases quiet whole-body oscillations
(9, 38, 163–165), but the low frequency components require long
sampling durations of stance (>300s) to be captured accurately
(14). The importance of visual information for standing has
also been revealed by manipulating the number of fixation
targets (166, 167), type of lighting (168) and depth cues (169–
171). In a series of experiments, Paulus et al. (38) reported
increases in postural stability under conditions with improved
visual acuity, increased area of the central visual field and
increased retinal displacement (caused by decreasing the eye-
object distance). These observations emphasize that the influence
of vision on standing balance is dependent on the features of the
visual scene. An alternative approach is to keep visual signals
constant on the retina (effectively sway-referencing vision) by
having participants view a scene that moves according to
the motion of the whole-body (144, 145, 154, 172). Under
these conditions, balance was more unstable compared to
when the eyes were closed (145, 173, 174). McCollum et al.

(174) rationalized that this occurs because in the visual sway-
referenced condition, there is a central integration conflict
(or mismatch) between different sensory channels (i.e., vision-
vestibular, vision-somatosensory). Collectively, these studies
suggest that visual cues contribute to standing balance, and are
likely fused with other signals encoding whole-bodywith postural
oscillations.

An alternative approach to determine the role of visual cues
in standing balance involves determining if these cues alone
are sufficient to remain upright (see Figure 3C). Nagata et al.
(157) devised a computer-controlled inverted pendulum allowing
participants to apply forces and moments to the ground but
experiencing only the visual consequences of their motion.
Participants were stable in space while a motor replicated the
visual signals of balance according to their motor actions—
hence subjects attempted to balance an equivalent body load
with sensory feedback limited mostly to visual cues (others
included somatosensory cues of feet pressure changes andmuscle
contractions). Nagata et al. (157) reported that vision only
contributed to the reduction of sway below 0.4Hz. This aligns
with previous suggestions that vision may primarily contribute
to the low frequency (<1Hz) control of standing balance
(170, 175, 176). Although visual perturbations can evoke sway
behavior as high as∼2Hz (20), responses tend to decline rapidly
above 0.8Hz. Nagata et al. (157) argued that the processing
of visual information was too slow such that vision provided
only a minor influence on the control of standing balance. A
limiting factor of their approach, however, was that the rotational
axis of the visual enclosure was not collinear with the ankle
joints (154). Loram and colleagues, in contrast, have shown
that participants standing braced can balance a real or virtual
inverted pendulum with similar mechanics of the standing body
using their hand to move a spring or a joystick with only
visual cues of motion (155, 177, 178). To address this apparent
discrepancy on the role of visual cues to maintain standing
balance, we performed a simple experiment. Ten healthy
subjects participated in this study after giving their written
informed consent. The experiment protocol conformed to the
Declaration of Helsinki and was approved by the University
of British Columbia’s Clinical Research Ethics Board. Similar
to Fukuoka et al. (154), braced upright participants balanced
with the expected visual cues of self-motion programmed to
replicate the motion of an inverted pendulum in the antero-
posterior direction (see Figure 3C). Initially, all participants
(n = 10) exhibited difficulties in keeping the visual cues of
motion within the balance limits (i.e., 6◦ anterior and 3◦

posterior). Sway variability was 5–6 times larger than when
balancing a robotic simulator using all sensory cues (Figure 4A).
After 5 days of training to balance with only visual cues
of motion (∼20min per day), their ability to balance within
the programmed limits improved substantially (Figure 4B).
Participants exhibited a ∼75% decrease in sway variability but
this variability remained twice that observed when balancing with
all sensory cues. These data show that although subjects exhibit
initial difficulties in balancing with only visual cues of motion,
they can adapt and use these cues to control standing balance
with practice.
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FIGURE 3 | Block diagrams of the varying sensory cue combinations that can be simulated using robotic balance platforms or mechanical devices. (A) Normal

standing balance conditions where cues from visual, vestibular and somatosensory signals contribute to upright stance. Under these conditions, the foot is stationary,

the whole-body moves and the head is moving relative to the visual scene. (B) A somatosensory-only balance condition. Subject’s head and body are stationary in

space in front of a stationary visual surround while the feet rotate, requiring subjects to balance a simulated inverted pendulum that mimics the body’s mechanics with

movement limited to their ankle joints. (C) A vision-only balance condition. Subjects are stationary in space while the visual scene is moving relative to the head,

resulting in a balancing task that provides mostly balance-relevant visual cues. This condition was used here to re-examine the potential for standing subjects to use

visual cues of motion (see Figure 4). Additional sensory cues (e.g. auditory) and other cue combinations could be considered. For example, by coupling simulated

head motion with an electrical vestibular stimulus (see Figure 2B) it may be possible to provide dynamic vestibular cues of standing without actual motion. T, ankle

torque; θ, inverted pendulum angle. Portions of this figure were adapted from Shepherd (143).

Vestibular Cues
The contribution of vestibular cues has been inferred by assessing
the standing balance behavior while carefully controlling the
available cues to remain upright. One approach involved
characterizing postural oscillations while sway-referencing vision
as well as the support surface (145, 174). By minimizing
visual and ankle somatosensory cues, Nashner and colleagues
were targeting the role of vestibular signals in maintaining
upright stability. Participants exhibited difficulty in maintaining
upright posture when vision and ankle proprioception were sway
referenced, sometimes experiencing falls (145, 174). However, the
limitation discussed above regarding the lack of passive forces
contributing to upright stability under the sway-referencing
of the support surface also applies to these experiments. A
second approach consisted of comparing postural oscillations
during normal upright stance (including vestibular cues) and
during balancing a body-equivalent load while braced (excluding
vestibular cues). When limiting whole-body movements to the
ankle joints in both conditions, Fitzpatrick et al. (153) showed
that balance stability was similar if vestibular cues contributed

to the control of balance or not, irrespective of visual cues.
Altogether, observations from these two distinct approaches
suggest that vestibular cues provide limited benefit over visual
and somatosensory cues to the control of standing balance. In
support of this idea, vestibular loss patients can maintain upright
stance with vision and somatosensory cues (even at the onset
of the deficit), and over time, the instability is reduced due
to compensation processes (179–182) and possibly from neural
adaptation such as that observed in non-human primates (183–
185).

Ongoing manipulation of vestibular cues according to
postural oscillations was assessed in a different context by
Héroux et al. (186). Participants were standing on foam with
eyes closed while exposed to an electrical vestibular stimulus.
The electrical stimulus was designed to replicate the general
dynamics of primary semicircular afferents modulations during
standing balance and coupled in real-time to the recorded
movements of the head (see Figure 2B). Conceptually, this head-
coupled vestibular stimulus increased or decreased vestibular
gain depending on the polarity of the stimulus with respect to the
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FIGURE 4 | Standing balance using only visual cues. (A) Subjects stood in a robotic balance simulator while either all sensory cues (see Figure 3A) or only visual

cues of balance were provided (see Figure 3C). Angular oscillations of a representative subject (left) when balancing with all cues or only vision show an increase in

angular sway when balancing with only vision. Mean removed root-mean-square (RMS) of angular oscillations of all subjects tested (n = 10, right) exhibited the same

increase when using visual cues to balance (paired t-test; t9 = −13.2, P < 0.001). Squares represent the “all cues” condition and circles represent the “vision only”

condition. (B) Four of the original 10 subjects subsequently went through 5 days of training (∼20min per day) under the vision only condition. Angular oscillations of a

representative subject (left) show a decrease after 100min (5 days) of training compared to the pre-training vision only condition. Mean-removed RMS of angular

oscillations progressively decreased with each session of training (circles), but always remained above the all cues conditions (squares). For illustrative purposes, the

blue line shows the fitting of mean angle RMS to an exponential function (y = 4.4893 e−0.1829 x ) using a least-square method. In both graphs, horizontal lines

represent the mean of standard oscillation across all subjects and *P < 0.001.

measured head motion. When the stimulus was applied, postural
oscillations increased 4-fold. This finding bears some similarity
to the decreased postural stability observed in acute unilateral
vestibular loss patients (181, 187, 188) who are faced with
asymmetric vestibular inputs. Although these results suggest that
altering the gain of vestibular cues during standing influence the
balance behavior, additional work is needed to determine if such
vestibular cues of standing delivered in isolation (i.e., standing
fixed to a rigid backboard) are sufficient to allow humans to
balance upright.

COMBINING MANIPULATIONS
TARGETING THE ONGOING CONTROL OF
QUIET STANDING BALANCE WITH
IMPOSED EXTERNAL PERTURBATIONS

Although manipulations targeting the ongoing control of
standing balance can indicate limits of adaptability in the
controller, there are limitations with interpreting standing
behavior (forces, torques, sway) when sensory cues are
manipulated in isolation. Specifically, while the combination
of sensory cues can be well controlled, manipulations of
the ongoing control of balance do not provide a known
external perturbation signal. Van der Kooij et al. (57) compared

different approaches to assess standing balance and showed
that an external perturbation is needed to characterize the
mechanisms governing balance. Applying imposed perturbations
while controlling specific parameters of the ongoing control of
standing combines the strengths of both approaches, affording
a unique opportunity to reveal operating principles of the
balance system and potentially revealing some of its inherent
limitations. In the following section, we describe how imposed
perturbations during well-controlled sensorymanipulations have
revealed fundamental features of standing balance such as inter-
sensory interactions and re-calibration of sensory feedback loops.
This includes the use of mechanical and robotic balance systems
that allow for the replication of standing balance dynamics and
provide users full control to virtualize parameters of the balance
task. Finally, we briefly present an approach to alter the vestibular
contribution to standing and discuss the resulting adaptation
occurring in the control of standing balance.

Mechanical and Sensory Approaches
Pioneering work using a combination of perturbation approaches
was conducted by Fitzpatrick et al. (130). The authors used
their whole-body equivalent load device to explore how the
vestibular control of standing balance—characterized with EVS-
evoked muscle responses—was modulated by the sensory cues
contributing to postural stability. Fitzpatrick et al. (130) revealed
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strong context-dependency of the vestibular control of standing:
vestibular-evoked muscle responses were absent when subjects
balanced the body-equivalent load using only somatosensory
cues. This suggests that although lower limb somatosensory
cues are sufficient to maintain upright stance, balance-relevant
vestibular feedback is required to engage the response to an
external vestibular perturbation signal (130).

Cenciarini and Peterka (81) combined support surface
perturbations (pseudorandom ankle tilt stimuli and sway-
referenced conditions) with step EVS pulses to test predictions
from their sensory re-weighting hypothesis (20). The authors
showed that the amplitude of vestibular-evoked whole-body
responses increased when concomitant perturbations were
applied to the support surface and were largest when the ankle
joint was sway-referenced. These observations corresponded
well with predictions from their computational model and
were interpreted as providing support for the sensory re-
weighting hypothesis (79, 80, 189, 190). In this case, the
limited balance feedback from the ankle proprioceptors during
sway-referencing was interpreted as requiring an increased
contribution of vestibular signals for standing balance as reflected
by the larger EVS-evoked responses. Note that, as similarly
discussed in section Vestibular Perturbations, support surface
perturbations and sensorimotor manipulations may influence
balance stability which in turn modulates vestibular-evoked
balance responses (138, 139). Carefully designed experiments are
needed to determine the relative contribution of standing balance
state (i.e., angular position and angular velocity) and sensory
re-weighting on the modulation of vestibular-evoked balance
responses.

To take advantage of the possibilities enabled by
manipulations of the balance control loop, our group developed
a robotic system that can replicate and/or modify specific
parameters of the sensorimotor control of standing balance
(Figure 2B) (151). Upright participants are braced to a rigid
backboard mounted atop a six-degree of freedom Stewart
mechanism. Through a computer simulation in which the
mechanics, sensory feedback and environment of standing can
be simulated or altered, the robot rotates the whole-body about
the ankle joints based on the real-time ground reaction forces
and moments applied by the participants. Motion of the robot
can be restricted to the anterior-posterior direction and the
force plates are mounted to an ankle-tilt platform, allowing
independent control of whole-body and ankle movements
(191). When programmed to simulate an inverted pendulum,
movement of the subjects actuating the robot replicates the
torque-angle relationship of the whole-body during unrestricted
standing balance (13). Under these subject-in-the-balance-loop
conditions, a plantar-flexor torque is necessary to maintain the
body in a forward leaning position.

Using this robotic balance simulator, Luu et al. (131)
revisited the hypothesis that balance-relevant vestibular feedback
is required to engage the response to an external vestibular
perturbation signal. First, Luu et al. (131) showed that vestibular
feedback (whole-body sway) independent from the balance task
was not sufficient to elicit muscle responses to vestibular stimuli.
Forbes et al. (139) complemented these findings by allowing

participants to balance only along one plane (anteroposterior
or mediolateral) while controlling the orientation of the head—
and the direction of the vestibular-induced error signal. As the
direction of balance and that of the vestibular error signal rotate
orthogonally to one another, vestibular-evoked muscle responses
are progressively suppressed even though subjects are engaged
in balance. Hence, the vestibular contribution to balance muscle
activity depends not only on the contribution of vestibular
feedback to the ongoing muscle activity but also on the cross-
product of the direction of balance instability and the direction of
the induced vestibular error. Second, Luu et al. (131) addressed
the possibility that balance-relevant vestibular signals must be
temporally and spatially coupled to the motor commands to
engage the vestibular control of standing. Participants stood
atop the robotic balance system under two conditions: (1)
with coupled sensory and motor signals, where subjects actively
controlled the motion of their body in space by modulating
their ankle torques (replicating normal standing), and (2)
with decoupled sensory and motor signals, where the robot
imperceptibly took control and imposed whole-body motion to
the subjects following a pre-determined trajectory independent
of their ankle torques. For the latter condition, subjects continued
to actively modulate their ankle torques despite them not
influencing the motion of their body, thus resulting in a
discrepancy between predicted and actual sensory feedback
associated with the standing balance task. Despite subjects
demonstrating poor conscious awareness of the transitions
between these two conditions (i.e., self vs. robot-controlled
whole-body motion), vestibular-evoked muscle responses were
attenuated when motor and sensory cues of balance were
decoupled. These observations suggest that congruency between
predicted and actual sensory signals is required to engage the
vestibular control of standing balance. One caveat to these
observations, however, is that the congruency of multiple
balance feedback cues (visual, vestibular, somatosensory) was
manipulated simultaneously (i.e., either all congruent or none
were congruent). Hence, it remains unclear how individual
sensory cues interact with the balance responses to vestibular
error signals.

Forbes et al. (139) further used the robotic balance system
to explore the adaptability of the control of standing balance.
They modified the balance simulation by reversing the direction
of whole-body motion produced by the measured ankle torques,
effectively inverting the roles of the muscles controlling balance
in the anteroposterior plane. Subjects were instructed to close
their eyes and the ankle-torque relationship was maintained,
mainly targeting the reversal to vestibular feedback. Under
these reversed conditions, a dorsi-flexor torque is necessary to
maintain the body in a forward leaning position. Participants
adapted within 30–90 s to the reversed balance control. When
EVS was applied, subjects swayed in the same direction for
both the control and reversed balance conditions. To induce
the same whole-body movement, the motor outputs from the
balance controller (e.g., torque and muscle responses), however,
were reversed and delayed. This indicates that the neural centers
controlling standing balance can rapidly integrate the state of the
relationship between motor commands and whole-body sensory
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feedback, and generate appropriate muscle responses to correct
for the induced vestibular error signals. Such swift re-associations
of sensorimotor relationships may reflect our flexibility to
maintain bipedal postures in varied settings, like when stepping
from shore onto a stand-up paddle board. Similar reversals of
vestibulomotor responses have been observed in the vestibulo-
ocular reflex (VOR) during exposure to optical reversals of vision,
although adaptation typically required days or weeks to fully
invert vestibular-evoked eye movements (192–194). Despite the
temporal differences in the balance and VOR adaptation to the
reversals, the detailed characterization of the cellularmechanisms
in the cerebellum and vestibular nuclei involved in the plasticity
of the VOR [see review by Cullen and Mitchell (195)] may
point toward similar neurophysiological processes playing a
role in vestibulomotor adaptations for balance. In non-human
primates, adaptations in neuronal recordings of vestibular nuclei
and cerebellar neurons have been observed on a trial-by-trial
basis (196). Over exposure to a novel relationship between
motor commands and consequent headmovement (altered head-
neck dynamics), neuronal responses adapt from encoding head
motion as externally generated to one that is self-generated. The
multisensory convergence of sensory afferents at the vestibular
nuclei and their projections to descending spinal tracts (197, 198)
suggest that the vestibular nuclei contribute to the adaptive
mechanisms observed in the vestibular control of balance.

Sensory and Sensory Approaches
Carefully manipulating the information from multiple sensory
inputs further allows one to explore inter-sensory interactions
in standing balance. Several groups have investigated how
varying the availability and quality of visual cues interacts with
the vestibular-evoked balance response to EVS (129, 130, 171,
199, 200). Day and Guerraz (171) manipulated the quality
of visual cues providing information regarding whole-body
oscillations during standing balance. Participants stood in a
dark room while viewing nothing, a single light-emitting diode,
a two-dimensional array of light-emitting diodes or a three-
dimensional array of light-emitting diodes. The authors probed
the vestibular control of balance using EVS under these different
conditions to determine how the structure of visual cues related
to standing balance influenced vestibular-evoked responses. In
healthy controls, they showed that the early parts of vestibular-
evoked responses vary when pre-stimulus visual information
differs (i.e., light or dark), even when the post-stimulus feedback
visual environments are equivalent. Feedback effects from the
post-stimulus environment were also observed, affecting the later
parts of the balance response (> ∼400ms). This setting of the
vestibular channel’s gain can explain how vestibular responses
evoked in healthy controls change with the amount of available
visual cues.

Mian and Day (138) explored how sensory information
derived from light touch can influence the direction of the
vestibular-evoked balance response. Standing subjects were
probed with EVS while lightly touching a stationary flat surface
aligned laterally to the subjects. Despite light touch providing
negligible mechanical stabilizing effects on the body, the response
to EVS was biased toward the anteroposterior direction. As

sensory cues from light touch are thought to be transformed
into ongoing proprioceptive feedback for standing balance, this
suggests that the gain of the vestibular-evoked balance response is
spatially-modulated by the orientation (or direction) of balance-
relevant proprioceptive feedback. Careful interpretation of these
findings is warranted because light touch also reduced whole-
body sway in the mediolateral plane.

As stated above, Héroux et al. (186) designed biologically-
plausible head-coupled electrical vestibular stimuli to manipulate
vestibular gain in healthy volunteers standing upright on foam
with eyes closed. While balance oscillations increased four-fold
when the electrical stimuli were applied (some subjects needed
support to avoid a fall), the amplitude of the vestibular-evoked
muscle responses (probed with an independent low-amplitude
EVS signal) decreased. The authors further evaluated whether
the participants could adapt to ongoing modulation of the
vestibular cues associated with standing balance. The critical
concept here was to determine if an imposed vestibular error
signal that is coupled to the ongoing control of quiet standing
balance can be calibrated and incorporated in the balance
control loop. Participants were exposed to a re-calibration period
of 240 s where the in-the-loop modified vestibular cues were
provided with no foam and/or eyes open. Following this period,
participants could maintain standing balance (on foam with eyes
closed): postural sway and vestibulomotor response amplitudes
returned to baseline. These results could not be explained by
a down-regulation (or reweighting) of vestibular cues because
matching levels of EVS that were uncoupled from head motion
(hence remained an external imposed perturbation) did not
yield any adaptation following a 240s re-calibration period.
Instead, these observations indicate that the balance controller
can integrate an external vestibular error signal into its control
loop and likely interpret it as a self-generated signal as long as that
signal follows the expected sensory dynamics encoding ongoing
quiet standing balance. Consequently, a vestibular signal that was
deemed an error signal before re-calibration was transformed
into a meaningful signal that was used to maintain upright
balance.

FUTURE DIRECTIONS

Sensorimotor manipulations of the balance control loop can
target how muscle activation is related to the ground reaction
forces and moments acting on the subject as well as the
sensory feedback experienced (perceived or not) by participants
maintaining standing balance. Critical questions to address
include determining the influence of the state of standing balance
stability [see (138, 139)] on imposed perturbations, how sensory
signals are used to control standing balance under challenging
conditions along with the limits of our capability to maintain
upright stance. As a specific example, Luu et al. (131) proposed
that a spatial and temporal relationship between sensory and
motor signals is required to engage the vestibular control of
standing balance. The factors underlying this spatio-temporal
relationship need to be explored as well as their influence on
our capability to remain upright. Future experiments should
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also target how imposed visual perturbations are integrated in
the control of standing balance under manipulations similar to
those explored using imposed electrical vestibular stimuli (131,
138, 139) to determine if previous findings can be generalized
and truly reflect fundamental mechanisms of the balance control
loop. Building on the work from Héroux et al. (186), it is
also conceivable to imagine innovative ways to characterize the
unique contribution of sensory cues to the control of standing
balance. As we learn more about the dynamics of standing and
the resulting code from specific sensory afferents, artificial stimuli
can be envisioned to replicate the neural code and assess its
contribution to standing. For example, knowledge regarding the
firing behavior of muscle spindle afferents during upright stance
would permit the creation of a range of stimuli (intraneural
electrical, mechanical or miniaturized robotics) to mimic it. The
keys to such endeavors include a better understanding of the
physiological code underlying standing balance and concerted
efforts to replicate it during well-controlled balance-relevant
experiments.

CONCLUSIONS

We have reviewed externally imposed perturbations and
manipulations of the balance control loop that can be used
to reveal the multisensory cue integration, task-dependent
sensory processing and sensorimotor adaptation underlying
the control of standing balance. We presented imposed
external perturbations that elicit postural responses when
the stimulus is related to the context of standing balance.
These balance-specific approaches can provide important
insight on the factors influencing the control of standing

balance. We also described manipulations of the balance
control loop which allow for the modification of mechanical
and/or sensory dynamics to target the ongoing control
of standing balance. Finally, we presented how combining
imposed perturbations and manipulations of the balance
control loop, including robotics and sensory manipulations,
can reveal important principles underlying the maintenance
of standing balance such as spatio-temporal congruency
between sensory and motor signals, rapid re-association of
sensorimotor relationships and re-calibration of vestibular
signals in the balance control loop. We reason that by
carefully considering the neural code of quiet standing, well-
controlled experiments can utilize these combined imposed
perturbations and manipulations of the balance control loop
approaches to uncover the fundamental mechanisms of balance
control.
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