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The role of poly(ADP-ribose) polymerase-1 (PARP1) in DNA repair and as a potential target
for anticancer therapy has been under investigation for more than 50 years. The field has expanded
over the decades to include not only a family of ADP-ribosylating enzymes (PARPs/ARTDs), but also
interacting and polymer-degrading proteins. In this special issue of Cancers primary research articles
and reviews describe various aspects of PARP biology along with therapeutic targeting. Some historical
perspective is reviewed along with the development of the PARP inhibitor (PARPi), rucaparib/Rubraca®,
including the identification of the synthetic lethality with homologous recombination repair (e.g., BRCA)
defects [1]. Further consideration of the mode of action of several PARPi and their interaction with
cytotoxic chemotherapy is described by Min and Im [2], and the evidence for a unique mode-of-action
of another PARPi, PJ34 [3] is summarized. Several other aspects of PARPi therapy are described,
including research indicating the therapeutic potential of the PARPi, olaparib, as a single agent in
myelodysplastic syndromes, not only through cytotoxic and cytostatic effects but also through the
induction of differentiation [4], along with the augmentation of UVB-induced DNA damage and
mitochondrial alterations resulting in reduced proliferation and viability of keratinocytes [5]. On the
other side of the coin, deficiency of the enzyme that degrades the PARP-generated ADP-ribose polymers,
PARG, in ES cells resulted delayed tumour growth when they were implanted SC and increased
antitumour activity of X-rays [6].

Moving PARPi therapy beyond BRCA mutated cancers requires the use of biomarkers to predict
PARPi sensitivity as reviewed by Singh et al. [7]. The role of defects in the G1 cell cycle checkpoint
signaling kinase, ATM, as a determinant of sensitivity to PARPi was reviewed, with the finding that
PARPi alone are cytostatic in ATM defective cancer cells but require the addition of an inhibitor
of the S/G2 cell cycle checkpoint kinase, ATR, to induce cell death [8]. An investigation of the
synergy between the PARPi, olaparib, and the ATR inhibitor VE-821 in a panel of neuroblastoma
cells, revealed that it was independent of MYCN or ATM status in these cells [9] and similar studies
identified that the synergy between an inhibitor of the S/G2 cell cycle checkpoint kinase, CHK1, and the
PARPi, rucaparib was largely through the impairment of homologous recombination repair by the
CHK1 inhibitor [10]. Depletion of p60/150 CAF-1 also impaired homologous recombination repair
thereby inducing sensitivity to PARPi and irradiation in head and neck cancers with therapeutic
implications [11]. Interestingly, depletion of NMNAT1, which is involved in the synthesis of NAD+,
PARP’s substrate, induced DNA damage and sensitized cells to cisplatin but exhibited redundancy
with PARPi in this respect [12]. Inhibition of EGFR or Syk (which mediates EGFR signaling) was
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synergistically cytotoxic in combination with olaparib in squamous cell carcinoma cells suggesting
therapeutic potential [13].

Of course, resistance to PARPi is an emerging problem clinically and the role of the PI3K-AKT
pathway in protection from PARPi-induced cytotoxicity and its significance in shock, inflammation,
ischemia-reperfusion injury and cancer is reviewed by Gallyas et al. [14]. Interestingly, gastric cancer
cell lines made resistant to olaparib were found to be cross-resistant to cisplatin, but had increased
sensitivity to irinotecan due to upregulation of TOP1 and TDP1, which has therapeutic implications
for patients who develop PARPi resistance [15].

PARP has been investigated as a regulator of transcription and key roles regarding the role of
PARP both in nucleolar function in relation to cancer biology and the role PARylation plays in the
regulation of transcription were reviewed [16,17]. With original research showing that PARylation
activates the histone acetyl transferase, EP300, contributing to its regulation of transcription of DNA
repair and proliferation genes [18].

An important factor in cancer biology is the tumour microenvironment and the interaction
between PARP and key features of the tumour microenvironment such as autophagy, hypoxia and
angiogenesis was reviewed [19]. There is significant interest in the immune microenvironment and
the roles of both PARP1 and PARP2 in modulating both the innate and adaptive immune system
was reviewed by Yelamos et al. [20], with the therapeutic potential of the combination of PARPi with
immune checkpoint inhibitors, including translational and clinical studies were reviewed by Peyraud
and Italiano [21].

Feijs and colleagues [22] reviewed the roles of ADP-ribosyl hydrolases, also involved in the
degradation of ADP-ribose and poly(ADP-ribose) chains, MACROD1, MACROD2 and TARG1 in
carcinogenesis. The role of ARH1, another degradatory enzyme, was reviewed by Ishiwata-Endo and
colleagues [23] in cancer and non-cancer diseases.

The roles for poly(ADP-ribosyl)ation in biochemistry, cell biology, physiology and pathophysiology
are rapidly expanding, the findings discussed in the “PARPs, PAR and NAD Metabolism and Their
Inhibitors in Cancer” special issue of Cancers will surely provide a better understanding of these
processes and widen the scope of our appreciation of poly(ADP-ribosyl)ation.
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