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Abstract

Motivation: Single-cell Hi-C (scHi-C) data promises to enable scientists to interrogate the 3D archi-

tecture of DNA in the nucleus of the cell, studying how this structure varies stochastically or along

developmental or cell-cycle axes. However, Hi-C data analysis requires methods that take into ac-

count the unique characteristics of this type of data. In this work, we explore whether methods that

have been developed previously for the analysis of bulk Hi-C data can be applied to scHi-C data.

We apply methods designed for analysis of bulk Hi-C data to scHi-C data in conjunction with un-

supervised embedding.

Results: We find that one of these methods, HiCRep, when used in conjunction with multidimen-

sional scaling (MDS), strongly outperforms three other methods, including a technique that has

been used previously for scHi-C analysis. We also provide evidence that the HiCRep/MDS method

is robust to extremely low per-cell sequencing depth, that this robustness is improved even further

when high-coverage and low-coverage cells are projected together, and that the method can be

used to jointly embed cells from multiple published datasets.

Contact: liu6@uw.edu or william-noble@uw.edu

1 Introduction

High-throughput DNA sequencing technology now allows us to reli-

ably measure many genomic features at the single-cell level, includ-

ing RNA-seq for RNA expression (Tang et al., 2009), ATAC-seq for

chromatin accessibility (Cusanovich et al., 2015), and Hi-C for 3D

genome architecture (Nagano et al., 2013). In principle, these tech-

nologies provide scientists with the opportunity to understand many

aspects of fundamental functional processes in the cell, including

gene regulation and DNA replication. However, such understanding

likely cannot be achieved via analytical methods that fail to accur-

ately capture the complexities of these types of data.

In particular, single-cell assays introduce a new axis of vari-

ation—cell-to-cell variability—that is not directly observable in data

derived from a bulk sequencing assay that profiles an aggregate of

many cells. In some cases, independent labeling of cells via, e.g. fluo-

rescence-activated cell sorting (FACS) can identify cellular states for

use in a supervised analysis. This type of labeling experiment,

however, is more costly, lower throughput, and only applicable in a

limited range of experimental systems. Thus, in most experimental

settings, automated methods for characterizing cell-to-cell differen-

ces are useful.

A variety of methods have been developed for the unsupervised

analysis of single-cell RNA-seq data. These methods employ a wide

variety of analytical techniques. Monocle uses independent compo-

nent analysis, followed by a minimum spanning tree to recover

lineages (Trapnell et al., 2014). Its successor, Monocle 2, uses a

reversed graph embedding algorithm (Qiu et al., 2017). Other meth-

ods for scRNA-seq analysis use principal components analysis and

hierarchical clustering (pcaReduce) (Zuraskiene and Yau, 2016),

clustering based on approximate nearest neighbors (scmap) (Kiselev

and Hemberg, 2017), biclustering (BackSpin) (Zeisel et al., 2015), a

latent variable model (svLVM) (Buettner et al., 2015), bifurcation

analysis of a nearest neighbor graph (Wishbone) (Setty et al., 2016),

a hidden Markov model coupled with probabilistic Kalman filtering

(TASIC) (Rashid et al., 2017) and a latent Dirichlet allocation model

(cellTree) (Yotsukura et al., 2016).

In this work, we focus on unsupervised methods for characteriz-

ing cell-to-cell variability in single-cell Hi-C (scHi-C) data. We

choose to focus on Hi-C data because of the relative sparsity of

existing methods for analyzing this type of data, and because we be-

lieve that scHi-C data will become increasingly valuable for the

study of diverse developmental and disease-related processes. None
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of the methods developed for analysis of scRNA-seq data can be

applied directly to scHi-C data.

For scHi-C data, most existing analyses of cellular heterogeneity

have focused on the so-called ‘contact distance profile’ (CDP)

of each individual cell (defined below). The output of a Hi-C experi-

ment is typically summarized in a Hi-C matrix M, where rows and

columns of M correspond to fixed-width genomic loci (typically

using bin sizes of 40 kb or 100 kb). In this matrix, the value Mi;j is

an integer count (or a normalized version thereof) representing the

number of observed paired-end reads uniquely linking locus i to

locus j. We refer to these paired-end reads as ‘contacts’ and to ma-

trix M as a ‘contact matrix.’ With this input, the contact probability

P(s) is defined as the proportion of intrachromosomal contacts that

link pairs of loci separated by s bins along the genomic axis:

P sð Þ ¼
Pn�s

i¼1 Mi;iþsPn
i¼1

Pn
j¼1 Mi;j

(1)

Working with bulk Hi-C, Naumova et al. showed that the contact

probability function differs between mitotic and interphase cells

(Naumova et al., 2013). In the single-cell setting, the data consist of

a series of matrices, so that Mi;j;k is the contact count for loci i and j

in cell k. In this setting, we can compute a contact probability func-

tion separately for each cell. Accordingly, Nagano et al. used the val-

ues of P(s) for s ¼ 1; . . . ;n as a vector representation of individual

cells in a scHi-C experiment. They defined the proportion of near

contacts pnear ¼
P2:2Mb

s¼22:6kb P sð Þ and the proportion of mitotic con-

tacts pmitotic ¼
P11:3Mb

s¼2:2Mb P sð Þ, and then separated the single cells into

different cell-cycle stages by thresholding pnear and pmitotic. Nagano

et al. demonstrated that the resulting cell-cycle phases largely agree

with labels derived from FACS labeling (Nagano et al., 2017). The

contact probability profile approach has also been adopted by other

scHi-C analyses, including the work of Flyamer et al. (2017) and in

the analysis of data generated by an alternative scHi-C protocol

(Ramani et al., 2017).

The current work is motivated in part by the observation that

the contact probability profile captures only one aspect of genome

3D architecture. In particular, this profile focuses on the DNA self-

interaction profile and omits structural information, such as where

individual contacts lie along the genome, as well as higher-order

properties of DNA structure such as loops and domains (Dixon

et al., 2012; Rao et al., 2014). We are interested in exploring alter-

native analytical techniques for scHi-C data that retain a richer rep-

resentation of the underlying data.

Although scHi-C analyses have relied almost exclusively on the

contact probability profile, a variety of methods have been devel-

oped for evaluating the reproducibility of bulk Hi-C datasets

(reviewed in Yardimci et al., 2017). The first such method, HiCRep,

first smooths the Hi-C contact matrix and then computes a weighted

similarity measure separately at each genomic distance (Yang et al.,

2017). GenomeDISCO treats the Hi-C matrix as a weighted net-

work, applying a random walk to smooth the matrix and then com-

puting an L1 similarity score (Ursu et al., 2017). HiC-Spector

transforms the Hi-C contact map to a Laplacian matrix and then

summarizes the Laplacian by matrix decomposition (Yan et al.,

2017). Finally, QuASAR calculates an interaction correlation

matrix, weighted by interaction enrichment (Sauria and Taylor,

2017). Critically, each of these four reproducibility measures was

specifically designed to capture the biologically relevant signal in a

noisy Hi-C dataset, while reducing ‘uninteresting’ similarities.

Accordingly, we hypothesized that these methods might be useful

for characterizing cell-to-cell variability in scHi-C data, and we set

out to test this hypothesis empirically. Our tests focus on HiCRep,

GenomeDISCO and HiC-Spector, because we failed to get the

QuASAR software to run on our datasets.

Our experiments suggest that HiCRep performs significantly bet-

ter than GenomeDISCO and HiC-Spector when the methods are

used in conjunction with multidimensional scaling (MDS) to embed

scHi-C data into two dimensions. In addition, the HiCRepþMDS

method approach outperforms contact-distance-based methods for

separating cells at different stages of the cell cycle. The HiCRep-

based embedding approach is also quite robust with respect to the

number of contacts required per cell: even with as few as 10 000

contacts per cell, the method accurately orders cells by their cell-

cycle phase. We are particularly interested in characterizing cells

with even fewer counts, because the newer scHi-C assay based on

combinatorial barcoding produces data from many single cells but

with lower average sequencing depth (Ramani et al., 2017).

Accordingly, we demonstrated that even with very shallow sequenc-

ing (1k contacts per cell), the cell cycle can be called accurately as

long as the cells are projected jointly with other, more deeply

sequenced cells. Finally, we demonstrate that our proposed embed-

ding approach supports joint projection of multiple scHi-C data,

offering the potential to compare cells across different studies that

capture diverse cell types or developmental stages.

2 Materials and methods

2.1 Datasets
Two sets of single-cell Hi-C datasets from recent studies are used in

our experiments. Both datasets are from the mouse cells and were

mapped to the mouse genome assembly mm9.

2.1.1 Cell-cycle dataset

The first set of scHi-C data (Nagano et al., 2017) consists of 1171

scHi-C contact maps from F1 hybrid 129� Castaneus mouse embry-

onic stem cells (ESCs). These cells were grown in 2i medium without

feeder cells, tested for mycoplasma contamination, and screened

based on Oct-3/4-immunoreactivity, so that there is no differentiation

among the cell population. The cell-cycle phase of each cell was deter-

mined based on levels of the DNA replication marker geminin and

DNA content measured via FACS. This analysis assigned 280 cells to

the G1 phase, 303 cells to early-S, 262 cells to mid-S and 326 cells to

late-S/G2. The scHi-C libraries were sequenced to produce 0.89 mil-

lion reads per cell on average, with per-cell coverage ranging from a

minimum of 0.63 M to a maximum of 1.05 M. For each cell, uniquely

mapping read pairs were aggregated into contact matrices with bins

of 500 kb. In the resulting matrices, the total number of distinct con-

tacts per cell ranges from 20 to 654 k with a median 273 k.

2.1.2 Oocyte–zygote dataset

The second set of scHi-C data contains 40 transcriptionally active

immature oocytes [non-surrounded nucleolus (NSN)], 76 transcrip-

tionally inactive mature oocytes [surrounded nucleolus (SN)], 30

maternal nuclei from zygotes and 24 paternal nuclei from zygotes.

Both the maternal and paternal nuclei from zygotes are predomin-

antly in the G1 phase. The number of contacts from the four types

of cells are, respectively in the ranges of [1.4 k, 1.65 M], [1.2 k,

1.03 M], [4.8 k, 288 k] and [2.9 k, 294 k] with medians 66 k, 235 k,

97 k and 117 k, respectively. Note that the scHi-C protocol used

to generate this dataset differs markedly from the one used for the

cell-cycle dataset, resulting in approximately 10-fold more contacts

per cell.
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2.2 Similarity and distance measures for scHi-C

contact maps
In this study, we consider one distance measure and three similarity

measures for scHi-C contact maps.

The distance is based on the CDP of the Hi-C contact maps,

described by Equation (1). To compute the distance, we first build

a vector representation C of the CDP for each chromosome c of

each cell k, where one CDP entry corresponds to one contact

distance, i.e.

Cc;k sð Þ ¼
PBc�s

i¼1 Mi;iþs;kPn
i¼1

Pn
j¼1 Mi;j;k

(2)

where s is the distance in units of the contact matrix bin size (i.e.

500 kb in this work), and Bc is the number of bins in the chromo-

some. We sum Cl;k sð Þ over all chromosomes and then normalize to

get the CDP for each cell:

Ck sð Þ ¼
P

c Cc;k sð ÞPB
s0¼1

P
c Cc;k s0ð Þ

; (3)

where B is the number of bins in the largest chromosome. For

shorter chromosomes, the contact profile values for bins beyond the

end of the chromosome are set to zero. Finally, we compute the dis-

tance between two cells using the Jensen–Shannon divergence (JSD)

between the CDPs:

Di;j ¼
1

2

XB

s¼1

Ci sð Þ log2

2Ci sð Þ
Ci sð Þ þ Cj sð Þ þ Cj sð Þ log2

2Cj sð Þ
Ci sð Þ þ Cj sð Þ

� �
(4)

We term this contact-distance-based measure ‘CDP-JSD’.

The other three measures directly estimate the similarity from

the Hi-C contact matrices. All three methods have been described

previously, so we only provide a brief overview here.

HiCRep (Yang et al., 2017) consists of three steps. First, the

Hi-C matrix is smoothed using the 2D equivalent of a sliding win-

dow smoothing operation: the observed contact count for loci i and

j is replaced by the sum of contacts between loci in fixed-size win-

dows around i and j. In this work, we follow the recommendations

from the original HiCRep paper and use a window size of 3 (i.e.

i� 1; i; iþ 1) for Hi-C matrices with 500 kb bins. Second, the Hi-C

contacts are stratified by genomic distance, and a standard Pearson

correlation is computed separately for each distance. Third, a novel

statistic, the ‘stratum-adjusted correlation coefficient’ (SCC), is com-

puted as a weighted average of the distance-specific Pearson correl-

ation, with weights derived using the Cochran–Mantel–Haenszel

statistic. The SCC has a range of 1;�1½ � and is interpreted similarly

to the standard correlation coefficient.

GenomeDISCO (Ursu et al., 2017) performs a series of smooth-

ing operations on the Hi-C matrices and then calculates a pairwise

similarity score separately at each smoothing level. The smoothing is

performed using a network diffusion operation, where the nodes in

the network are genomic loci and weighted edges are the contact

counts in the Hi-C matrix. The diffusion operation effectively calcu-

lates, for each pair of loci i and j, the probability that a random

walk will traverse the network from i to j. The smoothing level is

controlled by raising the Hi-C matrix to the power t, where smaller

values of t perform local smoothing and vice versa. The score for

two matrices is the L1 distance (i.e. the sum of the absolute values in

the difference matrix). These scores are summed across multiple val-

ues of t and then normalized to the range �1;1½ �, where 1 corre-

sponds to identical matrices.

HiC-Spector (Yan et al., 2017) begins by computing, for each

Hi-C matrix M, the corresponding Laplacian matrix L ¼ D�M,

where D is a diagonal matrix in which Dii ¼
P

j Mij. The matrix L is

then normalized by the transformation D�1=2LD�1=2, and its leading

eigenvectors are found. The HiC-Spector score is defined as

Sd A;Bð Þ ¼
Xr

i¼1

jjvA
i � vB

i jj (5)

where vA
i is the ith normalized leading eigenvector, and r is a user-

specified parameter. The score is then linearly rescaled to the range

0;1½ �. In this work, the parameter r is set to 2.

We converted the three similarity measures to distances by treat-

ing each similarity as the cosine of the angle between two Hi-C

matrices in some implicit high-dimensional space. This approach is

justified because all of the eigenvalues of the similarity matrices

are positive. Accordingly, the Euclidean distance between two

Hi-C matrices Mk and Mk0 can be computed as d Mk;Mk0ð Þ ¼ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
k Mk;Mkð Þ � 2k Mk;Mk0ð Þ þ k Mk0 ;Mk0ð Þ

p
; where k Mk;Mk0ð Þ is a

positive semidefinite similarity function.

We considered including several other possible measures, but

ended up not using them. We did not use QuASAR (Sauria and

Taylor, 2017) because the software was not working properly at the

time we did our analysis. We also did not use the Pearson correl-

ation coefficient [even though this measure has been used in some

published studies (Dixon et al., 2015; Hu et al., 2012; Tjong et al.,

2012)] because recent work shows that this approach does a mark-

edly poor job of capturing relevant features of Hi-C data (Yardimci

et al., 2017).

2.3 The similarity-based embedding approach
In this work, we focus on dimensionality reduction techniques,

because projection to 2D provides an intuitive way to understand

complex datasets. In general, most dimensionality reduction

methods can be placed into one of two categories: feature-mapping

approaches versus distance-preserving approaches. Feature mapping

approaches directly find a mapping function from the original,

high-dimensional space to a low-dimensional space, subject to some

optimization goal. A commonly used feature mapping technique is

principal component analysis (PCA), which aims to find a linear

transformation of a given set of features while preserving, as much

as possible, the variance of the original data. In contrast, distance

preserving approaches project the data points to a low-dimensional

space in which the original pairwise distances (or similarities) be-

tween pairs of data objects is preserved. MDS (Kruskal and Wish,

1977) is a canonical example of a distance-preserving approach.

Although in principle a feature mapping technique can be applied

directly to the Hi-C contact matrix by treating each matrix entry as

a feature, such an approach is unlikely to accurately account for the

complex features of Hi-C data. Such features include noise charac-

teristics that are unique to Hi-C data, the tendency for pairs of loci

that are close together along the genomic axis to come into contact

frequently (the ‘genomic distance effect’), an topological features

such as territories, domains and loops. To make good use of existing

approaches like HiCRep, GenomeDISCO and HiC-Spector that

compute pairwise similarities between Hi-C matrices, we therefore

chose MDS as our embedding approach.

The four sets of distances from Section 2.2 are provided as input

to MDS, which is then used to project the data to two dimensions.

We then order the cells by their projected angles. The projected

angle Ai of cell i is the arc-tangent of its Euclidean coordinates xi

and yi, i.e. Ai ¼ arctan xi � x0; yi � y0ð Þ, where (x0, y0) is the origin

i98 J.Liu et al.
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of the projection. We set x0 and y0 as the average of xi and yi across

the cell population. In the end, we order the cells by their projected

angles.

2.4 Assessing cell-cycle ordering
To evaluate the quality of a given method for ordering cells on the

basis of Hi-C data, we need a way to quantify the agreement be-

tween an inferred ordering of cells and a given set of cell-cycle phase

labels. To this end, we developed the ‘averaged circular ROC’ that

generalizes the standard receiver operating characteristic analysis to

this multi-class, circular setting. The general idea is to treat each re-

spective phase of the cell cycle in a one-versus-the-rest fashion and

to modify the usual ROC calculation to take into account the circu-

lar nature of the cell cycle.

More formally, the procedure proceeds as follows: say that our

inference method assigns a cell-cycle angle to each of n cells

(h1; . . . ; hn), and that we are also provided with corresponding labels

for each cell (‘1; . . . ; ‘n). For each cell, we know that 0 � hi < 2p

and that 1 � ‘i < m, where m is the number of labeled phases of

the cell cycle. To compute the circular ROC (CROC) score, we

designate one label type as the positive class and all other label

types as negative. This designation effectively transforms the multi-

nomial labels into binary labels. For the positive class, we assume

that the angles follow a von Mises distribution (also known as a

circular normal distribution) and identify the mean angle h� as the

maximum likelihood estimate of its mean parameter. Subsequently,

we compute the minimal absolute difference between each cell’s

assigned cell-cycle angle and the mean angle: bh i ¼ min

jhi � h�j; jhi � 2p� h�jð Þ: The ROC calculation is then performed

as usual, but using the binary labels and sorting cells according tobh i. We then repeat this CROC calculation for each label type. The

final score is the average of the area under curve of the CROC calcu-

lation (ACROC) across all m labels.

3 Results

3.1 Investigation of four potential distance measures
Initially, we evaluated the utility of the four distance measures

(CDP-JSD, HiCRep, GenomeDISCO and HiC-Spector) based on

their ability to project cells with known cell-cycle phases. For this

analysis, we selected 120 cells at random from the cell-cycle dataset

(Nagano et al., 2017), including 30 cells from each of the four cell-

cycle phases (G1, early-S, mid-S and late-S/G2). Applying our MDS

embedding approach, we observe that HiCRep yields a projection

that is markedly (albeit qualitatively) better than the other three: the

resulting plot exhibits a clear circular pattern with the cells from the

four cell-cycle phases placed in the correct order, G1 ! early-S !
mid-S ! late-S/G2 ! G1 (Fig. 1). The MDS projections from

GenomeDISCO and CDP-JSD also show some separation among

the four cell-cycle phases, but no circular pattern is observed. In the

projection produced by HiC-Spector, cells from different phases mix

together.

Next, we developed a method (described in Sections 2.3–2.4) to

assign cell-cycle angles to each cell and then to quantitatively com-

pare the inferred angles to the true phases derived from the orthog-

onal FACS and DNA content analysis. This evaluation yields a

receiver operating characteristic curve for each phase of the cell

cycle, along with an average score, the averaged circular ROC

(ACROC). The quantitative results agree with the qualitative ana-

lysis: the ACROC achieved by HiCRep (0.940) is much greater than

the scores achieved by the other three methods (0.816 for

GenomeDISCO, 0.651 for HiC-Spector and 0.834 for CDP-JSD).

Based on this analysis, we selected HiCRep as our primary dis-

tance measure. In the rest of the manuscript, we further explore its

utility in making sense of scHi-C data.

3.2 Comparison to a previously described cell phasing

method
We next compare the cell-cycle phasing produced by our HiCRep/

MDS projection with the phasing reported in Figure 2b of Nagano

et al. (2017). For this analysis, we exclude the 120 cells used in pre-

vious experiment, focusing on the remaining 1051 cells from the

cell-cycle dataset. This cell-cycle phasing is derived from two differ-

ent data sources: the CDPs from the scHi-C data and replication

timing information from mouse Repli-chip data (Mouse ENCODE

Consortium, 2012). For each cell, Nagano et al. calculate a ‘replica-

tion score’ based on the relative coverage of early-replicating

regions, as determined from the Repli-chip data. Specifically, they

classify each cell into one of five stages (post-M, G1, early-S/mid-S,

mid-S/G2 and pre-M) by thresholding the proportion of near con-

tacts (pnear) and the proportion of mitotic contacts (pmitotic). They

further order the cells within each of the five stages separately. For

ordering cells in pre-M and post-M, they use pmitotic only. For order-

ing cells in G1, they use pnear and a score based on the mean contact

distance among the contacts longer than 4.36 million basepairs. For

ordering cells in early-S/mid-S and mid-S/G2, they use pnear and the

replication score. As a baseline, we also include in our comparison

the cell-cycle ordering produced by the aforementioned CDP-JSD/

MDS approach, which represents the contribution from the CDP

only.

This second set of projections confirms the utility of the HiCRep

representation and suggests that the Nagano et al. procedure also

produces accurate phasing (Fig. 2a). Visually, the projection of the

1051 cells by HiCRep/MDS again yields a clear circular pattern

Fig. 1. MDS projections of 120 cells from the four cell-cycle phases when the

distance measure is calculated using HiCRep, GenomeDISCO, HiC-Spector

and CDP-JSD
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with the cells from the four cell-cycle phases placed in the correct

order. In contrast, the CDP-JSD representation yields a non-circular

cluster. The ACROC score from HiCRep/MDS is 0.936, which out-

performs the Nagano et al. cell-cycle order reported by 0.025

(Fig. 2c). Investigating the CROC for the four cell-cycle phases, we

observe that HiCRep/MDS outperforms the Nagano et al. method

in the early-S, mid-S and late-S/G2 phases (0.966 versus 0.942,

0.928 versus 0.857 and 0.917 versus 0.879, respectively). HiCRep/

MDS only underperforms the Nagano et al. method for the G1

phase (0.932 versus 0.968). The performance of the CDP-JSD/MDS

method, which only uses the CDP to evaluate distance, further con-

firms this result because it yields a high CROC for G1 (0.931) and

low CROCs for the other three phases (0.627, 0.759 and 0.820 for

early-S, mid-S and late-S/G2 phases, respectively). Thus, it seems

that the CDP information is particularly useful in identifying cells in

G1, and that replication timing information is helpful in fully order-

ing cells according to their cell-cycle phases.

Motivated by the performance of CDP-JSD/MDS in G1, we

hypothesized that adding contact distance information to HiCRep

may lead to improved performance. To test this hypothesis, we

summed the HiCRep distance and the CDP distance and then

applied MDS to the summed distances (termed combined/MDS).

This combined/MDS approach further improves HiCRep/MDS

for phasing cells in G1 phase and late-S/G2 phase by increasing

the ACROC from 0.932 to 0.964 and from 0.917 to 0.940, respect-

ively. The performance for early-S and mid-S does not improve, sug-

gesting that CDP information primarily helps to separate cells in G1

versus G2.

3.3 The method works even with very few contacts

per cell
In contrast to the single-cell Hi-C protocol proposed by Nagano

et al., which involves physically isolating individual cells and then

amplifying and sequencing their DNA, single-cell combinatorial

indexed Hi-C (sciHi-C) (Ramani et al., 2017) uses a series of bar

codes applied to cells that are randomly distributed in 96-well

plates. The sciHi-C assay produces data from a much larger number

of cells but characterizes each cell with much lower numbers of read

pairs per cell. Therefore, we next investigate the robustness of the

HiCRep/MDS methodology to reduced coverage in the Hi-C contact

maps. In the 1051 cells used in Section 3.2, the number of contacts

ranges from 20k to 654k, with a median 273k. We select the 20%

of the cells with the lowest contact count (median 87.7k). We then

(a) (b)

(c)

Fig. 2. Comparison relative to the cell-cycle order from Nagano et al. (a) Projection of 1051 cells via HiCRep/MDS, CDP-JSD/MDS and combined/MDS. (b) CROC

curves from HiCRep/MDS, CDP-JSD/MDS, combined/MDS and Nagano et al. for the four cell-cycle phases. (c) Area under CROC curves from four approaches in

the four cell-cycle phases and the average CROC over the four cell-cycle phases
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randomly downsample the data so that each cell contains 10k, 5k,

2k or 1k contacts.

Projecting this series of five increasingly sparse datasets shows

the separation of the four cell-cycle phases gradually disappearing as

the number of contacts in the Hi-C contact maps decreases (Fig. 3).

Qualitatively, the initial set with median count 87.7k produces a

circular pattern that resembles that produced by the full set in

Figure 2a, but then the circular pattern decreases until it disappears

entirely when the number of contacts drops to 2k or lower. This

trend is captured quantitatively by the ACROC analysis (Fig. 3f).

All of four cell-cycle phases exhibit a similar degradation, although

early-S is somewhat more robust to lower coverage. This observa-

tion suggests that the DNA structure changes occurring during

early-S phase can be relatively easily captured by HiCRep. Overall,

we conclude from this analysis that the HiCRep/MDS approach is

quite robust and can provide a satisfactory projection as long as the

number of contacts is above 5k.

3.4 Joint projection with high-coverage cells improves

phasing of low-coverage cells
In practice, single-cell Hi-C protocols yield cells with a wide variety

of sequencing depths. Accordingly, we want to know whether

we can improve our ability to embed cells with low-coverage by

embedding them jointly along with other, higher coverage cells. We

therefore projected the remaining 80% of the cells, along with the

low-coverage cells downsampled to 1k, in a single projection

(Fig. 4a). Intriguingly, the downsampled cells form a concentric ring

inside the ring formed by the original dataset. Zooming in on the

downsampled cells (Fig. 4b), we can see that segregation of cells by

cell-cycle phase is maintained in this ‘inner ring.’ ACROC analysis

(Fig. 4c) confirms that including the higher coverage cells ‘rescues’

the cell-cycle phasing: when projected alone, the 1k cells achieve an

ACROC of 0.710, whereas the same cells achieve an ACROC of

0.883 when projected jointly with the remaining 80% of the cells.

To further test this idea, we split the remaining 80% of the cells into

two equal sized groups (‘mid’ coverage and ‘high’ coverage).

ACROC analysis (Fig. 4c) shows that including either one of these

groups of cells along with the 1k set successfully rescues the

ACROC of the 1k set. These results suggest that our proposed

embedding methodology can be applied to scHi-C data from cells

with varying sequence coverage, and that the presence of the higher

coverage cells will help to properly embed the lower coverage cells.

3.5 Cell-cycle phased scHi-C data is indicative of

replication timing
To further validate the quality of the cell-cycle phasing information

inferred by the HiCRep/MDS approach, we investigate the relation-

ship between a cell’s assigned cell-cycle phase and sequencing depth

in regions of the genome with known replication times. The motiv-

ation is that as the cell enters the early-S phase when DNA replica-

tion starts, the coverage of early replication regions from Hi-C data

should increase, compared with the coverage of late replication

regions. Conversely, when the cell reaches the late-S phase when

Fig. 3. Downsampling analysis demonstrates that HiCRep/MDS projection is robust to decreasing coverage. (a) Projection of the low contact number set (bottom

20% with a median contact count 87.7k). (b–e) Projection of the same set of cells when they are downsampled to 10k, 5k, 2k and 1k, respectively. (f) The area

under the circular ROC curves from different sets of downsampled cells for different cell-cycle phases (G1, early-S, mid-S and late-S/G2) and the average over the

four cell-cycle phases
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DNA replication is about to end, the coverage of the late replication

regions will gradually catch up.

To test our hypothesis, we select two previously identified early

replication regions (chr1: 36.5M–37M and chr1: 72.5M–73M)

and two late replication regions (chr1: 20M–20.5M and chr1:

30M–30.5M) according to the Mus musculus 129ES-D3 Repli-

chip (replicate 1) dataset (Mouse ENCODE Consortium, 2012).

We plot each cell’s coverage of this region versus the cell’s phase

angle, as inferred by HiCRep/MDS. The early replication regions

show a clear increasing–decreasing trend during S phase, and the

coverage of the late replication regions shows the opposite

decreasing–increasing trend (Fig. 5). These results suggest that the

inferred phasing agrees with prior knowledge about DNA replica-

tion timing.

Fig. 4. Joint projection of low quality cells with high quality cells. (a) Projection of the cells which are downsampled to 1k (colored by their cell-cycle phase)

together with the original high-coverage cells (in gray). (b) Zoom-in view of the same projection of downsampled cells in (a). (c) The area under the circular ROC

curves from different sets of downsampled cells. Projections are performed on the cells by themselves, and in conjunction with the set of ‘mid’ coverage cells,

‘high’ coverage cells, or both

Fig. 5. Inferred cell-cycle ordering agrees with replication timing. Each panel plots the normalized Hi-C coverage (y-axis) of a specified genomic region as a func-

tion of the inferred cell-cycle phase (x-axis). Two early replication regions and two late replication regions are depicted
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3.6 The method facilitates analysis across different cell

types and experiment conditions
In preparation for an increasing number of publicly available scHi-C

datasets, we want to investigate whether our embedding approach

allows us to analyze multiple datasets together. For this purpose, we

use two sets of scHi-C contact maps, the cell-cycle dataset derived

from mouse ESCs (Nagano et al., 2017) and a dataset derived from

mouse cells during oocyte–zygote transition (Flyamer et al., 2017).

Unlike the cell-cycle dataset, which has independently derived label-

ing of cell-cycle phase, the oocyte–zygote dataset has no cell-cycle

labels; however, for this dataset only zygotes in the G1 phase were

scHi-C sequenced.

Projecting the two datasets jointly, we observe that the circular

pattern from the mouse ESCs remains, and the four cell-cycle phases

are clearly separated (Fig. 6a). Thus, the cell-cycle separation is ro-

bust even to mixing of these two different datasets generated from

different scHi-C protocols. Also, the oocyte–zygote cells are pro-

jected adjacent to mESCs in G1 phase, with the oocytes and zygotes

separated from one another. The male zygotes and female zygotes

are also separated in the projection, whereas immature oocytes

(NSN) and mature oocytes (SN) overlap to some extent. The prox-

imity of the zygotes to G1 agrees with the reported cell-cycle phase

for these cells. While we do not know the cell-cycle phase of the

oocytes, the projection suggests that the DNA structure of oocytes is

similar to mESCs in G1 or on the G1/early-S boundary.

We also observe a large spread in the coordinates of the pro-

jected oocyte–zygote cells. This variability may be due to intrinsic

variation in the 3D chromatin architecture of these cells, or it may

be an artifact driven by the variation in sequencing depth in these

cells. Indeed, the ‘double ring’ in Figure 4a suggests that cell cover-

age may drive more deeply sequenced cells to be further from the

center of the cell-cycle ring. To investigate whether a similar effect is

occurring in the oocyte–zygote projection, we re-plot the projected

oocyte–zygote cells, labeling the points according to their sequenc-

ing depth. The result (Fig. 6b) shows no obvious pattern with respect

to contact number, suggesting that some other feature—possibly in-

herent stochastic variability in 3D structure—drives the observed

variation in placement of the oocyte–zygote cells.

4 Discussion

We have demonstrated that HiCRep, used in conjunction with

MDS, provides a powerful way to embed scHi-C data into a low-

dimensional space that successfully captures biologically meaningful

variation in 3D chromatin structure. In particular, the ability of this

straightforward method to successfully separate cells by cell-cycle

phase even from very low numbers of sequencing reads bodes well

for the viability of sciHi-C, which yields many cells but lower aver-

age sequencing depth than the original scHi-C protocol. Ongoing

efforts by large-scale projects such as the 4D Nucleome Network

(Dekker et al., 2017) promise to produce diverse scHi-C datasets.

Our results suggest that these data can potentially be analyzed joint-

ly using embedding methods such as the one proposed here.

Clearly, the current work is only a first step toward more

sophisticated scHi-C analysis methods. For example, alternative

embedding procedures, including t-SNE (Van der Maaten and

Hinton, 2008) and kernel PCA (Schölkopf et al., 1997), may yield

better embeddings. We are also very interested to investigate more

thoroughly the extent to which HiCRepþMDS can be used to char-

acterize other axes of biological variation, including segregating cell

types and subtypes, similar to the segregation of cell types illustrated

in Figure 6, and segregating cells along a differentiation pathway.

Particularly exciting is the potential to use kernel methods to jointly

analyze multiple single-cell data modalities derived from the same

population of cells. However, exploration of these avenues will re-

quire not only more scHi-C data, but also additional datasets that

include orthogonal experimental characterization of the same single

cells. Such datasets will enable supervised learning and also permit

principled evaluation of competing methods.
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