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Although the genomic and immunemicroenvironmental landscape of follicular lymphoma (FL)

has been extensively investigated, little is known about the potential biological differences

between stage I and stage III/IV disease. Using next-generation sequencing and

immunohistochemistry, 82 FL nodal stage I caseswere analyzed and comparedwith 139 FL stage

III/IV nodal cases. Many similarities inmutations, chromosomal copy number aberrations, and

microenvironmental cell populationswere detected. However, therewere also significant

differences inmicroenvironmental and genomic features. CD81 T cells (P5 .02) and STAT6

mutations (false discovery rate [FDR],0.001) weremore frequent in stage I FL. In contrast,

programmed cell death protein 1–positive T cells, CD681/CD1631 macrophages (P, .001), BCL2

translocation (BCL2trl1) (P, .0001), andKMT2D (FDR5 0.003) and CREBBP (FDR5 0.04)

mutationswere foundmore frequently in stage III/IV FL. Using clustering, we identified 3 clusters

within stage I, and 2 clusters within stage III/IV. The BLC2trl1 stage I clusterwas comparable to

the BCL2trl1 cluster in stage III/IV. The two BCL2trl– stage I clusters were unique for stage I. One

was enriched for CREBBP (95%) and STAT6 (64%) mutations, without BLC6 translocation

(BCL6trl), whereas the BCL2trl– stage III/IV cluster contained BCL6trl (64%) with fewer CREBBP
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Key Points

� Stage I FL is a
heterogeneous disease
that has clear genomic
and microenvironmen-
tal similarities with
stage III/IV disease.

� Stage I FL can be
classified into 3
clusters, 2 of which
display different
underlying oncogenic
pathways compared
with stage III/IV FL.
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(45%) and STAT6 (9%) mutations. The other BCL2trl– stage I cluster was relatively heterogeneouswith

more copy number aberrations and linker histonemutations. This exploratory study shows that stage

I FL is genetically heterogeneouswith different underlying oncogenic pathways. Stage I FL BCL2trl– is

likely STAT6 driven, whereas BCL2trl– stage III/IV appears to bemore BCL6trl driven.

Introduction

Follicular lymphoma (FL) is the most common indolent non-Hodgkin
lymphoma (NHL) in adults, with an incidence of 2.2 to 5 per
100000 in the western world.1-3 The large majority of patients pre-
sent with advanced-stage disease (stage III/IV) at diagnosis,
whereas only 10% to 15% exhibit limited-stage disease at
presentation.4,5

Patients with limited-stage FL, defined by stage I and limited, contig-
uous stage II disease, may be cured in 45% to 65% of cases with
local radiotherapy (24 Gy involved-field radiotherapy) without further
systemic treatment.5-11 Adding rituximab to chemotherapy has been
shown to improve progression-free survival (PFS) but at the cost of
mild toxicity and with conflicting results pertaining to improving over-
all survival (OS).11-13 Despite the responsiveness of advanced-
stage FL to current chemo-immunotherapy modalities, the disease
course is characterized by multiple relapses and is considered
incurable.

The oncogenesis of FL suggests a primary systemic disease with
BCL2 translocation (BCL2trl1) as an early transforming event, most
likely occurring in the bone marrow and not in eventual presenting
nodal sites. It is intriguing that a lymphoma characterized by a
relapsing, protracted but eventually fatal course may be cured by
local therapy only when presenting in the rare context of limited-
stage disease. A key question therefore is whether limited-stage FL
follows a different oncogenesis and is driven by specific genomic
and/or microenvironmental features that may explain this distinctive
clinical course.

The most characteristic genomic feature of FL is BCL2trl1,
observed in 85% to 95% of advanced-stage FL but in only 42% to
50% of limited-stage FL.14,15 In cases in which this translocation
has been identified, it results from an aberrant immunoglobulin locus
rearrangement that occurs most frequently at the pre–B cell stage
in the bone marrow and serves as one of the initiating events in FL
oncogenesis. Whether other genomic differences occur in limited-
stage FL compared with advanced-stage FL is currently unknown.

The interaction between tumor and immune microenvironmental
cells in FL results in distinctive features and is likely to influence the
clinical course and outcome in this disease.16 The role of specific
immune microenvironment populations, such as T cells and macro-
phages, has not been fully elucidated. Despite extensive studies in
advanced-stage FL, conflicting conclusions remain regarding the
impact on survival.17-22 Again, there is a dearth of knowledge
regarding the immune microenvironment of limited-stage FL. Only
one study has reported microenvironment characteristics in different
stages of FL. Stages I to IIIA were combined and considered early
disease in that study, which was characterized by a significantly
higher number of programmed cell death protein 1–positive (PD11)
T cells and a lower number of forkhead box P3–positive (FOXP31)
T cells compared with advanced-stage (stage IIIB-IV) disease.23

In a concerted effort, the Lunenburg Lymphoma Biomarker Consor-
tium (LLBC) has collected a relatively large series of rigorously
defined and clinically well-annotated cases of stage I nodal FL from
clinical trial cohorts and a population-based registry. The genomic
and immune microenvironmental characteristics of stage I FL were
mapped, and subgroups were determined. Subsequently, this infor-
mation was interpreted in the context of a large cohort of patients
with advanced-stage FL collated in parallel by the LLBC members
and analyzed with the same techniques.

Methods

Patient selection

Within the LLBC collaboration, samples were collected from 8 differ-
ent cohorts. Stage I cases were collected from the European Orga-
nization for Research and Treatment of Cancer (EORTC) study
20971,24,25 the German Low-Grade Lymphoma Study Group
(GLSG) early-stage FL study,26,27 and the Haematological Malig-
nancy Research Network (HMRN) population-based registry.28

Detailed inclusion criteria and treatment protocols are provided in
supplemental Table 1.

Stage III/IV cases were collected from the Lymphoma Study Associ-
ation FL2000 study29,30 and the GLSG2000 study,31 together with
the population-based registries from the HMRN and Sweden, and
the institutional registries from St. Bartholomew’s Hospital and Stan-
ford University Medical Center (detailed inclusion criteria and treat-
ment protocols are provided in supplemental Table 1).

Patients for the stage I cohort, selected from the 2 studies and the
population-based registry, needed to fulfill the following criteria: (1)
stage I as determined by standard staging procedures at time of
inclusion in study or database; (2) nodal, nonbulky disease
(,7 cm); and (3) histologically confirmed FL grade 1 to 3A. Inclu-
sion criteria for the patients in the stage III/IV cohort were: (1) stage
III/IV disease as determined by standard staging procedures; (2)
$5 nodal areas, with or without bulky disease; and (3) histologically
confirmed FL grade 1 to 3A.

All stage I and III/IV cases were staged with computed tomography
imaging and bone marrow biopsy. For both cohorts, availability of
complete and detailed clinical information on demographic parame-
ters, staging procedures, and treatment was required, as well as a
representative diagnostic formalin-fixed paraffin-embedded biopsy
sample.

Immunohistochemistry analysis of the

microenvironment and tumor cells

Tissue microarrays were constructed centrally according to LLBC-
validated protocols using duplicate cores of 1 mm in diameter.32

Sections of 3 mm were mounted on slides and stained for CD3,
CD4, CD8, CD68, CD163, FOXP3, and PD1 according to stan-
dard procedures at the Barts Cancer Institute–Centre for Haemato-
Oncology Research Laboratory (supplemental Table 2).
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These microenvironment markers were scored on the whole core by
a computerized system with automated scanning microscopy and
computerized image analysis (Ariol SL-8, Leica Microsystems, Wet-
zlar, Germany) as validated in Sander et al32 and applied previously
in Stevens et al.18 More detailed information is provided in the sup-
plemental Methods.

In addition, tumor cell features were further assessed with immuno-
histochemistry (IHC) for expression of BCL2, with antibodies to dif-
ferent epitopes (DAKO124 and SP66), germinal center markers
(BCL6, CD10, LMO2, and HGAL), a post–germinal center marker
(MUM1), and a putative nodal marginal zone lymphoma marker
(MNDA) (supplemental Table 2). MNDA was added as an extra con-
trol that these cases were true FL and not mantle zone lymphoma.

These IHC stains were performed according to standard proce-
dures at the Department of Pathology, Amsterdam UMC location
VUMC, Amsterdam, The Netherlands. All markers were indepen-
dently scored on duplicate cores in a dichotomized manner as neg-
ative or positive, defined as .30% positive tumor cells, by 2
pathologists (D.d.J., B.S., or A.R.). All cores with ,50% of scorable
core surface area were excluded. In case of discordance between
the 2 pathologists, a deciding score by the third pathologist was
performed.

Gene mutation and copy number analysis using

next-generation sequencing

Next-generation sequencing (NGS) library preparation and analysis
were performed as previously described.33 Briefly, genomic
DNA was extracted with the QIAamp DNA formalin-fixed paraffin-
embedded Tissue Kit (Qiagen, Hilden, Germany) and fragmented
by using a Covaris ME220 (Covaris Inc., Woburn, MA). Subse-
quently, NGS libraries were made with 100 ng sheared DNA and
unique indexes (IDT, Coralville, IA) using the KAPA or KAPA Hyper
Library Preparation kit (KAPA Biosystems, Wilmington, MA).

For copy number aberration (CNA), 50-bp single-read shallow
whole-genome sequencing was performed on a HiSeq 4000 (Illu-
mina, San Diego, CA). Sequence reads were aligned against the
reference genome (GRCh37/hg19) with the Burrows-Wheeler
Alignment tool (BWA aln; version 0.7.12)34 and de-duplicated with
Picard tools (version 2.15). Copy number analysis was performed
with QDNAseq (version 1.12.0),35 NoWaves (version 0.6),36 DNA-
copy (version 1.50.1),37 ACE (version 0),38 CGHcall (version
2.38.0),39 and CGHregions (version 1.34).40

For mutation and translocation analysis, a 3Mb SeqCapEZ capture
panel was designed in collaboration with Roche, containing coding
regions of 369 genes and 12 genomic regions (Roche NimbleGen,
Madison, WI; order ID 43712) (supplemental Tables 3 and 4); eight
samples were equimolarly pooled to 1 mg for the capture, and 3
pools together were sequenced 150-bp paired-end on a HiSeq
4000 (Illumina).

Sequenced reads were trimmed with SeqPurge (version 0.1-
104),41 aligned with BWA mem (version 0.7.12),34 realigned with
ABRA (version 2.19),42 and duplicates removed with Picard tools
(version 2.4.1; using the setting ASSUME SORT ORDER5query-
name). Mutations were detected by LoFreq (version 2.1.3.1)43 and
Mutect2 (version 4.1.7).44

Translocation detection was performed with BreaKmer (version
0.0.4), GRIDDS (version 1.4.2), Wham (version 1.7.0), and novo-
Break (version 0.0.6).45-48 Translocations needed to be detected by
at least 2 of the used tools. More detailed information is presented
in the supplemental Methods.

Ethical committee statement

The study and protocols to obtain human archival tissues and
patient data were approved by the local ethical committee of the VU
University Medical Center, Amsterdam (FWA00017598), for all col-
laborating centers. They comply with the Code for Proper Second-
ary Use of Human Tissue in the Netherlands (http://www.fmwv.nl).

Statistical analysis

Clinical characteristics were summarized with descriptive statistics
(median [range] for quantitative and frequency [percent] for qualita-
tive variables) and compared by using x2 or Mann-Whitney tests.
Kaplan-Meier survival curves were constructed. PFS was defined as
time from start of treatment to progression/transformation. OS was
defined as time from start of treatment to death from any cause.

The average of the IHC biomarker scores from 2 cores was calcu-
lated. They were compared between groups of patients with a
Kruskal-Wallis test corrected for multiple testing with the Benjamini-
Hochberg method.

Comparison of frequencies of mutations and translocations was per-
formed with Fisher’s exact test, and false discovery rates (FDRs)
were controlled with the Benjamini-Hochberg method. P values and
FDRs for comparisons between copy number regions were calcu-
lated with the R-package CGHtest.

Complete-linkage hierarchical clustering was performed with the
function “hclust”’ of the “stat” package (https://stat.ethz.ch/R-
manual/R-devel/library/stats/html/00Index.html). Features included in
clustering were somatic mutations and focal and chromosomal
arm–level aberrations present in .5% of the samples, and BCL2
and BCL6 translocations. The distance measure used for the clus-
tering was defined as 1-corspearman for both the genes and the
patient samples, implemented by the “cor” function, also from the
“stat” package. The stability of the clusters was assessed by sub-
sampling as described by Monti et al.49 All analyses were performed
in R version 3.5.1 (R Foundation for Statistical Computing), and a
two-sided P value ,.05 was considered statistically significant.

Results

In total, 216 patients with stage I disease from 2 clinical trials and 1
population-based registry fulfilling the clinical selection criteria were
included in this study. Complete targeted NGS data for mutations,
translocations, and genome-wide copy number variations could be
generated for 82 cases, 73 of which also had complete microenvi-
ronmental data (Figure 1A; supplemental Table 5).

A cohort of 391 stage III/IV patients, who fulfilled the inclusion
criteria, were selected from 2 clinical trials and 4 registries. For the
final analysis, 139 of 391 cases with complete NGS data were
included; 120 of these had complete microenvironment data
available (Figure 1B; supplemental Table 5).

Clinical characteristics for the 82 stage I patients and 139 stage III/
IV patients with complete NGS data are shown in Table 1. The
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study cohort is representative of the complete cohort of 602
patients with FL who fulfilled the initial clinical inclusion criteria (sup-
plemental Table 6). Clinical variables such as presence of
B-symptoms, higher Follicular Lymphoma International Prognostic
Index score, low hemoglobin levels, and elevated lactate dehydroge-
nase levels were, as expected, significantly more frequent in the
stage III/IV cohort. The 10-year PFS and OS of the stage I cohort
were 56% and 83%, respectively (supplemental Figure 1).

The eight IHC markers (BCL2 DAKO124 and SPS66, CD10,
BCL6, HGAL, LMO2, MNDA, and MUM1), used to confirm true
stage I FL, could be evaluated in 75 of 82 patients. Concordance
had to be reached with a third pathologist in 4% of the scored
markers. In 91% of cases, a minimum of 3 of 4 germinal center
markers were scored positive (CD10, 91%; BCL6, 96%; HGAL,
80%; and LMO2, 95%) (supplemental Table 7). Moreover, MNDA
was not expressed in any of the cases,50 nor was MUM1, underlin-
ing the germinal center features. These findings exclude alternative
diagnoses such as nodal marginal zone lymphoma and support clas-
sification of FL in all included cases.

Immune microenvironment in stage I and stage III/

IV FL

Microenvironment analysis was available for 193 of 221 cases with
complete NGS data (stage I, n 5 73; stage III/IV, n 5 120).
In stage I disease, a significantly denser infiltrate of CD81 cytotoxic
T cells was observed (median stage I 13.7% vs stage III/IV 10.9%;
P 5 .02), whereas PD11 follicular T-helper cells (median stage I
1.8% vs stage III/IV 4.7%; P , .001) and macrophages (CD681

median stage I 2.7% vs stage III/IV 3.6% [P , .001] and CD1631

median stage I 2.3% vs stage III/IV 4.1% [P , .001]) were more
frequent in stage III/IV disease. Other cell populations as measured
by T-cell markers CD3, CD4, and FOXP3 exhibited no significant
differences (Figure 2A; supplemental Table 8). It should be noted,
however, that although statistically significant differences were
observed for CD81and PD11 T-cell populations and macrophage
contribution, the absolute differences were minor and may only be
appreciated by using automated image analysis.

Genomic and microenvironmental features of stage I

FL compared with stage III/IV

BCL2trls were detected with significantly lower frequency in stage I
cases; that is, 59% compared with 91% of cases in stage III/IV
disease (P , .001) (Figure 2B). There were no differences in
the breakpoint locations between the stages (supplemental

Table 1. Demographic and clinical characteristics of stage I and

stage III/IV patients included for analysis in the study

Characteristic

Stage I Stage III/IV

P(n 5 82) (n 5 139)

Age at diagnosis 58 57 .96*

Median (range), Y (28-85) (27-95)

Sex

Female 32 (39%) 62 (45%) .42†

Male 50 (61%) 77 (55%)

B-symptoms ,.001†

Present 5 (6%) 41 (30%)

Absent 77 (94%) 97 (69%)

Missing – 1 (1%)

FLIPI risk categories ,.001†

Low 68 (83%) –

Intermediate 6 (7%) 53 (38%)

High – 77 (55%)

Missing 8 (10%) 9 (7%)

Hemoglobin .002†

,12 g/L 2 (2%) 26 (19%)

$12 g/L 78 (95%) 111 (80%)

Missing 2 (2%) 2 (1%)

Elevated lactate dehydrogenase ,.001†

Yes 6 (7%) 44 (32%)

No 71 (87%) 94 (67%)

Missing 5 (6%) 1 (1%)

Stage

I 82 (100%) –

III – 38 (27%)

IV – 101 (73%)

Bulky disease

,7 cm 82 (100%) 96 (69%)

$7 cm – 38 (27%)

Missing – 5 (4%)

ECOG performance status

,2 81 (99%) 128 (93%)

$2 – 10 (7%)

Missing 1 (1%) 1 (1%)

Bone marrow involvement

Yes – 83 (60%)

No 82 (100%) 49 (35%)

Missing – 7 (5%)

No. of involved nodal sites, median (range) 1 (1-1) 8 (5-14)

Table 1 (continued)

Characteristic

Stage I Stage III/IV

P(n 5 82) (n 5 139)

First-line therapy

R-chemotherapy 2 (2%) 117 (84%)

Chemotherapy – 5 (4%)

IFRT 38 (46%)

IFRT 1 TBI 14 (17%)

IFRT 1 R 23 (28%)

Watch and wait – 3 (2%)

Other 1 (1%)‡ –

Unknown 4 (5%)§ 14 (10%)

ECOG, Eastern Cooperative Oncology Group; FLIPI, Follicular Lymphoma International
Prognostic Index; IFRT, involved-field radiotherapy; PS, performance score; R, rituximab;
TBI, total body irradiation.
*P value per Mann-Whitney testing.
†P value per x2 testing.
‡Surgical removal.
§IFRT without knowing if the patient received TBI or not.
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Figure 2A-F; supplemental Table 9). In addition to classical BCL2/
IGH translocations (n 5 171), rare other translocation partners
were found: IGL (n 5 2), IGK (n 5 1), and HLA-DRA (n 5 1), all
present in stage III/IV.

BCL6trls were observed in 6% of stage I cases and 17% of stage
III/IV cases (P 5 .07) (Figure 2B). Translocation partners for BCL6
were diverse (supplemental Figure 2G-H; supplemental Table 9).

Other IGH translocations were observed in 13% of stage I cases
and 16% of stage III/IV cases, with diverse translocation partners. In
addition, most recurrent other translocations detected were MYC
(stage I, n 5 1; stage III/IV, n 5 3) and TBL1XR1 (stage I, n 5 1;
stage III/IV, n 5 3) translocations (supplemental Table 9).

High-quality genome-wide CNA plots were obtained by shallow
whole-genome sequencing for all cases. Overall, stage I and III/IV
disease displayed comparable frequencies of aberrations, and the
spectrum of alterations did not differ significantly (Figure 2B; supple-
mental Table 10). The copy number load per stage is similar (sup-
plemental Figure 3A). The overall landscape of CNA included focal
gains of known FL-related genes such as REL and BCL11A
(2p16.1) and focal losses of TNFRSF14 (1p36.32), PRDM1
(6q21), TNFAIP3 (6q23.3), CDKN2A (9p21-22), and PTEN and
FAS (10q23.31). The focal loss of 9p21-22 containing CDKN2A,
and a small region on 6q12 without a specific gene, were signifi-
cantly more common in stage III/IV (Figure 2C).

The median number of nonsynonymous and splice-site mutations
was comparable between stage I (median, 11 mutations per case;
range, 0-29) and stage III/IV (median, 12 mutations per case; range,
0-116) (supplemental Figure 3B; supplemental Table 11). Regard-
ing BCL2 somatic hypermutations (SHMs) (defined for the purpose
of this study as #2 mutations in known SHM target genes), there
was a significant difference between the number of cases with
SHMs in stage I (36%) and stage III/IV (71%; P 5 .017), which
correlated with more BCL2trls in stage III/IV. Comparing the number
of SHM-related mutations only in the BCL2trl1 cases, there was no
difference (stage I 63% [n 5 26 of 41] vs stage III/IV 77% [n 5 97
of 127]; P 5 1). SHM in BCL6 (stage I, n 5 1) and PIM1 (stage I,
n 5 4; stage III/IV, n 5 3) was seen in only a few cases, and no
SHM was found in MYC (supplemental Table 11).

Of the genes included in the LLBC-NGS targeted panel, the following
were most frequently affected by nonsynonymous mutations in stage I
FL: KMT2D (52%), CREBBP (50%), BCL2 (35%), EZH2 (35%),
TNFRSF14 (35%), STAT6 (30%), and MEF2B (18%). The most fre-
quently affected genes in stage III/IV FL were: KMT2D (76%),
CREBBP (69%), BCL2 (54%), TNFRFS14 (31%), EZH2 (20%),
and ARID1A (17%). A comparison of mutation frequencies found
that STAT6 was mutated at a significantly higher frequency in stage I
compared with stage III/IV (FDR ,0.001), whereas KMT2D and
CREBBP were mutated at a significantly higher frequency in stage
III/IV malignancies (FDR 5 0.003 and FDR 5 0.04) (Figure 2D).

Overall, the mutational landscape between stage I FL and stage III/
IV FL was highly similar, with a dominant involvement of epigenetic
and chromatin-modifying genes (KMT2D, CREBBP, EP300, EZH2,
and MEF2B) but at different frequencies. In 94% of stage I cases
and in 99% of stage III/IV cases, at least 1 of these 5 genes was

A Stage I

105 cases
with IHC

82 cases with
NGS data

73 cases overlapping

17 cases excluded:
2: tumor mass �7 cm

15: missing clinical data

111 cases excluded:
102: no FFPE material
9: 1–6 markers missing

134 cases excluded:
82: no FFPE material

52: incomplete NGS data

B Stage III/IV

667 cases

391 cases

206 cases
with IHC

139 cases with
NGS data

120 cases overlapping

276 cases excluded:
Number of nodal sites �5

185 cases excluded:
167: no FFPE material

18: 1–6 markers missing

252 cases excluded:
135: no FFPE material

117: incomplete NGS data

233 cases

216 cases

Figure 1. Outline of FL cases included in the study. A total of 233 stage I

cases were initially submitted from 2 clinical trials and 1 population-based cohort;

216 fulfilled all clinical inclusion criteria (EORTC study 20971, n 5 143; GLSG,

rituximab, and involved-field radiotherapy in early-stage FL [MIR (Mabthera and

Involved Field Radiation)] study, n 5 39; and the HMRN population-based registry,

n 5 34). In 82 of 216 cases with targeted NGS data, a complete data set on

translocation, CNA, and mutations was successfully obtained, meeting all quality

measures (ie, sufficient amount of DNA [.100 ng] from formalin-fixed

paraffin-embedded [FFPE] material, and sequencing results with a minimum mean

target coverage off .30 reads for paired-end sequencing and 300000 reads for

shallow sequencing). For 73 of 82 cases, complete IHC data of 7 markers (CD3,

CD4, CD8, PD1, FOXp3, CD68, and CD163) of the microenvironment were

available, meeting all quality measures, indicating sufficient amount of FFPE

material to obtain two 1-mm cores, and the cores should contain .50% tumor

tissue to score. As a reference cohort, 667 stage III/IV cases were selected from

2 clinical trials and 4 population-based cohorts, of which 391 fulfilled all clinical

inclusion criteria (LYSA [Lymphoma Study Association] FL2000 study, n 5 163;

GLSG2000 study, n 5 98; HMRN population-based registry, n 5 100; Sweden

population-based registry, n 5 19; St. Bartholomew’s Hospital, London, n 5 6; and

Stanford University Hospital, Stanford, n 5 5). In 139 of 391 cases, complete NGS

data meeting all quality measures were obtained. For 120 of 139 cases, complete

microenvironment information meeting all quality measures was also available.

Depicted in the green box are the cases that are incorporated in the analysis.
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mutated, indicating a critical role of epigenetic deregulation in the
development of FL.

Integrated analysis of translocation, CNA, and

mutation data

Next, we performed an integrated analysis of all molecular modalities
using an unsupervised hierarchical clustering strategy to explore the
potential heterogeneity and integrated profiles within stage I disease
(Figure 3). For this analysis, 81 stage I cases were included; 1 case
with a very low level of shared mutations was excluded. The Dunn
index estimates 4 clusters for stage I as optimal (supplemental
Figure 4).

Cluster 1 (CL1) (n 5 44) was characterized by presence of BCL2trl
in all cases in concert with frequent mutations in BCL2. CL1 was
further characterized by classic FL mutations (KMT2D, EZH2,
CREBBP, TNFRSF14, and MEF2B) (supplemental Figure 5; sup-
plemental Table 12). Cluster 2 (CL2) (n 5 15) was characterized
by a relatively high level of CNAs (median, 19%; range, 0%-58%)
(supplemental Figure 6) and mutations in 40% of the cases in one
or both linker histone genes (HIST1H1E, 27%; HIST1H1C, 20%).
In CL2, BCL2trl and BCL6trl and STAT6 mutations occurred at
intermediate frequencies, whereas epigenetic modifying genes
(KMT2D, CREBBP, and EZH2) were mutated at relatively low lev-
els (supplemental Table 12). The last 2 clusters were defined by the
absence of BCL2trl and presence of STAT6 and CREBBP muta-
tion. They differ in presence of TNFRSF14 and KMT2D mutations,
which are both tumor suppressor genes. TNFRSF14 is controlled
by KMT2D51; the biological pathways of these two clusters are
likely identical, and thus we combined these two clusters into clus-
ter 3 (CL3) (n 5 22). CL3 has the “classical” FL-related genes with
the exception of MEF2B (Figure 3; supplemental Figure 7; supple-
mental Table 12). The mean consensus index of 2 samples from the
same cluster was 87%, indicating that the clustering was stable
(supplemental Figure 8).

Integrated analysis of the stage III/IV FL cases revealed BCL2trl as
the most frequent genetic alteration, resulting in a relatively homoge-
neous cluster of BCL2trl1 FL (n 5 128) and a separate cluster
lacking the BCL2trl and concomitant BCL2 mutations (n 5 11)
(supplemental Figures 7, 9, and 10). In this BCL2trl-negative
(BLC2trl–) group, BCL6trl were present at high frequency (64%).
Mostly, classical FL mutations were seen, albeit at different frequen-
cies for BCL2trl1 vs BCL2trl–cohort (KMT2D, 79% vs 55%; EZH2,
22% vs 0%; HIST1H1E, 15% vs 0%; and HIST1H1C, 6% vs
27%) (supplemental Table 12).

The stage III/IV BCL2trl– cluster lacked the distinct characteristics
of stage I BCL2trl– CL3 and was not enriched for CREBBP and

STAT6 mutations; in addition, characteristic high-level CNAs of CL2
were less prominent. Altogether, the results showed that within
stage I, there are 2 distinct molecularly driven clusters in addition to
a “canonical” FL cluster.

CNAs, mutations, and translocations of the subset with complete
microenvironment information were representative of the data set
with complete NGS. The clustering would not have been affected if
this subset was used to perform the analysis (supplemental Figures
11-13).

After the identification of the 3 clusters in stage I disease, we
explored whether these clusters might underlie a distinct immune
microenvironment signature. For 183 of 220 cases included in the
hierarchical cluster analysis, complete microenvironment information
was available for an integrated analysis (stage I, n 5 69: CL1
n 5 37, CL2 n 5 11, CL3 n 5 21; and stage III/IV, n 5 114:
BCL2trl1 n 5 107, BCL2trl– n 5 7) (supplemental Figure 14; supple-
mental Table 13). Although there seemed to be a lower level of PD11

cells in CL2, due to the few cases per cluster and the minimal differ-
ences observed in the scoring results, no statistical analysis could be
performed, which precluded biological interpretation of the data.

Discussion

Tumor and microenvironmental analyses of the largest series of
nodal stage I FL thus far allow us to conclude that stage I FL has
mostly genomic and microenvironmental abnormalities similar to
those of stage III/IV disease. However, some significant differences
were found.

In both groups, the same mutations and CNAs were observed, with
KMT2D, CREBBP, BCL2, TNFRSF14, and EZH2 as the most fre-
quently mutated genes. The most frequent copy number gains of
chromosomes 1q, 2, 7, 12, and 18 in the present series are in
agreement with other published reports.52-58 The immunophenotype
of the tumor cells is also consistent with germinal center cell deriva-
tion, and the overall composition of the immune microenvironment
shows no clinically significant differences between stage I and stage
III/IV disease. The higher frequency of CD81 T cells, lower fre-
quency of PD11 T cells, and CD68/CD1631 macrophages noted
in stage I FL are suggestive of a biological role for these cell popula-
tions; however, the small absolute differences cannot be appreci-
ated without automated image analysis and are therefore unlikely to
be useful in clinical practice. Thus, our results are consistent with
the currently accepted view that stage I FL in general is not a dis-
tinct biological entity.

The major difference observed between stage I and stage III/IV is
the frequency of BCL2trl, as previously reported.15 Studies focusing

Figure 2 (continued) Microenvironment, mutations, translocations, and copy number landscape of stage I vs stage III/IV FL. (A) Percentage of positive nucleated

cells for CD3, CD4, CD8, FOXP3, and PD1 depicted as boxplots. For CD163 and CD68, the percentage of positive area of the total cell area was computer-assisted scored

are plotted in the boxplots (stage I in red [n 5 73] and stage in blue III/IV [n 5 120]). Significant differences are seen for CD8, PD1, CD163, and CD68 with a P value

adjusted for multiple testing: *P 5 .02, **P 5 .002, ***P , .001. (B) Comparison plots for CNAs between stage I as filled areas (n 5 82) and stage III/IV as lines (n 5 139)

are percentages of the number of cases with gains (positive value, blue) and losses (negative value, red), sorted for chromosome position (x-axis). (C) Frequency plots with

P values (blue) calculated with a 2-sided rank-sum test with 10000 permutations and FDR (striped segments) of the difference in CNAs; the horizontal dotted lines show

the significance threshold P values ,.05 in blue, and the FDR ,0.1 in red. If the difference in CNA level crosses the P value, and the FDR level is ,0.1, the difference is

considered significant, which is indicated by * 6q23.3 and 9p21-22 (*P , .05). (D) Frequency of BLC2 and BLC6 translocations and top 20 mutated genes according to stage

I in red (n 5 82) and stage III/IV in blue (n 5 139); significant differences are indicated by †q , 0.05 (Fisher’s exact test and a FDR using Benjamini-Hochberg method).
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on BCL2trl– FL have reported a higher frequency of BCL6trl,59 as
well as more frequent mutations in STAT6, CREBBP, and
TNFRSF14.60-63 Our data allow a broader perspective as we now
identify signatures in their specific clinical contexts showing essen-
tially different signatures for BCL2trl– stage I and stage III/IV dis-
ease. A unique BCL2trl– cluster, CL3, is recognized as highly
specific for stage I FL. CL3 is characterized by enrichment for
CREBBP (95%), STAT6 (64%), EZH2 (50%), and TNFRSF14
(50%) mutations and absence of BCL6trl, whereas stage III/IV
BCL2trl– FL is enriched for BCL6trl (64%) with low frequency of
the most frequently mutated genes in CL3. These differences sug-
gest that different sets of specific molecular events may drive the
pathogenesis of FL.

We identified the same 3 most frequent hotspots in STAT6 previ-
ously reported by Yildiz et al.64 E372K (stage I, n 5 5; stage III/IV,
n 5 1), E377K (stage I, n 5 3; stage III/IV, n 5 3), and D419G
(stage I, n 5 5; stage III/IV, n 5 2) (supplemental Figure 15A-B),
which are activating mutations in the interleukin-4 (IL4)/JAK/STAT
pathway. This pathway may indeed be capable of overriding the
important role of the absent BCL2trl in the pathogenesis of stage I
FL. For example, follicular T-helper cells are an important source of
IL4, which can directly regulate BCL2 expression via STAT6.65 Due
to the low number of cases in each of the 3 clusters and minimal
differences in frequency of PD11 follicular T-helper cells in the
microenvironment, we are not yet able to draw firm conclusions
about the interaction between STAT6 mutations and the number of
PD11 follicular T-helper cells, however. Strikingly, there is only 1
BCL2trl– sample with a STAT6 mutation in the stage III/IV group.

The CL2 cluster appears to represent a distinct group defined by a
higher number of CNAs and higher frequency of HIST1H1E and
HIST1H1C mutations (supplemental Figure 15C-E). Loss of func-
tion of these linker histone genes has been shown to drive lympho-
magenesis due to higher fitness of germinal center B cells and
enhanced self-renewal potential.66 The small number of cases in
this cluster and the relatively heterogeneous features, however, pre-
clude definite interpretation.

It should be noted that although clustering is supported by mathe-
matical and biological evidence, it should not be regarded as a
definitive classification but rather a means to obtain biological insight
and a step toward finding the driver genes and pathways of FL.

A limitation in our study is that the majority of patients were diag-
nosed before including fluorodeoxyglucose–positron emission
tomography as a staging procedure, and therefore, this cohort may
contain some patients who would be classified as a higher stage
with current staging techniques. As indicated in the literature, up to
30% of patients may be upgraded to a higher stage with positron
emission tomography/computed tomography scans.67 However, the
unique and specific mutational landscape characteristics of the 2
distinct clusters described here are not recognized in the advanced
stage, suggesting that the majority of these cases were true
stage I FL.

The identification of 3 different clusters raises the question if each
subtype follows a distinct clinical course. Due to the diverse origin
of the samples, treatment modalities, follow-up strategies, and the
limited number of samples per cluster, our study is not able to
address answers with regard to clinical outcome per cluster.

In conclusion, with this relatively large cohort, we showed that
stage I FL is a genetically heterogeneous group divided over 3 dis-
tinct and unique clusters, for which the two BCL2trl– clusters
suggest different underlying oncogenetic pathways compared with
stage III/IV FL. Our results suggest that BCL2trl– stage I disease fol-
lows a different pathogenesis than BCL2trl– stage III/IV.
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