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Dark trions and biexcitons in WS2 
and WSe2 made bright by e-e 
scattering
Mark Danovich, Viktor Zólyomi & Vladimir I. Fal’ko

The direct band gap character and large spin-orbit splitting of the valence band edges (at the K and 
K’ valleys) in monolayer transition metal dichalcogenides have put these two-dimensional materials 
under the spot-light of intense experimental and theoretical studies. In particular, for Tungsten 
dichalcogenides it has been found that the sign of spin splitting of conduction band edges makes 
ground state excitons radiatively inactive (dark) due to spin and momentum mismatch between the 
constituent electron and hole. One might similarly assume that the ground states of charged excitons 
and biexcitons in these monolayers are also dark. Here, we show that the intervalley (K ⇆ K′) electron-
electron scattering mixes bright and dark states of these complexes, and estimate the radiative 
lifetimes in the ground states of these “semi-dark” trions and biexcitons to be ~10 ps, and analyse how 
these complexes appear in the temperature-dependent photoluminescence spectra of WS2 and WSe2 
monolayers.

The truly 2D nature of TMDCs1–7 enhances the effects of Coulomb interaction8,9, resulting in charge complexes 
such as excitons10–13, trions13 and biexcitons14 with binding energies that are orders of magnitude larger compared 
to conventional semiconductors such as GaAs. These complexes, which dominate the optical response of these 
materials, are comprised of spin/valley polarised electrons and holes residing at the corners K and K′  of the hex-
agonal Brillouin zone (BZ), where the selection rules of optical transitions require the same spin and valley states 
of the involved electrons at the conduction and valence band edges. As a result, the opposite spin projections of 
the conduction (c) and valence (v) band edges, found in monolayers of WS2 and WSe2, makes ground state exci-
tons in these 2D crystals dark15,16, so that their radiative transition would require help from defects, phonons17 or 
magnetic field18,19.

Applying the spin and valley selection rules to ground state trions and biexcitons might imply that these 
charge complexes are dark, too. In the ‘dark’ (d) state both electrons are in the bottom spin-orbit split states of 
c-band, whereas in the state to be ‘bright’ (b), one of the electrons has to be in the excited spin-split state. Here, we 
show that an intervalley scattering20,21 of the c-band electrons mixes dark and bright states of complexes (Fig. 1), 
hence transferring some optical strength from b- to d-states and making dark state ‘semi-dark’. For the resulting 
recombination line of such semi-dark complexes, we find that it is shifted downwards in energy (relative to the 
bright trion line) by 2Δ SO, twice the c-band spin-orbit splitting.
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Here, Ψ σ τ
r( )c , ,  are the conduction band electron field operators. The large momentum transfer between two 

electrons changing their valley states is determined by their Coulomb interaction at the unit cell scale, para-
metrised by a dimensionless factor χ. We estimate the size of this factor using both a tight-binding model and 
density functional theory (DFT). For the tight-binding model, we use the DFT calculated orbital decomposition 
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to construct the Bloch states at the Brillouin zone corners, and we use a 3D Coulomb potential for the interaction 
between electrons. As the c-band states at the K/K′  points are primarily composed6,7 of the metal d5 z 2 orbitals 
centred at the lattice sites 
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� ��
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tight-binding model Bloch states, to find
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2 is the unit cell area, mc is the c-band elec-
tron effective mass, m is the free electron mass, aB is the Bohr radius, and C is the transition metal d5 z 2 orbital 
amplitude in the c-band edge at the K point (supplementary material S2.2). Similarly, we evalutaed χ from wave 
functions obtained using DFT implemented in the local density approximation and VASP22 code (neglecting 
spin-orbit coupling). We used a plane-wave basis corresponding to 600 eV cutoff energy and a 12 ×  12 grid of 
k-points in the 2D Brillouin zone. We also had to employ periodic boundary conditions in the z-direction; for this 
reason we used a large inter-layer distance of 20 Å to mimic the limit of an isolated monolayer. The form factor 
was calculated by post-processing the DFT wave functions, by taking the matrix element of the bare Coulomb 
interaction between the initial and final states of the scattering process (see supplementary material S2.1). These 
two calculations have returned values of the intervalley scattering factor χ, as listed in Table 1. In the basis of 
| 〉 | 〉d b[ ; ] of dark and bright states of trions, ↓ ↑ ′

↑
↑ ↓ ′
↑T T[ ; ]K K

K
K K
K

, ,  and ↓ ↑ ′
↓ ′

↑ ↓ ′
↓ ′T T[ ; ]K K

K
K K
K

, , ,  or biexcitons 
↓ ↑ ′
↑ ↓ ′

↑ ↓ ′
↑ ↓ ′B B[ ; ]K K

K K
K K
K K

,
,

,
, , the coupling in equation (1) leads to the mixing described by a 2 ×  2 matrix

 µ

µ
µ

χ
µ

χ

ε ε δ

ε ε δ

ε ε δ

ε ε δ

=











= =

= + ∆ − − + ′

= − − +

= + ∆ − − + ′

= − − + .

⁎
H

E

E m
g

m
g

E E

E E

E E

E E

, , ,

2 2 ,

2 ,

2 2 2 ,

2 2 (3)

b
T B

T B

T B d
T B T

c
T B

c
B

b
T

g SO X T

d
T

g X T

b
B

g SO X B

d
B

g X B

/
/

/
/

2 2

Where Eg is the band gap, ε ε,X T, and εB are the exciton, trion, and biexciton binding energies, respectively, and 
δ δ′,  stand for the intravalley and intervalley electron-hole exchange23, δ ≈  6 meV, which we will neglect in the 
following calculations. Note that the effective masses of the c-band spin split bands differ by7 ~30–40% with the 
lower bands having the higher effective electron mass. This results in slightly higher binding energies for the dark 

Figure 1. Intervalley electron-electron scattering process. Schematics of the band structures of WX2 near the 
K, K′  points of the BZ, and the intervalley scattering process that mixes dark and bright states of trions (T) and 
biexcitons (B). Eg is the band gap and Δ SO stands for the conduction band spin splitting. Due to the large spin-
orbit splitting in the valence band, the valence band is shown only for the higher-energy spin-polarised states.

χDFT χTB

μT μB τX τsd(T) τsd(B)

[meV] [meV] [ps] [ps] [ps]

WS2 1.0 1.6 18[29] 8.6[13] 0.25 7.8[3.9] 15[7.0]

WSe2 1.3 2.0 19[30] 9.2[14] 0.26 9.4[4.7] 18[8.0]

Table 1.  Scattering matrix elements and radiative lifetimes. Listed are the Intervalley scattering parameter 
χ calculated using DFT and tight binding (TB) model and the corresponding trion and biexciton mixing 
parameters μT/B obtained using the electron-electron contact pair densities calculated in ref. 24 using diffusion 
quantum Monte Carlo, shown as DFT [TB], and the radiative lifetimes of the bright exciton, semi-dark trion 
and biexciton.
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ground state charge complexes compared to the excited states, resulting in a larger value for their energy differ-
ence Eb −  Ed. The mixing parameter ∫µ δ≡ = ∏ Φ −χ
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densities24 in the trion, gT and biexciton, gB. The mixing of the dark and bright states results in a slight shift of their 
energies and, most importantly, in a finite radiative decay rate, τ−sd
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where τ−X
1 is the radiative decay rate of the bright exciton25–27, determined by the electron-hole overlap factor 

Φ |(0)X
2 (Φ r( )X eh  is the envelope wave function describing relative motion of the electron and hole in the exciton), 

v is the velocity related to the off diagonal momentum matrix element. The values of the factors α =T
1
2

 and 
αB =  1 have been estimated based on the following consideration (see supplementary material S3). As the exciton’s 
binding energy is significantly larger than that of the trion or biexciton, these bound complexes can be viewed as 
strongly-bound, with an additional weakly bound electron in the case of a trion, or an exciton in the case of a 
biexciton. For a trion, this results in a reduction of the recombining electron-hole contact pair density by a factor 
of two as compared to the exciton, as the hole is shared between the two electrons such that the recombining 
electron (which has the right spin projection), will be near it only half of the time. In the case of the biexciton, 
each electron spends half of the time near its hole with which it can recombine, and half of the time near the other 
hole. As there are two excitons able to recombine we get αB =  1. The resulting values for the lifetimes (using the 
material parameters in Table 2) are summarized in Table 1.

The mixing of the dark and bright states produces photoluminescence lines shown schematically in Fig. 2. 
The emitted photon energies of these lines are determined by both the binding energies and the shake-up into the 
higher-energy spin-split c-band in the final state,

mc
m  

7 mv
m  

7
∆SO 7 A 7 ⁎r  15 EXb 28 εT 29 εB 29

v
c  

7
[meV] [Å2] [nm] [eV] [meV] [meV]

WS2 0.26 − 0.35 32 8.65 3.8 2 34 24 1.7 ×  10−3

WSe2 0.28 − 0.36 37 9.38 4.5 1.7 31 20 1.6 ×  10−3

Table 2.  Material parameters. Listed are the effective c- and v-band electron masses mc and mv, c-band spin-
orbit splitting Δ SO, unit cell area A, 2D screening length ⁎r , bright exciton energy EXb

, trion binding energy εT, 
biexciton binding energy εB, and the velocity related to the off diagonal momentum matrix element relative to 
the speed of light v/c.

Figure 2. Low temperature photoluminescence spectrum of WX2. Sketch of the low temperature (kBT <  Δ SO) 
photoluminescence spectrum of WX2 including the bright exciton, dark and bright trions (green) and dark and 
bright biexcitons (red). The excited bright trions and excitons are denoted by T* and B*. The dark exciton (Xd) 
energy is marked as a reference point = − ∆E EX X SOd b

.
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Being the ground states, the semi-dark trion and biexcitons (Tsd, Bsd) do not require an activation and there-
fore should appear in the spectrum even at low temperatures. In contrast, the bright states do require thermal 
activation, resulting in a ∆−e E k T/ B  temperature dependence of their lines intensities. For the bright exciton, trion 
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exciton results in an antisymmetric line shape with a cutoff due to the recoil kinetic energy of the remaining elec-
tron or exciton that shifts the emission line to a lower energy. A typical recoil kinetic energy is k Tm

m B
X

c
 for the tri-

ons and kBT for biexcitons, with kB the Boltzmann constant, mX the exciton mass, and mc the c-band electron 
effective mass.

In conclusion, we have shown that intervalley electron-electron scattering makes “dark” ground state trions 
and biexcitons in Tungsten dichalcogenides WS2 and WSe2 optically active, with a lifetime τT/B ~ 10 ps, to compare 
with a sub-ps lifetime of bright excitons in 2D TMDCs.
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