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a b s t r a c t

The gut-liver axis is a complex bidirectional communication pathway between the intestine and the liver in 
which microorganisms and their metabolites flow from the intestine through the portal vein to the liver and 
influence liver function. In a sterile environment, the phenotype or function of the liver is altered, but few studies 
have investigated the specific cellular and molecular effects of microorganisms on the liver. To this end, we 
constructed single-cell and spatial transcriptomic (ST) profiles of germ-free (GF) and specific-pathogen-free (SPF) 
mouse livers. Single-cell RNA sequencing (scRNA-seq) and single-nucleus RNA sequencing (snRNA-seq) revealed 
that the ratio of most immune cells was altered in the liver of GF mice; in particular, natural killer T (NKT) cells, 
IgA plasma cells (IgAs) and Kupffer cells (KCs) were significantly reduced in GF mice. Spatial enhanced resolution 
omics sequencing (Stereo-seq) confirmed that microorganisms mediated the accumulation of Kupffer cells in the 
periportal zone. Unexpectedly, IgA plasma cells were more numerous and concentrated in the periportal vein in 
liver sections from SPF mice but less numerous and scattered in GF mice. ST technology also enables the precise 
zonation of liver lobules into eight layers and three patterns based on the gene expression level in each layer, 
allowing us to further investigate the effects of microbes on gene zonation patterns and functions. Furthermore, 
untargeted metabolism experiments of the liver revealed that the propionic acid levels were significantly lower 
in GF mice, and this reduction may be related to the control of genes involved in bile acid and fatty acid me-
tabolism. In conclusion, the combination of sc/snRNA-seq, Stereo-seq, and untargeted metabolomics revealed 
immune system defects as well as altered bile acid and lipid metabolic processes at the single-cell and spatial 
levels in the livers of GF mice. This study will be of great value for understanding host-microbiota interactions.
© 2023 The Authors. Published by Elsevier B.V. on behalf of Research Network of Computational and Structural 

Biotechnology. This is an open access article under the CC BY-NC-ND license (http://creativecommons.org/li-
censes/by-nc-nd/4.0/).

1. Introduction

Metabolism and detoxification act as the primary function of the 
mammalian liver, whereas the intestine’s primary function is digestion 
and absorption. As research continues, the interrelationship between 
these two organs is gradually being uncovered. First, these organs share 
a common embryological origin, and previous studies have revealed 
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Fig. 1. Landscape of the article. A: Diagram showing the experimental design of this study. B: The left box plots show the statistical results of the body weights of GF and SPF 
mice (n = 14). The right box plots indicate the difference in liver weights between GF and SPF mice (n = 11). C: UMAP plot showing the 26 clusters of major cell types identified 
using the Seurat R pipeline. Cell type annotation for all major clusters is provided in the legend to the right. D: Dot plot illustrating cluster-specific gene expression. The 
normalized average UMI values for each cluster are represented by the dot size and colour intensity. E, F: Projection of selected marker genes for central venous expression (Glul, 
left), mid layer expression (Hamp2, middle), and periportal expression (Hal, right) in spots from the GF (E) and SPF (F) mouse liver tissues.
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that the innate lymphoid cells of the intestine originate from the foetal 
liver [26,42]. Related investigations also suggest that the mature liver 
and intestine communicate bidirectionally around the bile ducts, portal 
vein, and body circulation, and this bidirectional communication me-
chanism is critical in developing and progressing liver disease [57]. 
More importantly, microorganisms and their metabolites play an im-
portant role in the enterohepatic cycle. Intestinal and hepatic commu-
nication mediators are mainly derived from the intestinal blood, which 
contains a variety of bacterial metabolites and endotoxins that enter the 
liver via the portal vein [4]. In addition, microorganisms can shape the 
immune system and play an essential role in glucose and lipid meta-
bolism in the body by regulating the synthesis of bile acids [13,54].

In recent years, the development of GF mice has incredibly en-
hanced research on the gut-liver axis [14,35,8]. Histomorphological 
studies have revealed that the caecum of GF mice is enlarged 4–8 times 
due to the accumulation of mucus and undigested fibres, but the liver is 
reduced in size [3]. Functional studies have shown that D-lactic acid 
produced by intestinal flora metabolism can reach the liver directly 
through the portal vein, altering the morphology and size of hepatic 
Kupffer cells and enhancing the catching and killing of pathogens [41]. 
More interestingly, a recent study of GF and SPF mice revealed that the 
periportal region of the hepatic lobules is enriched in myeloid cells 
(such as hepatic macrophages) and lymphocytes (such as NKT cells), 
forming an immune compartmentalization phenomenon that facil-
itates defence against the spread of a blood-borne pathogen (Gola et al., 
2021). Moreover, the intestinal microbiota is also considered a meta-
bolic organ, which produces many metabolites (such as short-chain 
fatty acids, bile acids, and indole derivatives) that signal through their 
cognate receptors to regulate the metabolism of the host [59]. It has 
been demonstrated that hepatocytes can be divided into two different 
groups based on metabolic zonation [30,37], one around the hepatic 
central vein and another around the hepatic portal vein, and that genes 
in the liver lobules are also zonally expressed [49]. However, adequate 
technical methods for obtaining high-resolution spatial functional 
profiles still need to be improved, and the specific effects of the in-
testinal flora on liver metabolism still need to be discovered.

To meet these limitations, we urgently need new and comprehen-
sive histological techniques have can further describe and correlate the 
gut-liver axis at the spatial, cellular, functional, and molecular levels. GF 
mice have no flora and act as a convenient animal model for the study 
of enterohepatic circulation. Previous studies have shown a clear gut- 
liver axis between GF and SPF mice [14,35,8], but the molecular char-
acteristics and mechanisms of these differences are unclear. In recent 
years, scRNA-seq technologies have undergone rapid development. In 
July 2019, human liver cells were successfully mapped, and the results 
revealed new subtypes of hepatocytes, endothelial cells, and Kupffer 
cells that had never been previously described [2]. Although high- 
throughput sequencing and analysis at the single-cell level can address 
cell heterogeneity and discover new cell types, information on the 
spatial location of cells is lost [38]. The new ST sequencing technology, 
Stereo-seq [12], which can achieve subcellular-level resolution and a 
field of view of 1 cm * 1 cm as well as high sensitivity and a uniform 
capture rate, is expected to address these issues. Therefore, we used 
multiomics techniques to investigate the role of microorganisms in liver 
immunity and metabolism at the spatial, cellular, and molecular levels. 
The addition of ST captures the expression of all genes in the section, 
allowing the precise localization of gene expression levels at each layer 
and establishing a foundation for more detailed liver zonation studies.

2. Results

2.1. Single-nucleus/cell and spatial transcriptomic atlas of the GF and 
SPF mouse livers

A protocol has been designed to study the effect of micro-
organisms on liver phenotype and function. This study focused on 

sc/snRNA-seq, Stereo-seq, and metabolomics sequencing using livers 
from GF and SPF mice (Fig. 1A). First, the body weights of GF and SPF 
mice (n = 14, respectively) were measured. After sacrifice, the livers 
(n = 11) were removed and weighed. We discovered no significant 
difference in body weight between the GF and SPF mice. In contrast, 
the liver weights of GF mice were significantly lower than those of 
SPF mice (p value < 0.01, Fig. 1B), as reported previously [3].

Second, to investigate the effect of microbes on the liver at the cel-
lular level, we used a combination of single-cell and single-nucleus RNA 
sequencing techniques. Fresh GF (pools of three biological repeats) and 
SPF (pools of three biological repeats) mouse livers were profiled by 
scRNA-seq, and frozen GF (n = 1) and SPF (n = 1) mouse livers were 
profiled by snRNA-seq. All experiments used the DNBelab C4 system for 
library generation. The scRNA-seq data were filtered based on an average 
gene expression per cell of 1397 and 1260 in GF and SPF mice, respec-
tively (Fig. S1A, left). By integrating the filtered snRNA-seq data from 
cells identified as hepatocytes, we retained transcriptome data for a total 
of 36,533 cells/nuclei, with 14,586 and 21,947 cells/nuclei and an average 
gene expression of 1113 and 1255 in GF and SPF mice, respectively (Fig. 
S1A, right). After integration, the UMAP plot (Fig. S1B) and correlation 
analysis (Fig. S1C) of both the GF and SPF mice showed highly significant 
correlations between the samples. The UMAP plot after clustering is 
shown in Fig. 1C, and 26 cell types were obtained by annotation. This 
plot contains three types of hepatocytes, including the periportal he-
patocytes (Portal_hep), middle hepatocytes (Mid_hep) and pericentral 
hepatocytes (Central_hep); five liver sinusoidal endothelial cells (LSEC), 
namely, LSEC1, LSEC2, periportal (Endo-pp) and pericentral endothelial 
cells (Endo-pc) [63] and artery endothelial cells (Endo-artery); five types 
of lymphoid cells, namely, natural killer T cells (NKT), CD4+ T cells, cy-
cling T cells, mature B cells (Mature B) and IgA plasma cells; eight types 
of myeloid cells, namely, neutrophils, plasmacytoid dendritic cells (pDC), 
two subsets conventional DCs (cDC1 and cDC2), monocytes, macro-
phages, lipid-associated macrophages (LAMs) and Kupffer cells. All cell 
types were defined according to their marker genes (Fig. 1D; Table S1): 
cDC1s mainly express Xcr1 and Naaa, and cDC2s mainly express Mgl2 
and Cd209a; LAMs are characterized by Gpnmb and Fabp5 [27]; Kupffer 
cells are identified by genes such as Cd5l and Vsig4; and macrophages are 
determined according to H2 −M2 and Cx3cr1 expression.

Third, to determine the spatial location of all mRNAs in the 
sections, we performed separate Stereo-seq [12] of the livers of GF 
(n = 2) and SPF (n = 2) mice. One of the high-quality groups makes up 
the primary dataset, whereas the other acts as a proof sample. The 
ST results (bin 50) of GF mice consist of 81,039 spots on the array 
with 22,956 genes, and those of SPF mice consist of 65,165 spots 
with 23,230 genes. The spots were filtered using a minimum ex-
pression threshold of 500 genes, and those with a mitochondrial 
proportion greater than 2% were eliminated. The remaining GF and 
SPF samples contained 80,843 and 64,995 spots, respectively, with 
18,962 and 19,244 genes. The average gene expression levels in each 
spot of the GF and SPF samples were 891 and 1114, respectively (Fig. 
S1D), allowing us to produce a liver ST atlas that was evenly captured 
and of extremely high quality (Fig. S1E, top). The proof group had 
slightly worse capture (Fig. S1E, bottom) than the primary group and 
was only used to confirm the differences in gene expression between 
the GF and SPF mice. Using spatial transcriptome experiments, we 
obtained information about the location of all cells and gene ex-
pression in liver sections. Different spatial locations of the liver lo-
bules perform various functions, and the lobules can be traditionally 
divided into three zones [30]. Marker genes of the three zones were 
selected and mapped on the ST data (Fig. 1E and Fig. 1F). Glul re-
presents pericentral hepatocytes, Hamp2 represents middle hepa-
tocytes, and Hal represents periportal hepatocytes. Our dataset 
yielded a high-resolution spatial transcriptome atlas and a single- 
nucleus/cell transcriptome atlas of the GF and SPF mouse livers, 
providing a new resource for further dissecting the liver structure 
and function.
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Fig. 2. Differences in hepatic immune cells between GF and SPF mice. A: Percentage of GF (green) and SPF (blue) mouse liver immune cells in each cluster. B: DEG map for each 
cell type, with the top half representing genes that were highly expressed in GF mice and the bottom half representing genes that were highly expressed in SPF mice. C: GO 
annotations showing the main functions of macrophages (left) and CD4+ T cells (right) in GF and SPF mouse livers based on their DEG profiles. The bar plot displays three terms of 
each group. D, E: Visualization of hepatic lobule layers based on the ST data of the GF (D) and SPF (E) mouse livers. F, G: Visualization of the expression of markers of Kupffer cells 
(Cd5l and Vsig4) (F) and IgA plasma cells (Jchain and Igha) (G) in spots of GF (left) and SPF (right) tissue sections.
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2.2. Microbes affect the function and ecological niche of hepatic 
immune cells

Next, we further analysed the differences in immune cells be-
tween GF and SPF mice. First, the analysis of the percentages of the 
different immune cell types from the sc/snRNA-seq data showed 
that some immune cells, such as NKT cells, CD4 + T cells, and IgA 
plasma cells, were significantly decreased in GF mice compared to 
SPF mice (p value < 0.01, Fig. 2A). Reportedly, the number of CD4+ T 
cells and plasma cells in the lamina propria of the intestine of GF 
mice was reduced, and IgA production was decreased, leading to 
further impairment of intestinal barrier function [21]. This finding 
suggests that the immune function of the liver of our GF mice may 
also be impaired due to the close communication between the gut 
and liver axis. Therefore, it can be concluded that microorganisms 
may influence their function by altering the cellular ratio.

Second, to analyse the differences among each cell type, we 
identified the differentially expressed genes (DEGs) for all immune 
cells using sc/snRNA-seq data (Table S2). The pDC cell type was 
excluded from the analysis due to the lack of cell numbers from GF 
mice. The results showed that the Vcam1 gene was significantly 
more highly expressed in both macrophages and Kupffer cells in SPF 
mice than in GF mice (Fig. 2B), and this gene was associated with 
immune function. Lipopolysaccharide (LPS) has been reported to 
cause a significant increase in VCAM-1 expression in Kupffer cells, 
which may promote leukocyte influx and play a role in tissue injury 
during infectious shock [58]. In the CD4+ T cell population, Ly6e 
expression is high in SPF mice and lower in GF mice (Fig. 2B). The 
major functions of Ly6e are related to immunomodulation, particu-
larly the regulation of T-cell activation, proliferation, and develop-
ment [32,39,46,51]. To better understand the function of immune 
cells, we performed GO enrichment analysis of DEGs between GF 
and SPF mice. We found that the function of macrophages in SPF 
mice is mainly cell killing and immune cell-mediated cell death, 
whereas the function of those in GF mice is to regulate en-
dopeptidase and hydrolase activity (Fig. 2C, left). This finding is 
consistent with a previous study showing that GF mice may have 
less efficient immune function [41]. A similar phenomenon is ob-
served not only for macrophages but also for CD4+ T cells. The main 
functions of CD4+ T cells in SPF mice are enriched for activating T 
cells and regulating the adaptive immune response, whereas these 
functions are not significant in GF mice (Fig. 2C, right). Thus, mi-
crobes may influence the process of immune cells by regulating their 
expression of critical genes.

Third, to explore the effect of microbes on the spatial distribution 
of immune cells, we combined the Stereo-seq data with the liver 
zonation algorithm published in Nature [29], which allowed us to 
accurately divide the liver lobules into eight layers (Fig. 2D and 
Fig. 2E), with layer 1 representing the pericentral region and layer 8 
representing the periportal region. To facilitate the observation, we 
grouped the layers into three zones. We defined layers 1–3 as the 
pericentral zone, layers 4–5 as the intermediate zone, and layers 6–8 
as the periportal zone by calculating the percentage of each zone in 
the liver lobules [6], and each zone was displayed in the same colour. 
The mapping of Kupffer cell markers (Cd5l and Vsig4) on three zones 
showed that immune cells such as Kupffer cells were more ag-
gregated around the periportal in SPF mice (Fig. 2F). Similar results 
were obtained using other markers (Fig. S2A), supporting the find-
ings of previous authors [25]. This finding further indicates that SPF 
mice are more resistant to pathogen entry into the host than GF 
mice. Furthermore, by mapping IgA plasma cell markers (Jchain and 
Igha) on the three zones of the ST results, we observed that the 
number of markers was significantly higher in SPF mice than in GF 
mice, indicating an aggregated distribution in the portal vein (Fig. 2G 
and Fig. S2B). Liver IgAs have been reported to clear gut-derived 
antigens reaching other organs via portal circulation, protecting 

them from pathogens [44]. Taken together, the results indicate that 
microorganisms can influence immune cell proportions, gene ex-
pression, and spatial distribution.

Fourth, to investigate the effect of microbes on signalling be-
tween immune cells, we performed CellChat and single-cell reg-
ulatory network inference and clustering (SCENIC) analyses of the 
sc/snRNA-seq data. The CellChat results showed that the number 
and strength of cellecell interactions were stronger in SPF mice than 
in GF mice (Fig. S2C and Fig. S2D). Interestingly, 40 out of 59 path-
ways were highly active in both GF and SPF livers, albeit at different 
levels (Fig. S2E). These likely represent core pathways that are ne-
cessary for liver function regardless of the microbiome (i.e., GF vs. 
SPF). Eleven pathways are active only in GF mice, and these include 
pathways important for angiogenesis processes such as ESAM 
[33,47] and VEGF [22]. Eight pathways are specifically active in SPF 
mice, and these include known immune regulators such as CD6 
[11,53] and IL16 [23]. Both MHC- I and MHC- II were significantly 
decreased in GF mice, which suggests that GF mice may have an 
immune defect [15,40,50]. In addition, CXCL was lower in GF mice, 
and it has been reported that the phenomenon of Kupffer cell ag-
gregation to the periportal vein is driven by the chemokine CXCL9 
[24], further demonstrating the weaker immune function of GF mice. 
The SCENIC analysis of sc/snRNA-seq immune data also revealed 
significant differences between GF and SPF mice (Fig. S2F). Each 
cluster of immune cell types has its own specific set of activated 
transcription factors and differs significantly between GF and SPF 
mice. For example, Mafb(+) and Spic(+) regulators are highly en-
riched in SPF Kupffer cells. Conversely, Etv1(+) and Hes1(+) are highly 
enriched in GF Kupffer cells. The transcription factor Mafb(+) can 
promote specific Kupffer cell differentiation [52]. In conclusion, 
microbes can also have an impact on the function of immune cells by 
altering their cellecell interactions and transcription factors.

2.3. Microorganisms mediate gene expression levels and metabolism in 
hepatocytes

To further investigate the effect of microorganisms on the func-
tion of different layers of hepatocytes, the ST data of GF and SPF mice 
were then deconvoluted using a published single-cell dataset [45] to 
resolve the cellular components of each spot in the ST data. The 
single-cell dataset has ten cell types containing four types of liver 
parenchymal cells, B cells, T cells, cholangiocytes, endothelial cells, 
stellate cells, and macrophages. The deconvolution results were vi-
sualized using the SPOTlight method with the maximum fraction of 
each spot (Fig. 3A). Next, we wanted to investigate whether there 
were functional differences in the different liver lobule layers be-
tween GF and SPF mice. Because fewer mid-portal hepatocytes were 
observed, the midcentral hepatocytes were combined with the mid- 
portal hepatocytes to yield an intermediate layer. The enrichment 
results revealed slight differences between the layers within the 
groups but significant differences between the groups, and the fatty 
acid metabolic processes differed significantly between GF and SPF 
mice and between the layers of the liver lobules (Fig. 3B). Similar 
results were obtained using the results of algorithmic layering to 
perform the same analysis (Fig. S3A).

To demonstrate that microorganisms also have an effect on fatty 
acid-related metabolites, we performed untargeted metabolic se-
quencing (n = 12) of the liver. Numerous metabolites were found in 
untargeted metabolomic reports (Table S3 and Table S4), and the 3- 
(2-hydroxyphenyl) propionic acid content was significantly higher in 
SPF mice than in GF mice (p value = 0.032, Fig. 3C). After absorption 
through the colon, propionate enters the liver through the portal 
vein. This metabolite is metabolized by hepatocytes, participating in 
the reversal of pyruvate to glucose [28] and lowering the blood low- 
density lipoprotein (LDL) and cholesterol levels, which was con-
sistent with our biochemical blood results (Table 1). Based on a 
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Fig. 3. Influence of microorganisms on the metabolic zonation of the liver. A: The spatial scatter plot represents the maximum proportion of cells in the reference atlas that 
capture locations in the livers of GF and SPF mice; we can observe the substructure of the lobular regions of the liver defined by their specific cell types. B: Enriched GO terms for 
the DEGs of GF and SPF mice in each liver layer. C: The content of propionic acid in the liver of GF (red) and SPF (blue) mice; the data were scaled. D: The spatial order of genes in 
GF (red) and SPF (blue) mice is consistent with their position in the classical bile acid biosynthesis cascade but with different expression levels. Layers 1–8 represent the direction 
of CV to PV. CV, central vein; PV, portal vein.
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previous study, propionic acid can affect the cholesterol levels and 
lipid metabolic processes [56].

Furthermore, to investigate the microbial effects on bile acid and 
fatty acid metabolism at the gene level, we used ST data to char-
acterize the expression levels and distribution of genes. First, we 
used ST data to visualize critical genes for bile acid cascade synthesis 
(Fig. 3D, top). The overall trend of these genes in GF and SPF mice 
was more consistent with previous reports [17]. However, Cyp8b1 
gene expression was markedly downregulated in GF mice, and this 
phenomenon was also observed with the proof ST samples (Fig. S3B)
and was in conformity with the results of other studies [36]. In ad-
dition, immunofluorescence staining results showed that CYP8B1 
was significantly reduced in the GF group (Fig. S3C). This finding 
suggests that microorganisms may be involved in the process of bile 
acid synthesis. Next, focusing on the effect of microbes on the fatty 
acid metabolic process, we discovered that GF mice metabolize 
unsaturated fatty acids and long-chain fatty acids mainly in the 
central and intermediate layers (Fig. 3B and Fig. S3A). Short-chain 
fatty acid metabolism-related genes (Ces1f) are primarily enriched in 
the periportal vein, and long-chain fatty acid-related genes 
(Cyp2c54) are highly expressed mainly in the central periportal vein. 
In addition, the expression of genes metabolizing short-chain fatty 
acids was higher in SPF mice, whereas the expression of genes 
metabolizing long-chain fatty acids was higher in GF mice (Fig. 3D, 
bottom). For medium-chain fatty acids, lauric acid, a saturated fatty 
acid, is predominantly metabolized in SPF (Cyp4a10). However, 
arachidonic acid, an ω-6 polyunsaturated fatty acid widely found in 
cell membranes, is predominantly metabolized in GF mice 
(Cyp2d26). Unsaturated fatty acids promote high-density lipoprotein 
(HDL) synthesis, which is beneficial to vascular health. In contrast, 
saturated fatty acids are more likely to encourage the synthesis of 
LDL; thus, GF mice have lower HDL (P value = 0.009) and higher LDL 
levels (P value = 0.04, Table 1). Fatty acid metabolism-related genes 
were also differentially expressed between GF and SPF mice (Fig. 
S3D). These results demonstrate that microorganisms possibly affect 
liver metabolic function by altering gene expression and distribu-
tion, metabolic pathways, and metabolites.

2.4. Microorganisms impact the zonation patterns and functions

To investigate which gene zonation patterns are controlled by mi-
crobes, we calculated the average expression of all genes in each layer 
of the liver lobules using linear and nonlinear fits; specifically, the 
genes which were divided into three patterns based on their expression 
trends: genes that were highly expressed in the pericentral layer, genes 
that were highly expressed in the intermediate layer, and genes that 
were highly expressed in the periportal layer. According to these pat-
terns, all genes with the same expression level in GF and SPF mice were 
identified. The analysis identified 347 genes with high expression in the 
pericentral vein, 411 genes with elevated expression in the inter-
mediate layer, and 333 genes with increased expression in the peri-
portal vein of both GF and SPF mice, and three genes are shown in the 
figure (Fig. 4A; Table S5-S7). Then, genes with inconsistent expression 
patterns between GF and SPF mice were discovered (Table S8-S10). In 
SPF mice, 429, 436 and 148 genes were significantly more highly ex-
pressed around the central vein (Fig. 4B, left), the middle layer (Fig. 4B, 

middle), and the portal vein (Fig. 4B, right), respectively, whereas these 
genes did not exhibit the same significant pattern in GF mice. Thus, 
microorganisms may regulate the expression of genes between dif-
ferent layers of the liver lobules.

To further understand the functions influenced by the enriched 
expression of genes in different regions, two categories were defined 
regarding whether the region was affected by zonation enrichment. 
First, we conducted GO enrichment analyses of genes with consistent 
expression patterns between GF and SPF mice and identified the 
pathways enriched in the pericentral zone, intermediate, and periportal 
zone (from top to bottom, Fig. S4A, left). The critical genes in one of the 
pathways were then selected separately for display (Fig. S4A, right). We 
found significant differences in the expression levels of genes related to 
arginine biosynthesis in GF and SPF mice (Fig. S4B), whereas all these 
genes were highly expressed in the periportal zone. This result in-
dicates that microbes may regulate the expression of metabolism-re-
lated genes without altering their expression patterns. Second, we 
performed functional enrichment analyses of genes showing different 
expression patterns between GF and SPF mice. From top to bottom, 
Fig. 4C displays the results of the enrichment analysis for the genes in 
Fig. 4B (Fig. 4C, left). Our results also showed that, consistent with 
previous findings, the lipid biosynthetic process in SPF mice was 
mainly enriched in the pericentral vein [16], and fatty acid beta-oxi-
dation was primarily enriched in the periportal vein [7]; however, in GF 
mice, the findings were clearly different. Microbial alterations in lipid 
metabolism may be responsible for a reduced liver weight [64]. Genes 
classified as showing one of the three patterns were selected separately 
for display (Fig. 4C, right). For example, the lipid biosynthetic process is 
highly expressed in the pericentral vein in SPF mice with a decreasing 
trend, whereas in GF mice, the corresponding genes are mainly highly 
expressed in the intermediate layer. Genes with class I MHC-mediated 
antigen processing and presentation functions are most highly ex-
pressed in the middle layer in SPF mice, whereas in GF mice, the re-
lated genes are most highly expressed in the pericentral vein. The 
critical genes of the fatty acid beta-oxidation process were highly ex-
pressed in the periportal vein of SPF mice, whereas in GF mice, the 
related genes were mainly enriched in the central and intermediate 
layers. Genes related to the fatty acid beta-oxidation process were all 
significantly more highly expressed in SPF mice (Fig. S4C), demon-
strating that microorganisms affect the distribution of their expression 
in the liver. The evolutionary conservation of many MHC class Ib mo-
lecules suggests that unconventional T cells may play an important role 
in host physiology, particularly in mediating interactions with the 
microbiota and maintaining tissue homeostasis [15]. Thus, micro-
organisms may affect liver immune and metabolic functions by altering 
gene expression levels or tendencies in liver lobules.

3. Discussion

Our study combined single-nucleus/cell RNA sequencing with ST 
techniques to reconstruct a cellular atlas of GF and SPF mouse livers. 
Furthermore, the microbial effects on the mouse liver are also ana-
lysed at multiple levels, including cellular, genetic, spatial distribu-
tion, and metabolite levels. Previously, ST technology could not reach 
the single-cell level due to technical hindrances; thus, combining ST 
data with single-cell and other omnidirectional data from the same 

Table 1 
Blood biochemistry test. 

Name GF/n Mean ±  SD SPF/n Mean ±  SD P value Enriched

TG (mmol/L) 11 1.18  ±  0.62 9 1.55  ±  0.73 0.234 SPF
CHO (mmol/L) 11 3.25  ±  0.65 9 3.76  ±  0.86 0.154 SPF
HDL (mmol/L) 11 1.99  ±  0.28 7 2.50  ±  0.44 0.009 SPF
LDL (mmol/L) 11 0.40  ±  0.18 7 0.26  ±  0.06 0.04 GF

Table 1. TG, triglyceride; CHO, cholesterol; HDL, high-density lipoprotein; LDL, low-density lipoprotein.
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Fig. 4. Microorganisms can affect the gene expression patterns in liver lobules. A: Three patterns of similar gene expression trends in GF and SPF mouse livers. B: Three 
patterns of differential gene expression trends in GF and SPF mouse livers. C: Metascape was used to analyse the functional enrichment of genes with different expression patterns 
in GF and SPF mice according to the three categories in (B) (left), and the line graph (right) indicates the distribution of gene expression levels with one of the functions 
corresponding to those on the left on the liver lobules. The solid line represents GF mice, and the dashed line represents SPF mice. Three genes for each pattern are shown to make 
it more obvious.
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tissue was necessary [43,48] in this study. Moreover, with the de-
velopment of ST technologies, the accuracy can reach the subcellular 
level, providing an unprecedented level of insight into the biology of 
tissues.

First, Kupffer cells in the periportal vein can resist the spread of 
pathogens in the blood, and the formation of this zonation is driven 
by bacteria [25]. Our results showed that Kupffer cells were more 
enriched towards the periportal region in SPF mice than in GF mice 
(Fig. 2F and Fig. S2A). These findings provide initial support for the 
significance of the previously proposed immune zonation [25]. The 
liver is constantly threatened by toxicity and microorganisms from 
the periportal blood. GF mice may be less effective immunologically 
because they are not affected by microorganisms, as could be sug-
gested by the functional enrichment of Kupffer cells and CD4+ T cells. 
Therefore, it will be essential to perform ST to study the effect of 
microorganisms on immune zonation.

Second, liver metabolism was additionally examined. To ensure 
that differences in metabolites were not influenced by diet, all 
control mice were fed a uniform diet. This part of the study focused 
on the differences in propionate between the livers of GF and SPF 
mice. Using combined metabolomic and spatial data, we obtained 
some metabolic pathway partitioning regulated by microorganisms 
in addition to validating the previously mentioned hepatic metabolic 
zonation [7,9], which provided some evidence for further hepatic 
metabolic zonation studies. Nevertheless, the specific molecular 
mechanisms of metabolites affecting partitioning need to be solved.

Furthermore, the ST data generated in this study support the hy-
pothesis that the primary source of spatial heterogeneity throughout 
the liver tissue is transcriptional differences between the portal and 
central veins along the lobular axis region [29,30]. This study demon-
strates that genes differ along the axes of the liver lobules and that 
microorganisms may alter the expression of some genes along the lo-
bule axes. However, some gene expression fits may not be very precise 
due to the broad linear and nonlinear fitting restrictions, but it is 
possible to determine the overall trend. Different layers of the lobular 
microenvironment give rise to different spatial partitioning of hepa-
tocytes [29,30,5]. This study can provide a reference for the subsequent 
microbial changes in the function of hepatocytes on the lobules.

There is still much to learn regarding the functional basis of the 
interlobular liver and how the organ maintains its structural in-
tegrity. Considering the sample size used in this study, we can pro-
vide preliminary indications rather than general claims about the 
function of this structure. In addition to capturing and supporting 
previously observed trends in tissue heterogeneity in the mamma-
lian liver, our study may serve as a valuable resource to further in-
vestigate the structural components and spatial expression of 
candidate genes involved in the above processes and to identify 
some novel trends. By including GF mice, it is also possible to de-
termine which trends may be influenced by the colony.

Increasing the resolution and capture rates of ST will enable de-
tailed investigation of novel cellular subtypes within tissues [62]. At the 
same time, 3D reconstructions will provide a more comprehensive 
view of the tissue structure [60], which would significantly aid the 
identification of changes in tissue subregions and cellular states. This 
study explored the potential benefits of ST in liver research and de-
monstrated the spatial distribution of genes in the GF mouse liver as a 
precious resource for hepatology research. The spatial transcriptome 
may also have significant implications for future liver development, 
immunity, metabolism, and pathology studies.

4. Methods

4.1. Mice

A total of twenty-eight 10-week-old male Kunming (KM) mice 
were procured from the Experimental Animal Center of Huazhong 

Agricultural University (Wuhan, China), and these consisted of 
fourteen germ-free (GF) mice and fourteen specific-pathogen-free 
(SPF) mice. The mice were housed in a pathogen-free colony (tem-
perature, 25  ±  2 °C; relative humidity, 45–60%; lighting cycle, 12 h/ 
day; light hours 06:30–18:30) with free access to food and water. 
The Institutional Animal Care and Use Committee of Huazhong 
Agricultural University, Hubei, China, approved all animal experi-
ments and sample collection procedures. All experimental methods 
in this study were carried out following the Guide for the Care and 
Use of Laboratory Animals at Huazhong Agricultural University. The 
animal experiment ethics number for this study is BGI-IRB A21028.

4.2. Experimental design and sample collection

All mice were fed GF diets, which were produced according to 
our specially designed formula and sterilized by Co60-γ irradiation 
at 50 kGy to kill microorganisms [61]. Before being fed to the mice, 
the nutritional composition of the GF diets was tested according to 
standards. The body weight of each mouse at 10 weeks of age was 
measured before killing, and the mice were then euthanized by CO2 

inhalation followed by cervical dislocation to ensure death. Whole 
blood samples were collected from the orbital sinus of the mice. The 
mice were then dissected ventrally, and the entire liver was removed 
for weighing. First, a piece of the left lobe of the liver was cut for OCT 
embedding and used for ST experiments. Second, the liver was di-
vided into 5 * 5 * 5-mm3 segments and placed into lyophilization 
tubes using Miltenyi Tissue Preservation Solution for scRNA-seq 
research. Finally, for later detection of untargeted liver metabolites 
and snRNA-seq, small pieces of the liver from each animal were cut 
into lyophilized tubes, snap-frozen in liquid nitrogen for 15 min, and 
then promptly stored in a − 80 °C refrigerator.

4.3. scRNA-seq and snRNA-seq sample preparation and data filtering

Fresh liver tissues were sectioned into fragments to enable 
single-cell isolation, and these fragments were placed in RPMI-1640 
medium (Invitrogen) supplemented with 1% penicillin-streptomycin 
(Pen-Strep). Subsequently, the tissue fragments were enzymatically 
digested using the Mouse MACS Liver Dissociation Kit (Miltenyi 
Biotec) at 37 °C for 30 min under agitation, following the manu-
facturer’s instructions. The resulting dissociated cells were then 
passed through a 70-μm and 40-µm cell strainer (BD) and cen-
trifuged at 300g for 10 min. After removal of the supernatant, the cell 
pellet was resuspended in red blood cell lysis buffer (Thermo Fisher) 
and incubated on ice for 2 min to induce lysis of red blood cells. 
Following two washes with PBS (Invitrogen), the cell pellet was re-
suspended in PBS containing 0.04% BSA. The frozen liver fragments 
were used for single-nucleus isolation performed via a mechanical 
separation protocol with a 2-mL Dounce apparatus (Sigma, D8938, 
USA), as described previously [31]. The DNBelab C Series Single-Cell 
Library Prep Set (MGI, 1000021082) was used to construct libraries, 
and the libraries were sequenced using a DNBSEQ-T7 sequencer at 
the China National GeneBank (Shenzhen, China). Raw sequencing 
reads were filtered and demultiplexed using PISA (v0.2; https://gi-
thub.com/shiquan/PISA). The reads were aligned to the mouse re-
ference genome (GRCm39) using STAR (v2.7.4a) [18] and sorted by 
sambamba (v0.7.0) [55]. Estimation of the ambient RNA con-
tamination rate was conducted using SoupX [65] with the default 
settings. The cell preprocessing and filtering steps involved applying 
a minimal expression threshold of 200 genes and ensuring that 
genes were expressed in at least three cells. Only cells meeting these 
criteria were retained for subsequent analysis. Furthermore, cells 
with mitochondrial gene counts exceeding 15% were excluded. To 
identify and eliminate doublets, the default parameter of Dou-
bletFinder was utilized, resulting in the removal of the 5% of cells 
displaying the highest similarity to pseudo-doublets. The nuclei 
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underwent preprocessing and filtering utilizing a minimal expres-
sion threshold of 500 genes for SPF samples and 200 genes for GF 
samples and a maximum threshold of 4000 genes. Subsequently, 
nuclei with mitochondrial gene counts surpassing 10% were ex-
cluded from the analysis.

4.4. Data integration and dimensional reduction

In adherence to the guidelines outlined by Seurat, we clustered 
and visualized the nuclei of GF and SPF mice separately using a 
standard workflow. The clusters annotated as hepatocytes were then 
individually selected and merged with their corresponding single- 
cell groups. The merged data were then subjected to debatching 
integration using the "FindIntegrationAnchor" and "IntegrateData" 
functions in Seurat [10]. Subsequently, data were normalized using 
the NormalizeData function with default options, and the top 2000 
most variable genes of each replicate were then calculated by 
FindVariableFeatures with the vst method. PCA of the variable genes 
was performed using the RunPCA function in Seurat (version 4.3.0). 
The identities of clusters of cells were manually annotated using 
known marker genes in published articles with the help of the 
Mouse Cell Atlas database (https://bis.zju.edu.cn/MCA/) [20].

4.5. Stereo-seq experiments and data processing

The STOmics Gene Expression kit S1 (BGI, 1000028493) was 
utilized according to the standard protocol V1.1 [12]. The embedded 
samples were freeze-sliced to a thickness of 10 µm, adhered to the 
Stereo-seq chip, fixed by incubated in − 20 °C methanol for 30 min 
fixation, and then subjected to nucleic acid dye staining (Thermo 
Fisher, Q10212) and imaging (Ti-7 Nikon Eclipse microscope). The 
tissue was then permeabilized at 37 °C for 12 min and then subjected 
to reverse transcription, tissue removal, cDNA release, recovery, 
purification, and amplification. The cDNA was purified using AMPure 
XP beads (Vazyme, N411–03). Finally, libraries were sequenced using 
an MGI DNBSEQ-Tx sequencer (50 bp for read 1, 100 bp for read 2). 
The raw data were processed using the same procedure as in pre-
vious work (Chen et al., 2021). Clean reads were aligned to the 
mouse reference genome (GRCm39) using STAR [18]. Transcripts 
captured by 50∗50 DNBs were merged as one bin 50. We treated bin 
50 as the fundamental analysis unit. Bin IDs were synthesized by 
their spatial coordination (spatial_x and spatial_y) at the capture 
chip. Each chip bin has a diameter of approximately 220 nm and a 
centre-to-centre distance of 500 nm. Consequently, the centre dis-
tance of five bin 50 is approximately 100 µm.

4.6. Untargeted metabolomics

In this study, untargeted metabolomics analysis was conducted 
using LCeMS/MS technology. A high-resolution mass spectrometer 
Q Exactive HF (Thermo Fisher Scientific, USA) was used to collect 
data from both positive and negative ions. Compound Discoverer 3.3 
(Thermo Fisher Scientific, USA) software was used to process the 
LCeMS/MS data, primarily for peak extraction, peak alignment, and 
compound identification. The result file from Compound Discoverer 
was inputted into the R package MetaX for data preprocessing and 
further analysis. For data dimensionalization, principal component 
analysis (PCA) was employed, with log transformation and Pareto 
scaling being the primary methods used to compute the principal 
components. Partial least squares-discriminant analysis (PLS-DA) 
was utilized to assess the significant differences between classifi-
cation groups. Additionally, variable importance for projection (VIP) 
and Wilcoxon tests were used to identify and screen distinct meta-
bolites.

4.7. Liver zonation

The ST data expression matrix was used as the first input. The 
probability of each spot in each layer was then calculated based on 
the prior chance of marker genes using MATLAB [29]. The layer in 
which the spot is located and visualized with the highest probability 
was then selected. This analysis yields a spatially displayed map of 
the distribution of liver lobules in layers 1–8. Referring to the lit-
erature on the ratio of three layers of liver lobules [6], we used layers 
1–3, 4–5 and 6–8 of the ST data as the central venous region, in-
termediate region, and portal venous region, respectively.

4.8. DEGs and enrichment analysis

We used the FindMarkers function in Seurat to analyse DEGs 
among different cell types. DEGs were defined as genes with an 
absolute value of log2 fold change >  0.5 and adjusted P  <  0.05. We 
then performed a Gene Ontology (GO) analysis of DEGs between 
each cluster in GF and SPF mice to illustrate the biological process 
and potential function of different cells using the clusterProfiler 
package (version 4.0.5) and org.Mm.eg.db package (version 3.13.0). 
Only GO terms with a Q value  <  0.05 were retained (Fig. 2C). Genes 
with differential expression patterns were enriched for function 
(Fig. 4C and Fig. S4A) using the online site Metascape (https://me-
tascape.org).

4.9. Cellecell interaction

We used CellChat (version 1.6.0) [34] to assess cell interactions 
within each sample (GF and SPF mice). We created CellChat objects 
following the official CellChat workflow and used the mouse data-
base of CellChatDB for subsequent analysis.

4.10. SCENIC analysis

SCENIC analysis [1] is a method for computational scRNA-seq 
data gene regulatory network reconstruction and cell state identi-
fication based on coexpression and motif analysis. SCENIC analysis 
involves the following three steps to complete the transcription 
factor analysis: the first step is to construct the coexpression net-
work (GRNboost), the second step is to build the TF-target network 
(RcisTarget), and the third step is to calculate the regulon activity 
(AUCell). The input data are the single-cell gene expression matrix 
using the pySCENIC (version 0.11.2) and mm9–500 bp-upstream- 
7species databases for RcisTarget, GRNboost, and AUCell.

4.11. Deconvolution

We used the SPOTlight (version 1.0.1) method to integrate ST and 
scRNA-seq data to infer cell types and states within complex tissues. 
SPOTlight is centred around a seeded nonnegative matrix factor-
ization (NMF) regression, initialized using cell-type marker genes 
and nonnegative least squares (NNLS) to subsequently deconvolute 
ST capture locations [19], and these locations were then used to 
determine the cell types and percentage at each spot.

4.12. Immunofluorescence staining

Tissue cryosections (8 µm) were washed with PBS and fixed in 
100% methanol for 10 min at room temperature. After three washes 
with PBS, the tissue sections were blocked in blocking buffer (3% 
BSA, 0.3% Triton™ X-100 in PBS) for 30 min at room temperature and 
then incubated with primary antibody overnight at 4 °C. The next 
day, the tissue sections were washed with PBS and incubated with 
fluorescence-conjugated secondary antibodies for 1 h at room tem-
perature. DAPI-containing mounting medium (Southern Biotech 
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#0100–20) was used to visualize the nuclei and preserve slides. The 
antibodies used were as follows: CYP8B1 (Affinity, DF4762; 1:200 
dilution), Glutamine synthetase (BD Biosciences, #610517; 1:200 
dilution), Cy3-conjugated Goat anti-rabbit IgG (Servicebio, GB21303; 
1:200 dilution), and 488-conjugated Goat anti-mouse IgG 
(Servicebio, GB25301; 1:200 dilution). Images were acquired using a 
Nikon Eclipse C1 microscope and analysed using ImageJ software.

4.13. Linear and nonlinear models

To build a linear model (ax+b) of the mean gene expression with 
R, the intercept and slope terms were estimated using the lm 
function. The commonly used method is ordinary least squares (OLS) 
regression. If the P value (x) <  0.05 and coefficient (x) >  0.005, a 
significant monotonically increasing gene was considered highly 
expressed in the periportal vein; conversely, if the P value (x) <  0.05 
and coefficient (x) <  −0.005, a significant monotonically decreasing 
gene was highly expressed in the pericentral vein. The nonlinear 
model (ax2 +bx+c) fits the genes highly expressed in the inter-
mediate layer. The common method was nonlinear least squares 
(NLS) regression using the nls function with a P value of the coeffi-
cient of the quadratic term less than 0.05 and a coefficient of the 
quadratic term less than 0 (P value (x2) <  0.05 and coefficient (x2) 
<  0). The gene was highly expressed in the intermediate layer. The 
model was considered insignificant if the P value of the slope was 
more significant than 0.05.
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