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ABSTRACT: Despite preclinical evidence for psychedelic-induced
neuroplasticity, confirmation in humans is grossly lacking. Given the
increased interest in using low doses of psychedelics for psychiatric
indications and the importance of neuroplasticity in the therapeutic
response, this placebo-controlled within-subject study investigated
the effect of single low doses of LSD (5, 10, and 20 μg) on
circulating BDNF levels in healthy volunteers. Blood samples were
collected every 2 h over 6 h, and BDNF levels were determined
afterward in blood plasma using ELISA. The findings demonstrated
an increase in BDNF blood plasma levels at 4 h (5 μg) and 6 h (5
and 20 μg) compared to that for the placebo. The finding that LSD
acutely increases BDNF levels warrants studies in patient
populations.
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Preclinical research has demonstrated that psychedelic
substances, including 2,5-dimethoxy-4-iodoamphetamine

(DOI), lysergic acid diethylamide (LSD), N,N-dimethyltrypt-
amine (DMT), and psilocybin, as well as alkaloids present in
ayahuasca (harmine, tetrahydroharmine, and harmaline) affect
neuroplasticity after acute and chronic administration.1−5

Catlow and colleagues, for example, demonstrated the
increased formation of neurons (neurogenesis) in mice’
dentate gyrus after an average psilocybin dose of 3.5 μg/35 g
bodyweight (intraperitoneal (i.p.)), while this was slightly
decreased after a dose of 35 μg/35 g (psilocybin/body-
weight).6 Interestingly, when repeatedly given i.p. psilocybin
four times interspersed with 1 week, a higher dose of 52 μg/35
g (psilocybin/bodyweight) increased neuroplasticity.2 Chronic
administration in rats of twice the ritualistic dose of ayahuasca
(150 mL/70 kg bodyweight containing 0.26 mg/kg DMT) for
28 days resulted in increased in brain-derived neurotrophic
factor (BDNF) levels in the hippocampus of the female rats,
compared to that in control animals.7

A recent in vitro study in cultured cortical neurons of
animals showed increased formation of new neurites, as
expressed by the number of dendritic branches, the total length
of the arbors, and formation of synapses, after extended (24 h)
treatment with a range of psychedelics like DOI, LSD, and
DMT.1 While these effects were similar across psychedelic
classes and the dissociative ketamine, LSD was the most

potent, as shown via neuritogenesis assay.1 Also in cultured
human cortical neurons, the neuro-regenerative effects of
DMT8 and modulation of proteins involved in dendritic spine
formation by 5-MeO-DMT have been shown.9

In light of the increased scientific interest in using low
psychedelic doses,10 also known as “microdosing”,11 critical
preclinical work with DMT has also shown that neuroplastic
changes even take place after administration of low DMT
doses that are considered to be subhallucinogenic.1 Examples
are morphological changes in the prefrontal cortex of adult rats
and functional changes ex vivo.1 The practice of microdosing
entails repeatedly taking low doses, which are usually one-tenth
of a recreational dose that causes a psychedelic experience. For
LSD, that would, for example, be between 10 and 20 μg.12

User claims suggest the effectivity of self-medication with
low doses of psychedelics in the treatment of disorders related
to neuroplasticity, including depression.10 Interestingly,
depression has been linked with impairments in neuro-
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plasticity, and pharmacologically induced symptom improve-
ment is linked with increases in BDNF levels.13,14 BDNF is
highly expressed in limbic brain regions, which are involved in
emotional processes, memory, and mood. Notably, Bershad et
al. recently demonstrated connectivity changes in the limbic
areas after a low dose of LSD (13 μg, tartrate).15 These
biological changes correlated positively with the enhanced
mood in healthy volunteers.15

Together, these findings add scientific evidence to the idea
that LSD in low doses could have therapeutic potential in
mood-related disorders.10 Given the interest in BDNF as a key
player in several neurodegenerative and neuropsychiatric
disorders13,16,17 and preclinical data showing psychedelics-
induced neuroplasticity even at low doses of psychedelics,1 the
present double-blind, placebo-controlled, within-subject (WS)
study aimed to investigate whether LSD base in low doses (0,
5, 10, and 20 μg) affects BDNF plasma levels in healthy
volunteers. Blood samples were collected every 2 h over 6 h,
and BDNF levels were determined afterward in blood plasma
using ELISA.18 Previously, it has been demonstrated that
blood plasma BDNF concentrations reflect mammalian brain-
tissue BDNF levels.19

■ RESULTS
Difficulties with the peripheral venous catheter during blood
sample collection resulted in missing data. For one participant,
no blood samples were collected; for the remaining 23
participants, the percentage of samples over all time points
ranged from 6 to 100%. Only five (21.7%) of the participants
had a complete data set; therefore, we opted to run the
analyses per dose for complete cases (placebo−LSD dose) to
be able to perform statistical analyses. In Table 1, the

demographic details of participants included in the statistical
analyses are presented. Four trapezoidal areas under the curves
(AUC) for BDNF were calculated for the three LSD doses and
placebo; the same procedure was used for LSD concentrations.

Wilcoxon signed-rank (S-R) tests revealed a statistically
significant difference between AUC BDNF levels following 5
ug of LSD (Z = −2.60, p = 0.009, r = 0.58, 95% CI
[0.11;1.06]) and 20 μg of LSD (Z = −2.52, p = 0.01, r = 0.63,
95% CI [0.09;1.17]) compared to placebo; the difference
between AUC BDNF levels after 10 μg of LSD and placebo
was not significant (Z = −1.01, p = 0.31) (Figure 1A). AUC
LSD plasma levels for the selection of complete WS cases per
dose are shown in Figure 1B for illustrative purposes to show
that LSD plasma levels increased with increasing LSD doses.
Wilcoxon S-R tests revealed higher BDNF levels at +4 h

after administration of 5 μg of LSD (Z = −2.80, p < 0.01, r =
0.63, 95% CI [0.15; 1.11]) and 10 μg LSD (Z = −1.95, p =
0.05, r = 0.46, 95% CI [−0.04; 0.97]) compared to placebo.
Although analysis including the 10 μg dose revealed a
statistically significant p value (0.05), the CI included zero,
indicating nonsignificance. Tests at +6 h after LSD
administration revealed significant effects of 5 μg of LSD (Z
= −2.29, p = 0.02, r = 0.51, 95% CI [0.03; 0.99]) and 20 μg of
LSD (Z = −2.52, p = 0.01, r = 0.63, 95% CI [0.09; 1.17]) on
BDNF levels compared to placebo (Figure 2A−C). Corre-
sponding LSD plasma levels are presented in Figure 2D,E.
Friedman tests investigating BDNF changes in the function

of time demonstrated that BDNF plasma levels remained
stable in the placebo conditions throughout the test frame.
BDNF plasma levels under the LSD conditions showed their
highest levels at 4 h after administration of 5 μg of LSD (8.95
ng/mL), and at 6 h after administration of 10 μg of LSD (8.28
ng/mL) and 20 μg of LSD (11 49 ng/mL) (Table 2).

■ DISCUSSION

This study provides preliminary evidence that low doses of
LSD increase BDNF plasma levels in healthy volunteers up to
6 h after administration, suggesting a window of opportunity
for a therapeutic response20,21 and cognitive enhancement22,23

that might be of use in patient populations. This line of
thinking is supported by recent findings with ketamine and
ayahuasca (containing the psychedelic DMT) demonstrating
increased serum BDNF levels 24 and 48 h after a single (high)
dose, respectively, compared to placebo, which was related to
fast antidepressant actions.21,24,25

Of interest is the different time-course of BDNF levels for
the 5 μ and 20 μg doses. While BDNF levels peaked at 4 h for
the 5 μg dose, these levels significantly increased 2 h later for
the 20 μg dose. Recently, Zhang et al. showed that a

Table 1. Participant Age and Sex per Complete Within-
Placebo-LSD Dose Case

LSD dose (μg)
participants
(number) mean age (SD)

sex (male/
female)

5 10 21.5 (3.06) 4:6
10 9 22.89 (2.80) 5:4
20 8 23.75 (2.66) 6:2

Figure 1. Total mean AUC (SEM) of BDNF (A) and of LSD (B) plasma levels for complete WS LSD dose-placebo cases. N(5 μg LSD) = 10;
N(10 μg LSD) = 9; N(20 μg LSD) = 8. *, statistical significance at p ≤ 0.05.
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subanesthetic dose of IV ketamine (10 mg/kg/2h) increased
BDNF in the amygdala at 2 h after administration, while 40
mg/kg/2 h did not affect BDNF levels, instead elevating levels
of other proteins involved in plasticity (cFos, pERK) in the
mPFC and hippocampus.26 Earlier, they showed that IV
ketamine (20 mg/kg/2h) induced a decrease in BDNF plasma
in rats at 2 h after ketamine administration, while 5 mg/kg/2h
did not affect the levels.27 Their findings emphasize that BDNF
levels undergo time-dependent changes following ketamine
administration that can be influenced by the dose and timing
of assay,26 something that might also explain the absence of
effects in our study after dosing with 10 μg of LSD. Looking at
the BDNF levels under the 20 μg dose condition suggests that
the peak had yet to come. While the multiple assessment
points in the present study were a strength, future studies
might want to include extra assessment points beyond the 6 h
postdrug period, even assessing the next day to understand the
time-course of the effect.
While microdosing implies taking repeated doses of a

psychedelic for a prolonged time, the present study only
assessed the acute effects of a single administration on BDNF
levels. Future studies will have to assess the effects of repeated

dosing on neuroplasticity to understand whether or not this
practice is beneficial to neuroplasticity. Previous studies
investigating the repeated administration of ketamine and
classical psychedelics have provided mixed results. Preclinical
studies, and studies in ketamine abusers, for example, have
shown that long term administration decreases the BDNF
production in animals and humans.28,29 However, preclinical
studies with repeated administration of high doses of
serotonergic psychedelics demonstrated increased neuro-
plasticity.27

Concerning the underlying pathway, previously it was shown
that the structural changes induced by psychedelics appear to
result from stimulation of the TrkB, mTOR, and 5-HT2A
signaling pathways.30 Ketamine is known to set off a signaling
cascade by antagonizing NDMA receptors on presynaptic
GABA neurons, resulting in an increased postsynaptic
production of BDNF. The intermediate steps are increased
presynaptic glutamate release and activation of mTOR
pathways.31−33 Ketamine and LSD might share a final common
pathway when it comes to stimulation of BDNF. Future
studies might include other proteins as well, to understand the
neurobiological pathways underlying neuroplasticity and the

Figure 2. Mean (SEM) BDNF plasma levels for each LSD dose with the corresponding WS placebo condition per time of testing (A−C) and
corresponding mean (SEM) LSD plasma levels (D−F). *, statistical significance at p ≤ 0.05 in A−C; no statistical tests were performed over data in
D−F.

Table 2. Friedman Test of Time on BDNF Plasma Levels in the LSD Conditions and Dunn’s Pairwise Comparisons

Friedman test main
time effect Dunn’s pairwise comparisons (Z(1))a

LSD dose (μg) participants number (x2(3)) p effect size Cramer’s V 0 h−2 h 0 h−4 h 0 h−6h 2 h−4 h 4 h−6 h

5 10 15.72 <0.01 0.51 1.21 3.64* 2.77* 2.42* 0.87
10 9 13.00 <0.01 0.49 1.09 2.56* 3.29* 1.46 0.73
20 8 19.05 <0.01 0.63 0.77 2.13 4.07* 1.36 1.94

a*, statistical significance at a sequential Bonferroni corrected p value < 0.05.
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potential (therapeutic) implications of these induced changes.
Potential foci might be proteins such as cFos and Perk,
implicated in synaptic plasticity and memory formation,26 as
ketamine is known to impact these.
While the present study had a small final sample size due to

the difficulty in collecting blood over the 6 h course the
participants were in the lab, the strength was the within-subject
set up which neutralized the variation in the placebo−LSD
comparisons and the multiple measurements after admin-
istration. Besides emphasizing the need to sample BDNF
beyond the LSD elimination stage, in addition to including
behavioral and imaging measures, future studies could focus on
similarities between underlying biological pathways of the well-
studied ketamine and LSD, as these will contribute to
understanding the scope of effects LSD might have, based
on ketamine findings. This first evidence of neuroplasticity in
humans after low doses of a psychedelic provides a foundation
to explore and replicate this finding in patient populations, to
understand the therapeutic value of it, if any exists.

■ MATERIALS AND METHODS

Participants were 24 recreational psychedelic users who
provided informed consent, fell within the inclusion criteria,34

and passed medical screening including standard blood
chemistry, hematology, and urinalysis before inclusion.
Test days were scheduled with minimally 5 days in between.

A test day started at 9:00 AM with a screen for the presence of
drugs of abuse in urine and alcohol in the breath, as well as a
urine pregnancy test for female participants. When tests were
negative, a venous catheter was placed to draw blood. LSD (5,
10, and 20 μg LSD base) was dissolved in 96% ethanol; the
placebo consisted of 1 mL of ethanol (96%) without LSD.
LSD and placebo were administered orally at 10:00 AM. A
dose of 5, 10, and 20 μg LSD base would be equivalent to
respectively 6.2, 12.3, and 24.6 μg pure LSD tartrate (1:0.5
without any crystal water). Participants were allocated to
unique treatment orders. Blood samples were taken at −0.5 h,
+2 h, +4 h, and +6 h relative to drug administration using BD
vacutainer heparin tubes spray-coated with lithium heparin.
Samples were centrifuged, and plasma was transferred into a
clean tube and frozen subsequently at −20 °C until analysis.
BDNF determination was assessed using an ELISA kit
(Biosensis Mature BDNF Rapid ELISA kit: human, mouse,
rat; Thebarton, Australia).18 Plasma samples were appropri-
ately diluted (1:20), and detection of BDNF was carried out
on a precoated mouse monoclonal anti-mature BDNF 96-well
plate as described in the manufacturer’s protocol. The intra-
and interassay coefficients of variation of this assay are below
10% (intra-assay CV 4.29%, interassay CV 7.14%). Samples
were analyzed in duplicate, and mean values of respective
measurements were calculated and used in statistical analyses.
All measurements were done in a blinded fashion. LSD
concentrations were determined using ultra-high-performance
liquid chromatography/tandem mass spectrometry (UHPLC−
MS/MS) as previously described.35 A different extraction
procedure reanalyzed samples with an LSD concentration
below 5 pg/mL. In brief, aliquots of 150 μL of plasma were
extracted with 450 μL of methanol. The samples were
rigorously mixed and subsequently centrifuged. The super-
natant was evaporated under a constant stream of nitrogen and
resuspended in 200 μL of mobile phases A and B (10:90 v/v).
An LLOQ of 2.5 pg/mL was reached by this extraction.

This study is part of a more extensive study, including
cognitive, psychological, and physiological parameters which
are reported elsewhere.34 The study adhered to the code of
ethics on human experimentation,36 was approved by the
Medical Ethics Committee of the Academic Hospital of
Maastricht and Maastricht University, and was registered in the
Dutch Clinical Trial register (number: NTR7102 https://
www.trialregister.nl/). A permit for obtaining, storing, and
administering LSD was obtained from the Dutch Drug
Enforcement Administration.

■ STATISTICAL ANALYSIS
Complete WS cases entered statistical analyses performed by
the statistical program SPSS (version 25.0). Nonparametric
Wilcoxon S-R tests for related samples (placebo−LSD dose)
were conducted on BDNF AUC’s and BDNF plasma levels at
−0.5 h, +2 h, +4 h, and +6 h after dose administration of 5, 10,
and 20 μg of LSD. In order to understand at which time points
BDNF levels were statistically different, separate Friedman
tests per treatment condition were performed, and in the case
of a main effect, followed by Dunn’s tests for pairwise
comparisons including baseline (0 h) versus 2 h, 4 h, and 6 h,
as well as 2 h−4 h and 4 h−6 h.
In the case of statistically significant effects at alpha = 0.05,

effect sizes and their 95% confidence intervals (95% CI) are
given; to that end, (point-biserial) correlations are calculated
for Wilcoxon tests where 0.10, 0.24, and 0.37 signify small,
moderate, and large effect sizes;37,38 in case of Friedman tests,
Cramer’s V was calculated where 0.06, 0.17, and 0.29 signify
small, moderate, and large effect sizes.39 The alpha level was
corrected for multiple comparisons with sequential Bonferroni
in case of Dunn’s tests.
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kinase
S-R Signed-rank
WS Within subject

■ REFERENCES
(1) Ly, C., Greb, A. C., Cameron, L. P., Wong, J. M., Barragan, E. V.,
Wilson, P. C., Burbach, K. F., Soltanzadeh Zarandi, S., Sood, A.,
Paddy, M. R., Duim, W. C., Dennis, M. Y., McAllister, A. K., Ori-
McKenney, K. M., Gray, J. A., and Olson, D. E. (2018) Psychedelics
Promote Structural and Functional Neural Plasticity. Cell Rep. 23
(11), 3170−3182.
(2) Catlow, B. J., Jalloh, A., and Sanchez-Ramos, J. (2016) Chapter
77 - Hippocampal Neurogenesis: Effects of Psychedelic Drugs, in
Neuropathology of Drug Addictions and Substance Misuse (Preedy, V.
R., Ed.), Academic Press, San Diego, CA, pp 821−831.
(3) Morales-García, J. A., de la Fuente Revenga, M., Alonso-Gil, S.,
Rodríguez-Franco, M. I., Feilding, A., Perez-Castillo, A., and Riba, J.
(2017) The alkaloids of Banisteriopsis caapi, the plant source of the
Amazonian hallucinogen Ayahuasca, stimulate adult neurogenesis in
vitro. Sci. Rep. 7 (1), 5309.
(4) Farzin, D., and Mansouri, N. (2006) Antidepressant-like effect of
harmane and other β-carbolines in the mouse forced swim test. Eur.
Neuropsychopharmacol. 16 (5), 324−328.
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