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Introduction
Mitosis is controlled by precise temporal and spatial regulation 

of protein kinases and ubiquitin ligases (Murray, 2004). The ac-

tivity of the Cdk1/cyclin B kinase is activated at mitotic entry 

and remains high until anaphase onset, during which destruc-

tion of cyclin B, mediated by the anaphase-promoting complex/

cyclosome (APC/C), inactivates Cdk1. The timing of APC/C 

activation and subsequent chromosome segregation is controlled 

by the spindle checkpoint, which delays the onset of anaphase 

until all chromosomes are properly aligned at the metaphase 

plate. The absence of microtubule attachment or tension at 

 kinetochores activates the checkpoint and arrests cells in mitosis. 

Protein phosphorylation mediated by checkpoint kinases, such 

as monopolar spindle 1 (Mps1), Aurora B, Bub1, BubR1, and 

polo-like kinase 1 (Plk1), plays an essential role in checkpoint 

signaling on kinetochores. In fact, unattached or untense kineto-

chores are hyperphosphorylated (Gorbsky and Ricketts, 1993; 

Nicklas et al., 1998), and the lack of tension promotes the for-

mation of a kinetochore phosphoepitope recognized by the 3F3/2 

monoclonal antibody (Cyert et al., 1988). We and others have 

recently identifi ed Plk1/Xenopus laevis polo-like kinase 1 (Plx1) 

as the 3F3/2 kinase (Ahonen et al., 2005; Wong and Fang, 2005). 

Despite the extensive efforts of over a decade, the molecular 

identity of the kinetochore protein harboring the physiological 

3F3/2 epitope remains unknown. We report here that the check-

point protein BubR1 is the kinetochore 3F3/2 antigen phos-

phorylated by Plx1. Furthermore, we show that formation of the 

BubR1 3F3/2 epitope requires a priming phosphorylation by 

Cdk1/cyclin B on Thr 605 and that this phosphorylation is re-

quired for checkpoint arrest.

Results and discussion
BubR1 is a biochemical 3F3/2 antigen that 
interacts with Plx1
Our previous work on kinetochore assembly suggests BubR1 as 

a potential 3F3/2 antigen (Wong and Fang, 2006). To test this 

possibility, we immunoprecipitated BubR1 from X. laevis mei-

otic metaphase (cytostatic factor [CSF] arrested) and spindle 

checkpoint extracts (CSF extracts with addition of sperm chro-

mosomes and nocodazole), followed by Western blotting with 
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Figure 1. Cdk1- and Plx1-mediated phosphorylation of BubR1 generated the 3F3/2 epitope. (A) BubR1 was immunoprecipitated (IP) from either check-
point extracts (lanes 1 and 2) or CSF extracts (lanes 3 and 4) and treated with (lanes 1 and 4) or without (lanes 2 and 3) λ-phosphatase. Control immuno-
precipitation was performed in CSF extracts using nonspecifi c rabbit IgG (lane 5). Samples were assayed by SDS-PAGE, and identical regions of the 
duplicated blots were analyzed by anti-3F3/2 and -BubR1 antibodies. (B) Immunoprecipitates of control or BubR1 antibodies from CSF extracts were ana-
lyzed by Western blotting with anti-Plx1 and -BubR1 antibodies. (C and D) Chromosomes purifi ed from checkpoint extracts were dephosphorylated by 
λ-phosphatase, treated with NEM, and subsequently rephosphorylated (ReP) by incubation with ATP alone or ATP plus Plx1 and/or Cdk1/cyclin B. 
 Phosphorylated chromosomes were stained for the indicated antigens (C), and mean fl uorescence intensities of kinetochore 3F3/2 signals (n = 20 kineto-
chores) were quantifi ed and normalized to the corresponding value derived from samples rephosphorylated by both Plx1 and Cdk1/cyclin B (D). Error 
bars represent SEM. Bar, 5 μm. (E) Recombinant GST-BubR1 and GST-BubR1-T605A were fi rst incubated at 25°C for 75 min, with or without Cdk1/cyclin B, 
in the presence of 0.2 mM of unlabeled ATP. Samples were then split equally and incubated for 40 min in the presence of purvalanol A with γ-[32P]ATP 
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the 3F3/2 antibody. BubR1 purifi ed from both extracts reacted 

with the 3F3/2 antibody to a similar extent, whereas treatment 

with λ-phosphatase removed the 3F3/2 signals (Fig. 1 A). Thus, 

BubR1 is a 3F3/2 antigen whose phosphorylation occurs before 

checkpoint activation. As Plk1/Plx1, which usually interacts 

with its substrates (Barr et al., 2004), is the 3F3/2 kinase (Ahonen 

et al., 2005; Wong and Fang, 2005), we tested whether BubR1 

associates with Plx1. Indeed, endogenous Plx1 coimmuno-

precipitated with BubR1 (Fig. 1 B), and recombinant polo box 

domain (PBD) from Plx1 also binds to endogenous BubR1 in 

extracts (unpublished data).

Phosphorylation of BubR1 by Cdk1 and 
Plx1 reconstitutes the 3F3/2 epitope
Next, we determined the kinase requirement for the formation of 

the kinetochore 3F3/2 phosphoepitope on sperm chromosomes. 

Endogenous kinetochore 3F3/2 epitopes on sperm chromosomes 

purifi ed from checkpoint extracts were fi rst dephosphorylated 

with λ-phosphatase and endogenous kinases inactivated by 

N-ethylmaleimide (NEM; Wong and Fang, 2005). Chromosomes 

were then incubated with active recombinant kinases and forma-

tion of the 3F3/2 epitope was monitored by immunofl uorescence 

staining. Even though Plx1 alone at high concentrations was suf-

fi cient to generate the 3F3/2 epitope in this assay (Wong and 

Fang, 2005), Plx1 near its physiological concentrations (10 ng/μl 

Plx1; Descombes and Nigg, 1998) failed to reconstitute the 

3F3/2 phosphoepitope (Fig. 1, C and D). This is not surprising, 

as recognition and phosphorylation of substrates by Plx1 fre-

quently require a priming phosphorylation by another kinase, 

such as Cdk1/cyclin B, which generates a binding site for PBD 

(Barr et al., 2004). Thus, we investigated the priming require-

ment for the 3F3/2 epitope. Although active Plx1 or Cdk1/cyclin B 

alone was not suffi cient to generate the kinetochore 3F3/2 sig-

nals, a combination of the two kinases generated robust 3F3/2 

signals (Fig. 1, C and D), suggesting that Cdk1 functions as a 

priming kinase to promote the 3F3/2 phosphoepitope.

We then reconstituted the 3F3/2 epitope in BubR1 in a pu-

rifi ed system. First, we showed that both Cdk1 and Plx1 phos-

phorylated recombinant BubR1 (Fig. S1 A, available at http://www

.jcb.org/cgi/content/full/jcb.200708044/DC1). To investigate 

the effect of priming phosphorylation on BubR1, we incubated 

recombinant BubR1 with unlabeled ATP in the presence or ab-

sence of Cdk1/cyclin B, followed by incubation with or without 

Plx1 in the presence of γ-[32P]ATP and purvalanol A, a Cdk1 

inhibitor (Gray et al., 1998). Although Plx1 alone phosphory-

lated BubR1, BubR1 that had been incubated with Cdk1 was 

phosphorylated fourfold more effi ciently by Plx1 (Fig. 1 E). 

Thus, priming phosphorylation of BubR1 by Cdk1 enhances its 

phosphorylation by Plx1.

Second, we identifi ed the amino acid residue important 

for priming phosphorylation. PBD recognizes the S-S/T-P se-

quence in mitotic Plx1 substrates (Barr et al., 2004; van Vugt 

and Medema, 2005), in which the Ser/Thr residue preceding 

Pro is phosphorylated. Sequence analysis indicated that there 

is only one S-T-P (aa 604–606) conserved between human and 

X. laevis BubR1 (Fig. S1 B). We found that priming phosphory-

lation of BubR1-T605A by Cdk1/cyclin B had no effect on the 

level of its subsequent phosphorylation by Plx1, in contrast to 

the wild-type BubR1 (Fig. 1 E). Thus, Thr 605 is a critical site 

for priming phosphorylation of BubR1 by Cdk1.

Third, we reconstituted the 3F3/2 epitope in BubR1 in vitro. 

Recombinant BubR1 and BubR1-T605A were phosphorylated 

with Cdk1/cyclin B and/or Plx1, followed by Western blotting 

with the 3F3/2 antibody (Fig. 1 F). Either kinase alone was 

not suffi cient to form the 3F3/2 epitope. The presence of both 

kinases robustly generated the 3F3/2 epitope on wild-type 

BubR1, but not on BubR1-T605A. Furthermore, generation of 

the 3F3/2 epitope does not require the kinase activity of BubR1 

(Fig. 1 G; Wong and Fang, 2006). Thus, Cdk1 and Plx1 act syn-

ergistically to generate the 3F3/2 epitope in a Thr 605–dependent 

manner. Consistent with this, recombinant GST-BubR1, but 

not GST-BubR1-T605A or GST-BubR1-T605E, coprecipitated 

with the endogenous Plx1 in CSF extracts (Fig. 1 H). Thus, Thr 

605, likely through its phosphorylation, facilitates the BubR1–

Plx1 interaction.

Lastly, we determined whether BubR1 is the 3F3/2 anti-

gen in X. laevis checkpoint extracts. CSF extracts were fi rst 

 immunodepleted of endogenous BubR1 and then incubated with 

recombinant BubR1, BubR1-T605A, or BubR1-T605E together 

with sperm chromosomes and nocodazole. Chromosomes were 

purifi ed onto coverslips and underwent the assay of rephosphor-

ylation by Cdk1/cyclin B and Plx1, as described in Fig. 1 C. 

Depletion of BubR1 reduced the kinetochore 3F3/2 signals 

30-fold, whereas addback of recombinant BubR1 rescued the 

signals (Fig. 1, I and J). However, the 3F3/2 signals failed to 

 recover to a substantial extent in the BubR1-T605A and BubR1-

T605E addback samples, even though both proteins were prop-

erly targeted to kinetochores. Thus, BubR1 is a physiological 

kinetochore 3F3/2 antigen, and Thr 605 is required for the gen-

eration of the 3F3/2 epitope. In contrast, the presence of residual 

3F3/2 signals on BubR1-T605A/E– rescued kinetochores sug-

gests that another kinetochore 3F3/2 antigen may exist whose 

alone (middle) or γ-[32P]ATP plus Plx1 (top). The amounts of recombinant GST-BubR1 and GST-BubR1-T605A from duplicated samples were shown by 
Coomassie blue (CB) staining. The amount of 32P incorporated in the top panel was quantifi ed and plotted. Compared with BubR1, more BubR1-T605A was 
used in the reaction, which explains more effi cient phosphorylation of BubR1-T605A by Plx1 in the absence of Cdk1. (F and G) 1 μg each of recombinant 
GST-BubR1, GST-BubR1-T605A, and GST-BubR1 kinase-dead mutant (KD; K788R) were incubated with the indicated kinases in the presence of 0.2 mM 
ATP for 2 h, and then subjected to SDS-PAGE followed by Western blotting with the 3F3/2 antibody. (H) 3 μg each of recombinant GST-BubR1, GST-BubR1-
T605A, GST-BubR1-T605E, and GST control were incubated with 140 μl CSF extracts for 20 min, immunoprecipitated with an anti-GST antibody, and then 
subjected to Western blotting for the associated Plx1. (I and J) Chromosomes purifi ed from checkpoint extracts that had undergone immunodepletion (ID) 
and addback (AB) of equal amounts of the indicated proteins were dephosphorylated (De-P) by λ-phosphatase, treated with NEM, and subsequently re-
phosphorylated by Plx1 and Cdk1/cyclin B. Phosphorylated chromosomes were stained for indicated antigens (I), and mean fl uorescence intensities of 
kinetochore 3F3/2 (red) and BubR1 (green; n = 20 kinetochores) were quantifi ed and normalized to the corresponding value derived from mock-depleted 
extracts (J). Error bars represent SEM. Bar, 5 μm.
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phosphorylation or kinetochore localization is under the control 

of BubR1.

Thr 605 in BubR1 is required for spindle 
checkpoint arrest
We next determined whether the Thr 605 phosphorylation is 

 required for checkpoint arrest. BubR1 was depleted from CSF 

extracts to >95% (Fig. 2 A, lane 1), and recombinant BubR1, 

BubR1-T605A, or BubR1-T605E was then added back to endog-

enous levels (Fig. 2 A, lanes 2–4). Subsequently, sperm chromo-

somes and nocodazole were added to activate spindle checkpoint, 

and samples were then split and incubated with or without 

 calcium. Aliquots were then taken at various times and assayed 

for Cdk1 kinase activity. In the absence of calcium, Cdk1 kinase 

activity in all extracts remained high, indicating a stable meiotic 

metaphase arrest (Fig. 2 B, bottom). Upon addition of calcium, 

which triggers the transition from meiotic metaphase into inter-

phase, BubR1-depleted extracts entered interphase with a low 

Cdk1 activity, whereas addback of BubR1 maintained the high 

Cdk1 activity caused by the activation of the spindle checkpoint 

(Fig. 2, B and C; Chan et al., 1999; Chen, 2002; Mao et al., 2003). 

However, addition of BubR1-T605A or BubR1-T605E failed 

to prevent meiotic exit, indicating that Thr 605 in BubR1 is 

required for the checkpoint arrest. Mutations on Thr 605 did not 

nonspecifi cally inactivate BubR1 because of misfolding of the 

mutant proteins, as BubR1-T605A was as active as BubR1 in 

inhibition of APC-Cdc20 (Fig. 2, D and E).

Thr 605 in BubR1 is required for 
the recruitment of Plx1 and Mad2 
to kinetochores
We determined the cellular basis for the lack of checkpoint 

 arrest. BubR1 controls the kinetochore localization of Plx1 

and the checkpoint protein Mad2, as demonstrated in BubR1-

 depleted extracts (Fig. 3, A–D; Mao et al., 2003; Wong and 

Fang, 2006). Localization of Plx1 and Mad2 to kinetochores 

in BubR1-depleted extracts was recovered upon addition of 

recombinant BubR1, but not BubR1-T605A or BubR1-T605E, 

even though mutant BubR1 proteins were effi ciently targeted 

to kinetochores (Fig. 1, I and J; and Fig. 3, A–D). This lack of 

recruitment of Plx1 and Mad2 was not because of a global change 

in the outer kinetochore structure, as the checkpoint protein Mps1 

was effi ciently targeted to kinetochores in all analyzed extracts 

(Fig. 3, E and F; Wong and Fang, 2006). Thus, Thr 605 is spe-

cifi cally required for the checkpoint arrest and for the recruit-

ment of Mad2 and Plx1 to kinetochores.

Activation of the BubR1 kinase by Plx1 
and Cdk1 is dependent on Thr 605
BubR1 is a kinase whose activity is required for checkpoint ar-

rest (Chan et al., 1999; Mao et al., 2003). Thus, we determined 

whether phosphorylation of BubR1 by Cdk1 and Plx1 affects its 

kinase activity as assayed by its autophosphorylation. Without 

prephosphorylation by Cdk1 and Plx1, the BubR1 kinase activity 

was undetectable (Fig. 4 A; Mao et al., 2003). However, pre-

phosphorylation of BubR1, but not the kinase-dead BubR1, by 

Cdk1 and Plx1 increased its autophosphorylation activity at least 

Figure 2. Thr 605 in BubR1 is required for spindle checkpoint arrest. 
(A) CSF extracts were mock depleted (lane 5) or depleted (lanes 1–4) of 
BubR1. Recombinant GST-tagged BubR1 (lane 2), BubR1-T605A (lane 3), 
or BubR1-T605E (lane 4) was added to the depleted extracts. Different 
amounts of extracts were loaded to determine the depletion effi ciency. 
(B and C) CSF extracts that had undergone immunodepletion and addback 
of the indicated proteins were incubated with sperm chromosomes and 
nocodazole to activate the spindle checkpoint, followed by incubation with 
(top) or without (bottom) calcium. At the indicated times, an aliquot of ex-
tracts was assayed for the Cdk1 kinase activity using histone H1 as a sub-
strate. The kinase activity was quantifi ed and plotted (C) upon normalization 
to the value at time 0 for the corresponding samples. C shows mock-
 depleted extracts (star), BubR1-depleted extracts (square), BubR1-depleted 
extracts with addback of GST-BubR1 (fi lled circle), GST-BubR1-T605A 
(open circle), and GST-BubR1-T605E (triangle). (D and E) Inhibition of APC-
Cdc20–mediated ubiquitination by equal amounts of recombinant GST-
BubR1 and GST-BubR1-T605A was assayed using in vitro translated 
35S-securin substrate, as described previously (Fang, 2002). The amount of 
securin remaining was quantifi ed and plotted (E) upon normalization to the 
value at time 0 for the corresponding samples . E shows interphase APC 
(iAPC; square), iAPC + Cdc20 (fi lled circle), iAPC + Cdc20 + BubR1 (tri-
angle), and iAPC + Cdc20 + BubR1-T605A (open circle).
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100-fold (Fig. 4, A and B). Thus, the Cdk1- and Plx1-mediated 

phosphorylation activates BubR1.

Next, we determined the relative contribution of Cdk1 and 

Plx1 and the role of Thr 605 in activation of BubR1 in a similar 

assay. Although prephosphorylation of BubR1 by Cdk1 or Plx1 

alone enhanced its kinase activity to some extent, phosphory-

lation of BubR1 by both Cdk1 and Plx1 synergistically activated 

BubR1 by 10 or 30 times as compared with BubR1 prephos-

phorylated by Cdk1 or Plx1 alone, respectively (Fig. 4, C and D). 

This synergistic activation of BubR1 requires Thr 605 in BubR1, 

as the BubR1-T605A mutant only showed an additive activation 

by Cdk1 and Plx1 (Fig. 4, C and D). Thus, Cdk1 and Plx1 syn-

ergistically activate the kinase activity of BubR1 in a Thr 605–

dependent manner.

Responses to checkpoint activation usually consist of a cell 

cycle arrest and repair of the cellular defects, which activates the 

checkpoint in the fi rst place. In the case of the spindle check-

point, lack of attachment or tension arrests cells in mitosis and 

alters the kinetochore structure to promote attachment and tension. 

It has been shown previously that the checkpoint protein BubR1 

is not only essential for inhibition of APC/C (Sudakin et al., 2001; 

Tang et al., 2001; Fang, 2002) but also regulates the kineto-

chore–microtubule attachment and chromosome congression 

(Ditchfi eld et al., 2003; Lampson and Kapoor, 2005; Morrow 

et al., 2005; Draviam et al., 2007). We report here that both 

functions of BubR1 are coordinately regulated by Cdk1 through 

its phosphorylation on BubR1 Thr 605. First, this phosphory-

lation is required for checkpoint-mediated mitotic arrest. Mecha-

nistically, phosphorylation on Thr 605 does not affect the in vitro 

inhibitory effi ciency of BubR1 toward Cdc20-APC/C. Instead, 

this phosphorylation controls the targeting of Mad2 to kineto-

chores, which is essential for mitotic arrest.

Second, Cdk1-mediated phosphorylation promotes the for-

mation of the 3F3/2 epitope. The 3F3/2 antigen is a mysterious 

kinetochore protein that has been hunted by cell biologists for 

over a decade (Gorbsky and Ricketts, 1993). The kinetochore 

3F3/2 phosphoepitope is generated by Plk1/Plx1 in response 

to the lack of tension across sister kinetochores (Campbell and 

Figure 3. Thr 605 in BubR1 is required for the recruitment of Plx1 and Mad2 to kinetochores. Chromosomes were purifi ed onto coverslips from checkpoint 
extracts that had undergone immunodepletion and addback of the indicated proteins, as prepared in Fig. 2 A. Purifi ed chromosomes were stained in green 
for Mad2 (A), Plx1 (C), and Mps1 (E). DNA was stained in blue. Mean fl uorescence intensities of Mad2 (B), Plx1 (D), and Mps1 (F) were quantifi ed from 
20 kinetochores in different fi elds and plotted upon normalization to the corresponding values derived from mock-depleted extracts. Error bars represent 
SEM. Bars, 5 μm.
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Gorbsky, 1995; Nicklas et al., 1995, 1998; Ahonen et al., 2005; 

Wong and Fang, 2005). We demonstrate here that the check-

point protein BubR1 is the kinetochore 3F3/2 antigen, whose 

phosphorylation requires the synergistic action of Cdk1 and 

Plx1, as priming phosphorylation on BubR1 Thr 605 by Cdk1 

is essential for the formation of the 3F3/2 signals. Surprisingly, 

the 3F3/2 phosphoepitope in BubR1 is observed in both CSF 

extracts and checkpoint extracts (Fig. 1 A) but not in inter-

phase extracts (unpublished data), indicating that formation of 

this epitope is tension independent. Thus, the mitotic/meiotic 

state provides a permissive environment for the formation 

of the 3F3/2 biochemical epitope, but its functional specifi -

city to the lack of tension is likely determined by its kineto-

chore localization.

As Plk1 is not required for checkpoint arrest in human cells 

(Sumara et al., 2004; van Vugt et al., 2004; Lenart et al., 2007), 

the 3F3/2 epitope is probably not involved in mitotic arrest but 

is likely to act in regulating kinetochore–microtubule inter-

actions (Gorbsky and Ricketts, 1993; Campbell and Gorbsky, 

1995; Nicklas et al., 1995, 1998). Indeed, Plk1 promotes the 

 assembly of the bipolar spindle and the generation of tension 

(Sumara et al., 2004; van Vugt et al., 2004; Matsumura et al., 

2007). As the formation of the 3F3/2 epitope by Cdk1 and Plx1 

drastically activates the kinase activity of BubR1, we speculate 

that the active BubR1 kinase controls the kinetochore struc-

tures and/or promotes microtubule attachment to kinetochores. 

Although our extract system precludes us from analyzing the 

exact physiological function of the 3F3/2 phosphoepitope in 

tension signaling, the molecular information on the 3F3/2 anti-

gen and its kinase presented in this study nevertheless opens 

the door for future characterizations of the tension responses in 

culture cells.

Materials and methods
Antibodies and recombinant proteins
Antibodies against X. laevis Mad2, BubR1, Mps1, and Plx1, as well as 
3F3/2 ascite, have been described previously (Wong and Fang, 2006). 
Baculoviruses for Plx1 and Cdk1/cyclin B were provided by J. Maller 
 (University of Colorado, Denver, CO) and H. Piwnica-Worms (Washington 
University, St. Louis, MO), respectively. Active recombinant Plx1 and 
Cdk1/cyclin B were expressed in Sf9 cells for 44 h and then treated with 
250 nM okadaic acid for 4 h before harvesting. BubR1-T605A and BubR1-
T605E mutants were generated by site-directed mutagenesis. Recombinant 
BubR1, BubR1-T605A, BubR1-T605E, and BubR1 kinase dead (K788R) were 
expressed in Escherichia coli as GST fusion proteins and purifi ed using 
glutathione agarose (GE Healthcare).

Preparation of X. laevis egg extracts, immunodepletion, 
and immunofl uorescence
Meiotic metaphase extracts (CSF extracts) and checkpoint extracts from 
X. laevis eggs and demembranated sperm nuclei were prepared as described 
previously (Minshull et al., 1994). CSF extracts that were either mock 
 depleted or depleted of BubR1 were incubated with demembranated sperm 
nuclei and nocodazole. In rescue experiments, recombinant BubR1 pro-
teins were added to depleted extracts before the addition of sperm nuclei 
and nocodazole.

Figure 4. Activation of the BubR1 kinase by Plx1 and Cdk1 is dependent 
on Thr 605. (A) BubR1 autophosphorylation was assayed as diagramed. 
Recombinant GST-BubR1 was prephosphorylated (Pre-P) in 0.2 mM of 
 unlabeled ATP in the presence (sample 2) or absence (sample 1) of Plx1 
and Cdk1/cyclin B. Plx1 was then removed by anti-Plx1 antibody beads, 
and prephosphorylated BubR1 was assayed for its autophosphorylation 
activity in the presence of γ-[32P]ATP and purvalanol A. In a parallel control 
(sample 3), recombinant GST, not BubR1, was used in the prephosphory-
lation reaction, and thereafter an aliquot of unphosphorylated GST-BubR1 
protein was added before the autophosphorylation reaction. (B) 550 ng 
each of wild-type BubR1 and kinase-dead mutant was assayed for auto-
phosphorylation after being prephosphorylated by Cdk1 and Plx1 as de-
scribed in A. (C and D) 550 ng each of recombinant GST-BubR1 (lanes 
1–4), GST-BubR1-T605A (lanes 8–11), and GST (lanes 5–7 and 12–14) 
was prephosphorylated by either Cdk1/cyclin B (lanes 2, 5, 9, and 12) or 
Plx1 (lanes 3, 6, 10, and 13), or by both kinases (lanes 4, 7, 11, and 14). 
The autophosphorylation assay was then performed as described in A. 
In control GST samples (lanes 5–7 and 12–14), unphosphorylated BubR1 

(lanes 5–7) or BubR1-T605A (lanes 12–14) were added after the prephos-
phorylation step but before the autophosphorylation reaction. The extent of 
autophosphorylation was quantifi ed by measuring the amount of 32P incor-
porated in BubR1 (D).
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Immunofl uorescence images were captured at 23°C on a micro-
scope (Axiovert 200M; Carl Zeiss, Inc.) using an oil-immersion objective 
lens (100× 1.4 NA; Plan-Apochromat), a digital charge-coupled device 
camera (Orca-ER; Hamamatsu Photonics), and Openlab 5.0.1 (Improvision). 
For quantitative comparison of fl uorescence intensities, images were acquired 
and processed identically. In Fig. 1 D, the intensity of each kinetochore 
3F3/2 signal was determined relative to that of BubR1 obtained from the 
same kinetochore.

Rephosphorylation assay with sperm chromosomes
Chromosomes were purifi ed onto coverslips from spindle checkpoint ex-
tracts (Wong and Fang, 2005). To remove the 3F3/2 phosphoepitope 
and inactivate endogenous kinases, coverslips were incubated with 
λ-phosphatase (New England Biolabs, Inc.) and subsequently treated 
with NEM (Wong and Fang, 2005). Coverslips were then incubated with 
5 ng/μl His6-Plx1 and/or 3 ng/μl Cdk1/cyclin B in the kinase reaction 
buffer (KRB) (20 mM Hepes, pH 7.8, 15 mM KCl, 10 mM MgCl2, 1 mM 
EGTA, 0.5 μM microcystin LR, and 0.1 mg/ml BSA) supplemented with 
2 mM ATP for 1.5 h at room temperature. Coverslips were next stained with 
the 3F3/2 ascite at a 1:8,000 dilution at 4°C overnight, with the Alexa 
Fluor 594 and 488 secondary antibodies (Invitrogen) for 1 h at room tem-
perature, and with DAPI.

In vitro kinase assays
Phosphorylation of BubR1 by Cdk1 or Plx1 was performed in a total vol-
ume of 10 μl KRB for 30 min at room temperature, using 1 μg BubR1 and 
0.2 mM ATP, with either 250 ng Cdk1/cyclin B or 30 ng His6-Plx1. The radio-
labeling assay was performed similarly, except in the presence of 2 μCi 
γ-[32P]ATP.

To assay BubR1 autophosphorylation in Fig. 4, 550 ng of recombi-
nant BubR1 was fi rst phosphorylated by Cdk1/cyclin B in KRB supple-
mented with 0.2 mM of unlabeled ATP for 75 min at 25°C, and then by 
Plx1 for 45 min in the presence of 65 nM purvalanol A, a potent inhibitor 
of Cdk1/cyclin B (Gray et al., 1998). The Plx1 kinase was then removed 
from phosphorylated BubR1 by incubating with anti-Plx1 antibody/protein A 
beads for 1 h at room temperature. Subsequently, phosphorylated BubR1 
was assayed for autophosphorylation by incubating in KRB plus 0.2 mM 
ATP, 2 μCi γ-[32P]ATP, 65 nM purvalanol A, and 0.1 mg/ml ovalbumin for 
40 min at room temperature. Control experiments were done in parallel 
 using GST protein as a substrate to undergo prephosphorylation by Cdk1/ 
cyclin B and Plx1. After subsequent depletion of Plx1, the control samples 
were mixed with 550 ng of recombinant BubR1, which had not been phos-
phorylated by either kinase, and assayed for BubR1 autophosphorylation.

Online supplemental material
Cdk1 and Plx1 phosphorylate BubR1 in vitro. Online supplemental material is 
available at http://www.jcb.org/cgi/content/full/jcb.200708044/DC1.
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