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Abstract

The Heliothine insect complex contains some of the most destructive pests of agricultural crops worldwide, including the
closely related Helicoverpa zea and H. armigera. Biological control using baculoviruses is practiced at a moderate level
worldwide. In order to enable more wide spread use, a better understanding of cell-virus interactions is required. While
many baculoviruses have been sequenced, none of the Heliothine insect genomes have been available. In this study, we
sequenced, assembled and functionally annotated 29,586 transcripts from cultured H. zea cells using Illumina 100 bps and
paired-end transcriptome sequencing (RNA-seq). The transcript sequences had high assembly coverage (64.5 times). 23,401
sequences had putative protein functions, and over 13,000 sequences had high similarities to available sequences in other
insect species. The sequence database was estimated to cover at least 85% of all H. zea genes. The sequences were used to
construct a microarray, which was evaluated on the infection of H. zea cells with H. Armigera single-capsid
nucleopolyhedrovirus (HearNPV). The analysis revealed that up-regulation of apoptosis genes is the main cellular response
in the early infection phase (18 hours post infection), while genes linked to four major immunological signalling pathways
(Toll, IMD, Jak-STAT and JNK) were down-regulated. Only small changes (generally downwards) were observed for central
carbon metabolism. The transcriptome and microarray platform developed in this study represent a greatly expanded
resource base for H. zea insect- HearNPV interaction studies, in which key cellular pathways such as those for metabolism,
immune response, transcription and replication have been identified. This resource will be used to develop better cell
culture-based virus production processes, and more generally to investigate the molecular basis of host range and
susceptibility, virus infectivity and virulence, and the ecology and evolution of baculoviruses.
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Introduction

The Heliothine insect pest complex, which includes the closely-

related Helicoverpa zea and H. armigera caterpillars, are among the

most destructive pests of agricultural crops on a global scale. H. zea

alone infests at least 30 agricultural crops in North America [1].

The H. zea single-capsid nucleopolyhedrovirus (HzSNPV) and the

H. armigera single-capsid nucleopolyhedrovirus (HearNPV) are

effective baculovirus agents often used to control these pests [2]

and can be produced in vitro by infecting H. zea cells in culture [3].

Baculovirus and insect cell culture technologies are also increas-

ingly being used to produce recombinant proteins [4] and subunit

vaccines including virus-like particles [5], and to develop gene

delivery vectors including those for cancer therapies [6–7].

However, understanding of the interactions between baculoviruses

and host cells in culture remains limited, mainly due to a lack of

insect genomic sequences. While complete genome sequences for

more than 50 baculoviruses are available [8], the genomic

information for insect hosts of baculoviruses is poor, with complete

genomes only available for the silk worm, Bombyx mori [9]. H. zea

for example has only 191 nucleotide sequences available from the

NCBI database as of October 2011. This study applied an effective

approach to obtain an almost complete coding sequence database

for H. zea (via the HzAM1 cell line), so that a comprehensive

expression microarray can be built to investigate baculovirus-host

interactions.

Insect genome sequencing is challenging due to their large

genome sizes (over 430 MB) and other issues such as hetero-

zigosity, transposable elements, and gene duplication [10,11].

Hence, sequencing is most often performed only for the useful

coding regions, rather than for the whole genome. Transcript

sequences are conventionally obtained from cDNA libraries,

constructed using E. coli, from which plasmids are extracted for

Sanger sequencing [12,13,14]. Recently, the development of deep

transcriptome sequencing (RNA-seq) allows massive parallel

sequencing of millions of on-chip cDNA libraries, which generates

a far higher number of transcript sequences, that can cover a

majority of coding genes [15,16,17,18]. The paucity of genomic

information for H. zea is limiting with respect to quantitative

expression analysis using microarrays, since authentic genome

sequences are required, which cannot be reliably substituted, even

by those of closely-related species [19]. In this study, this problem
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was circumvented by generating H. zea transcript sequences from

RNA-seq, which were then used to construct a species-specific

genome-scale microarray platform. By combining the best features

of both next generation sequencing and microarray technology,

this study developed a more affordable approach towards

expression analysis for cell production systems lacking genome

sequence information. Furthermore, this sequence database can be

used more broadly to investigate the molecular basis of H. zea

insect-pathogen interactions.

This study applied the latest IlluminaH sequencing technology to

generate millions of raw paired-end and 100 bps long sequences

from the H. zea transcriptome. Several short-read assemblers, such

as Velvet/Oases [20], ABySS [21,22], SOAP [23], and Trinity

[24] have been developed recently for sequence assembly. This

study improved assembly by combining the best outputs from two

independent assemblers (Oases and ABySS) to generate

29,586 H. zea transcript sequences. A number of tools were then

used to predict the functions of these sequences (annotation), and a

comprehensive hypothetical metabolic network for H. zea was

constructed to facilitate the analysis of metabolic pathway changes

at the genetic level. A large-scale microarray (46180,000 probes/

slide) was then used to experimentally validate the assembled

sequences and to select the best probes for a future refined

microarray, in which the response of H. zea cells to HearNPV

infection can be investigated at a more in-depth level. This initial

microarray experiment (incorporating probes for both insect and

virus genes) was used to analyse RNA extracted from uninfected

and HearNPV-infected H. zea (HzAM1) cell cultures (harvested at

an early infection phase), to provide initial indications of the most

significant up-regulated and down-regulated genes and pathways

at early virus infection.

Results

Sequencing and Assembly of H. zea Transcriptome
The GA II sequencing produced 29,401,474 reads (100 bps per

read), with average Sanger quality scores higher than 20, which

showed that the base-calling accuracy was above 99% [25]. These

high quality reads were assembled independently using Oases and

ABySS. The assembly outputs were firstly assessed based on

lengths and numbers of sequences, in comparison with the model

caterpillar, Bombyx mori, which has been fully sequenced (http://

www.silkdb.org). In most cases, both ABySS and Oases programs

produced more sequences than B. mori (Figure 1). The numbers

of long sequences (larger than 400 bps) were over 13,000

sequences (Figure 1 A). ABySS with k = 55 bps (ABySS_55)

generated 57,842 sequences, with an average length of 528.3 bps,

while Oases with k = 49 bps (Oases_49) produced 30,006

sequences with an average length of 824.2 bps. Additionally, the

sequence size distribution pattern of H. zea was compared to that

of B. mori, showing that both insects have very similar sequence

size distributions, in particular having the most sequences at

lengths between 500–2,000 bps (Figure 1 B). Since B. mori

exhibited an insignificant number of ESTs shorter than 200 bps,

the assembled H. zea sequences that were shorter than this length

were also removed. The presence of sequences longer than 10 kb

in the B. mori dataset suggested that the large sequences obtained

from H. zea assembly were not abnormal.

Assembly quality was also assessed by coverage, which is the

number of initial raw reads mapped to the final assembled

transcripts. The BWA tools [26] mapped 17,805,193 reads (78.7%

of clean 100 bps reads) to the assembled sequences, indicating that

a large proportion of reads had been assembled into longer

transcripts. On average, each ABySS_55 transcript was mapped

by 651.7 reads (Figure 2). Therefore, the estimated average

coverage was 64.5 times, given that the average length of

ABySS_55 transcripts was 1,009 bps. This coverage was high,

suggesting a reliable assembly output.

H. zea genes that have been sequenced previously (available

from the NCBI GenBank) were BLAST-compared with the

corresponding transcripts assembled in this study, demonstrating

that there was over 99% identities in the locally-aligned regions (or

High-scoring Segment Pairs - HSPs) between the two datasets

(Table 1). The HSP regions were longer than 2,000 bps for five

out of 15 genes shown in Table 1, suggesting that long coding

sequences could be assembled accurately. The heat shock protein

70 (HsP70) transcript, for example, had 99.55% similarity, and

was 99.1% of the full length of the corresponding H. zea gene

sequence (2258 bps). However, there were cases that assembled

sequences were longer than expected. For instance, Locus_1406

transcript had 2,098 bps (out of total 5200 bps assembled length)

alignment to the N-Ethylmaleimide sensitive fusion protein (NSF)

(Table 1). Further BLAST analysis showed that this transcript

matched to a Manduca Sexta insect’s intronic mRNA that encodes

two proteins, namely NSF protein and Hitcher protein (GenBank

accession AF118384), suggesting that the non-aligned parts in

assembled sequences may contain useful information. Never-

theless, the whole dataset, 13,381 sequences had long and well-

aligned HSP regions, which provided useful information on

sequence orientations, accuracy, and functions of assembled

transcripts and can be used at high confidence. For example,

when compared to 144 top BLASTX matches from the closely

related H. armigera, 49 protein sequences exhibited 100% identities

in the HSP regions (Table S1).

BLASTN was applied to assess the reproducibility of de novo

assembly and to combine outputs produced by the two

independent programs, ABySS and Oases. 24,627 out of

27,402 queries from ABySS _55 (89.9%) had matches in

Oases_49, with an average BLAST identity of 99.4%, and an

average alignment length of 808.9 (approximately 78.7% of the

full length ABySS sequences). Similarly, 22,723 out of 23,682

Oases_49 sequences (96.0%) had matches from ABySS_55. The

high proportion of similar sequences between the outputs from

these two independent assemblers suggested that de novo

assembly had high reproducibility, and hence high reliability.

On the other hand, when considering BLAST comparisons to

the NCBI databases, Oases_49 sequences had higher similarity

and longer alignment length (i.e. better quality), while ABySS

produced more hits (i.e. higher quantity). Therefore, to obtain a

final dataset that could represent as many H. zea genes as

possible, 5,904 unique sequences from ABySS_55 were selected

from the BLAST to Oases_49 (unique sequences had alignment

lengths shorter than 200 bps and identities lower than 95%) and

added to the Oases_49 dataset. This combination not only

increased the number of sequences by 5%, but also enabled a

more comprehensive annotation than those from the original

ABySS_55 or Oases_49 datasets alone. As a result, 1,564

putative proteins were added to the Oases_49 annotation.

Functional annotation of H. zea transcriptome. Full

details on putative gene functions, Gene ontology (GO) terms,

Enzyme commission (EC) numbers, and KEGG orthologies (KO)

for 27,400 selected sequences to be used in the final microarray are

shown in Table S1.

From the whole dataset of 29,586 sequences, BLASTX

search against the UniProtKB/Swiss-Prot database produced

matches for 23,401 sequences (79.1%), among which 13,398

matches exhibited E#1023. BLASTX was also run on the

NCBI non-redundant protein databases using BLAST2GO [27],

RNA-Sequencing and Microarray of Helicoverpa zea
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Figure 1. Assessing assembly quality based on lengths and number of contigs. (A) Comparison of total numbers of sequences (longer than
400 bps), generated by ABySS or Oases at different k-mer length parameters. The total number of genes from the model insect, B. mori, is shown for
comparison. Processed reads were used to run Oases (trimming of 10 last bps and removing of ambiguous quality indicators) and ABySS (no
trimming, but removing reads with ambiguous quality indicators) at different k values ranging from 20 to 95 for ABySS and 21 to 85 for Oases. (B)
Length distribution of the best Oases and ABySS assembled datasets compared to the B. mori database. Numbers of sequences were classified
according to length ranges and plotted for comparison. All EST sequences of B. mori were downloaded from the silkworm database (http://www.
silkdb.org).
doi:10.1371/journal.pone.0036324.g001
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PLoS ONE | www.plosone.org 3 May 2012 | Volume 7 | Issue 5 | e36324



which produced 13,381 matches with E#1023. The majority of

the best matches with H. zea were from insect species, and the

similarities mostly ranged between 60 to 80%, which were high

given that limited sequences are available from related insects

(Figure 3). The BLASTX analysis also identified EC numbers

for 7,476 sequences. In addition, a BLASTX search against the

B. mori EST database showed that the H. zea transcript set had

14,211 matches (97.2%) from B. mori sequences, suggesting a

high percentage of H. zea genes was obtained.

The comprehensiveness of the H. zea transcriptome sequences,

in terms of functional group coverage, was assessed by classifying

transcripts into GO or KO functional groups, and by scrutinizing

the putative genes of the immune system and metabolic network.

GO terms were assigned using InterProScan on the HMM-Pfam,

HMMPanther, and FPrintScan databases. For the H. zea

sequences, the number of unique transcripts with GO was 5,857

(corresponding to 1,125 unique GO terms), which was comparable

to that of B. mori (5,971 sequences, corresponding to 961 GO

terms). GOs found for all genes were classified into GO_Slim

Figure 2. An example demonstrating assembly coverage by mapping reads to a reference scaffold containing assembled
sequences. The BWA tools mapped original 100 bp reads to the scaffold of all ABySS_55 sequences with criteria that the matches had . = 95%
length and . = 90% identity. In this Figure, the top panel shows reference transcripts. The bottom panel shows coverage as the number of reads per
nucleotide position in the reference genes. As shown in this example, many parts of the assembled sequences had coverage higher than 200.
doi:10.1371/journal.pone.0036324.g002

Table 1. Comparisons of assembled H. zea sequences to 15 known H. zea sequences.

Protein name Gene ID
H. zea Hits from
NCBI databasea Identity (%)b

Alignment Length
(bps)b

Assembled length
(bps)

Reference Length
(bps)c

Lysozyme Precursor Locus_26896 FJ535250.1 100 221 223 1048

Atpase Type 13A1 Locus_8085 HQ184468.1 99.96 2690 2690 4171

Ribosomal Protein L13 Locus_1416 AY846882.1 99.86 365 731 788

Putative DNA-Mediated
Transposase

103915 DQ788837.1 99.81 1562 1617 2787

Cytoplasmic Actin A3a1 Locus_649 AF286060.1 99.74 784 1541 1218

Casein Kinase I Locus_5768 AY220910.1 99.65 1144 1171 1820

Cytochrome Oxidase Subunit
1

113509 HQ677772.1 99.57 235 235 700

Elongation Factor 1-Alpha Locus_130 U20136.1 99.56 919 1189 1240

Heat Shock Protein 70 Locus_4921 GQ389711.1 99.55 2238 2237 2258

Acyl-Coa Delta-9 Desaturase Locus_518 AF272343.1 99.54 2394 2519 2404

Dopa Decarboxylase Locus_27095 U71429.1 99.39 490 490 690

Heat Shock Protein 90 Locus_87 GQ389710.1 99.27 2470 2515 2476

Heat Shock Protein 70
Cognate

Locus_572 GQ389712.1 99.25 1593 1624 2082

N-Ethylmaleimide Sensitive
Fusion Protein

Locus_1406 AY220909.1 99.14 2098 5200 2474

Apyrase Locus_1519 HM569605.1 98.01 1857 3086 2102

aPublished H. zea sequences available from NCBI GenBank were BLAST to the assembled sequences.
bThe completeness and accuracy of assembled sequences were assessed based on sequence identity and the alignment lengths.
cThe length of H. zea sequences from NCBI GenBank.
doi:10.1371/journal.pone.0036324.t001

RNA-Sequencing and Microarray of Helicoverpa zea
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Figure 3. BLASTX similarity distribution and top-hit species distribution. BLASTX was applied for all 29,586 assembled sequences using
BLAST2GO (www.blast2go.org/), [27]. (A) Distribution of numbers of sequences at different BLASTX identities. (B) Numbers of top hit sequences from
BLASTX were calculated for each species.
doi:10.1371/journal.pone.0036324.g003
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categories (using the CateGorizer tool, http://www.

animalgenome.org/tools/catego/, [28]). The distribution of genes

to GOs was similar between H. zea and B. mori, suggesting that the

H. zea transcript set covers comprehensively all functional

categories and that the sequencing and assembly were not biased

towards any functional group (Figure 4), [28]. In addition, further

pathway analysis was performed using the KEGG Automatic

Annotation Server (KAAS) (http://www.genome.ad.jp/tools/

kaas/), which identified 3,242 H. zea sequences with KEGG

orthologies (2,806 unique KOs) [29], (Table S1). This was also

comparable to B. mori, which had 3,513 genes with KEGG

orthologies (3,071 unique KOs). The comparisons to the fully

sequenced genome of B. mori in relation to GO and KO terms

suggested the comprehensive detection of the H. zea transcriptome.

In-depth Analysis of the H. zea Immune System and
Metabolic Network

Immune and metabolic pathways are of special interest to both

virus production and Heliothine pest management. The H. zea

transcriptome dataset were investigated further to identify immune

and metabolic genes. The dataset had as many immune genes as

reported for B. mori, which covered all known pathways in the

insect innate immune system, including pathogen recognition,

modulation, signaling (Toll, Imd, JNK, and Jak/STAT), and

effectors (Table 2; Table S2; Table S5). These genes exhibit

high identity with available sequences in the public databases. For

example, four out of five Lepidoptera caspases (caspases 1, 2, 5, and

6) were identified in this database [30]. Among these four caspases,

caspases 1 and 5 had 100% identity, while caspases 2 and 6 had

97% identity, with their homologs in H.armigera, respectively.

Furthermore, 106 apoptosis-related sequences in H. zea were

predicted, based on the KEGG apoptosis reference pathway and

apoptosis genes of fully sequenced insect species, especially those of

the extensively studied B. mori [31], (Table S2).

A H. zea metabolic network was constructed using Pathway tool

to match protein names, EC numbers, and GO terms from

BLASTX and InterProScan to metabolic reactions and pathways

[32]. The ‘‘H.zeaCyc pathway/genome database’’ linked the

genomic repertoire of enzyme genes to the chemical repertoire of

metabolic pathways. A web server for accessing this interactive

network is available at http://pathway.aibn.uq.edu.au. When the

metabolic network of H. zea was compared with those from three

insects that had fully-sequenced genomes (Pea Aphid, Red flour

Beetle and Fruit Fly, http://acypicyc.cycadsys.org/), the H. zea Cyc

pathway appeared to represent a major part (at least 85%) of the

entire insect metabolic network (Table 3). Noticeably, the high

number of polypeptides for the Pea Aphid as shown in Table 3
likely contains duplications and redundancy [11], which can be

Figure 4. Comprehensiveness of H. zea transcriptome as reflected by gene ontology. Gene ontology terms (GOs) for H. zea were extracted
from InterproScan and were compared to those for B. mori downloaded from the silkworm database (http://www.silkdb.org). The GOs were grouped
using CateGorizer tool (http://www.animalgenome.org/tools/catego/), [28].
doi:10.1371/journal.pone.0036324.g004
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the cause of the higher number of pathways, reactions and

enzymes in Aphid than those in the well-annotated Red Flour

Beetle and Fruit Fly.

Overall, the database was estimated to cover at least 85% of all

H. zea genes. This estimation was based on comparisons to B. mori

in terms of the number of putative proteins (Figure 1 and

Figure 3), the coverage and numbers of sequences in different

functional groups (Figure 4), and number of genes in different

immunological pathways (Table 2; Table S5), and comparisons

to Acyrthosiphon Pisum, Tribolium castaneum and Drosophila melanogaster

in terms of the completeness of the reconstructed metabolic

network (Table 3).

Microarray validation of assembled sequences and

selection of probes. A microarray slide that contains

46180,000 probes was used to experimentally validate assembled

sequences, and to select the most suitable probes for a refined

microarray platform to be used in future expression analysis of

H. zea. Six probes were used for each gene target (three probes for

each direction) in the microarray. Each probe was tested in four

samples, including two for infected and two for uninfected

cultures. Among 27,873 sequences that had probes in the array,

27,431 (98.4%) sequences had well above background signal

(WABS) in all four samples. Noticeably, 22,773 (81.7%) sequences

had WABS for all three probes in a particular direction.

The orientation of H. zea transcripts was not obtained from the

sequence assembly routine, but was deduced from both the

microarray and BLASTX findings. The direction selected for each

gene was the one that had the highest cumulative probe signal

(from three probes). The probe that produced the highest signal

(among the three probes of the selected direction) for each gene

target was selected to be included in a refined microarray for

expression analysis. Using this approach, the final microarray

contains 27,400 probes for H. zea sequences and probes for 135

HearNPV virus genes, so that virus-host interactions can be

investigated at a genome-scale. The number of probes in this

refined H. zea microarray is comparable to that of the established

B. mori microarray platform (which currently consists of 22,987

probes). Sequences of all 27,400 genes and their corresponding

probes are presented in the Table S4.

Differential expression analysis of H. zea cell responses

at early infection. To determine a suitable time for sampling

insect cells post infection that exhibited most host responses to

infection, time-course expression levels of three early genes (two

virus genes and one insect gene) were quantified by RT-PCR at

6 different time points (Figure 5). The viral immediate early 1

gene (IE1) and the DNA polymerase gene express near the

beginning after virus entry and are essential for virus replication

[8]. On the other hand, in Spodoptera frugiperda and B. mori, the

insect heat shock protein 70 (HsP 70) was consistently found to

be a host response gene to viral infection [33,34]. Therefore,

these three genes were selected. The transcription of virus early

genes was initiated from 12–24 hours post infection (h.p.i), and

increased exponentially after 24 h.p.i. The host response, as

reflected by HsP 70 expression, peaked at 18 h.p.i. Thus

18 h.p.i was selected for sample extraction, and microarray

signals from the selected probes (27,400 insect genes and 135

virus genes) were utilized to investigate expression changes in

cells at an early infection phase.

Density plots for the microarray signal showed high

correlations between duplicates, which were 0.997 for both

infected and uninfected replicates (Figure 6 A and B). This

demonstrated the high consistency among replicates and the

reliability of microarray detection. In order to test the

assumption for ‘‘Quantile’’ normalization that the distribution

of signals are similar between arrays [35], all genes were ranked

Table 2. Innate immune genes and apoptosis genes in H. zea
as compared to B. mori.

Immune
pathways B. moria H. zeab Upc Downc Unchangedc

Recognition 69 48 4 8 36

Modulation 41 26 2 8 16

Toll pathway 27 28 2 12 14

Imd pathway 9 7 1 0 6

JNK pathway 4 7 0 0 7

JAK/STAT pathway 4 5 0 3 2

Apoptosis 73 61 15 8 38

For more details on genes in each pathway, refer to Table S5.
aNumbers of B. mori genes were collected from Zhang et al [31], Tanaka et al
[57], and from InterProScan annotation (http://www.silkdb.org).
bThe numbers listed here are the numbers of different transcript sequences that
matched to corresponding proteins from protein BLASTX searches.
cNumbers of H. zea genes that were up or down-regulated or unchanged at 18
hours post infection (only up or down regulated genes that had p-adjusted
values, which were generated by the Limma linear model with the Benjamini–
Hochberg correction method, smaller than 0.05 were counted).
doi:10.1371/journal.pone.0036324.t002

Table 3. Summary of H. zea metabolic networka in comparison to other insects that have whole genome sequences (http://
acypicyc.cycadsys.org), [58].

Summary metabolic network
H. zea (Cotton
bornworm)

Acyrthosiphon pisum (Pea
Aphid)

Tribolium castaneum (Red
flour beetle)

Drosophila melanogaster
(Fruit fly)

Pathways 175 207 203 196

Enzymatic Reactions 1,307 1,623 1,568 1,329

Transport Reactions 48 16 12 10

Polypeptides 29,586 34,725 14,462 17,806

Enzymes 2,487 2,967 2,521 3,745

Transporters 173 96 62 144

Compounds 859 1,079 1,025 925

aEC numbers, InterProScan ID, GO terms, and putative protein names of coding sequences were mapped to enzyme groups, metabolic reactions and metabolic
pathways to construct a cellular metabolic network.
doi:10.1371/journal.pone.0036324.t003

RNA-Sequencing and Microarray of Helicoverpa zea
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according to signal intensity, and the ranks for uninfected and

infected cases were plotted against each other (Figure 6 C and
D). Virus genes (top left of the Figure 6 C) had markedly

different ranks for uninfected and infected samples, while insect

genes had a common distribution pattern between uninfected

and infected samples. This suggested that to meet the

distribution assumption, the virus genes needed to be analyzed

separately from insect genes (Figure 6 D). Linear Models for

Microarray Data Analysis (LIMMA) were applied, which

showed a high number of up-regulated genes (5,709 or

20.84% had P-adjusted values ,0.05 in the linear model),

while that of down-regulated genes was 5,313 (19.39%)

(Figure 7 A and 7 C). Noticeably, if only the genes with

fold-changes higher than 2 times were considered, there were

more down-regulated genes (1,062 or 3.88%) than up-regulated

genes (442 or 1.61%). On the other hand, virus genes were

highly up-regulated (Figure 7 B and 7 D). This large number

of regulated genes in H. zea was grouped into GO categories.

For each category, comparing the number of up-regulated genes

to that of down-regulated genes would indicate whether the

group was up or down regulated (Figure 8). To take into

account GO group sizes, numbers of up-regulated genes and

down-regulated genes were both divided by the total number of

genes in the GO group that these genes belong to. The ratio for

down-regulated genes was then subtracted from the ratio of up-

regulated genes to get a score for each GO group. A positive

score would suggest that the group was possibly up-regulated,

while a negative score proposed that the group was likely down-

regulated. Figure 8, showed 34 out of 44 such groups. However,

when more stringent statistical tests, namely the hypergeometric

test and Benjamini–Hochberg correction, were used to confirm

these groups, only two groups, namely stress responses (P-

adjusted = 0.040) and RNA metabolism (P-adjusted = 0.008),

were significantly up-regulated, while the only two down-

regulated groups were enzyme regulator activity (P-ad-

justed = 0.031) and Golgi apparatus (P-adjusted = 0.000). Several

high-score groups in Figure 8 such as ribosome binding

(p = 0.429), developmental processes (p = 0.674), cell-cell signal-

ing (p = 0.435), extracellular matrix structural constituent

(p = 0.435), and cell proliferation (p = 0.435) could not be

confirmed by the statistical tests.

Furthermore, transcripts were selected based on KEGG

reference pathways to form five customized gene sets represent-

ing immune pathways. These included gene sets for apoptosis,

IMD, Jak-STAT, Toll, and JNK pathways. Gene set enrich-

ment analysis (GSEA, http://www.broadinstitute.org/cancer/

software/gsea/) was applied to test whether members of each

gene set occur randomly or towards the top or the bottom of an

entire ranked list of differentially expressed genes (Figure 9).

Normalized enrichment score (NES, which reflects the degree of

overrepresentation of a gene set at the top or bottom and takes

into account the size of the gene set), false discovery rate (FDR,

which controls the proportion of false positives) and nominal p-

value (which estimates statistical significance of NES using gene-

set based permutation procedure) were used to identify up/

down regulated gene sets [36]. Out of five gene sets, apoptosis

was the only one that had a positive NES (NES = 1.61,

p = 0.049, FDR = 0.05), while all other four sets had negative

NES values smaller than 21.10. Among the down regulated

gene sets, Jak-STAT and Toll pathways had a FDR lower than

the cut-off value (FDR cut-off = 0.25 [36]) and significant p-

values (p = 0.008, FDR = 0.057 for Jak-STAT pathway and

p = 0.039, FDR = 0.052 for Toll pathway). These results were

consistent with the analysis in Table 2 (and Table S5), which

shows that the number of up-regulated genes for apoptosis were

double the number of down-regulated genes, while most

changes in the Toll pathway and all changes in the Jak-STAT

pathway were downward. Together, the data suggested that at

an early infection phase one major response of H. zea insect

cells in culture to virus infection is the up-regulation of the

apoptosis pathway. Additionally, expression profiles of genes

from the reconstructed metabolic network, especially regarding

Figure 5. Relative expression of insect and virus genes from 0–72 hours post infection. The expression of a gene at a time point is shown
in relative level compared to the reference expression of the 28 S RNA gene at that time [56]. Time course expression level for two early H.armigera
virus genes, namely DNA polymerase (Pol) and Immediate early gene (IE1) and the host heat shock protein 70 gene (HsP) are shown.
doi:10.1371/journal.pone.0036324.g005
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amino acid or nucleotide degradation and synthesis, energy

generation, t-RNA metabolism, and transporters were exten-

sively analyzed (Table S3). Overall, most of these genes were

not changed or were down-regulated at 18 hours post infection.

Discussion

De Novo Assembly of the H. zea Transcriptome
The authors successfully assembled reads from one lane

sequencing with the recently developed Illumina paired-end and

100 bps technology. There is limited literature on assembling a

transcriptome using Illumina short reads (35–75 bps) due to

assembly challenges [23,37]. To date, several De novo assembly

programs have been released [38]. This study showed that

combining outputs from two independent assembly programs

such as Oases and ABySS produced better outputs than those

using one program only. By using the best outputs from a better

assembler such as Oases for the main transcript set, and

supplementing these with more unique sequences from other

assemblers such as ABySS, a more comprehensive set of

transcripts can be derived. A good correlation between the

sequences assembled by both programs also enhances con-

fidence in the accuracy of the sequences obtained.

Figure 6. Correlation and distribution of microarray signals. Correlations of microarray signals between two replicated samples for (A)
Infected samples 1 and 2 and (B) un-infected samples 1 and 2 were computed using Limma package in R software, [54]. Each spot represents log 2
signal of the same gene in two samples. The high correlation demonstrates the reliability of detection of the microarray platform used. The
distribution patterns of gene ranks based on expression levels of all insect-virus genes (C) or insect genes only (D) are shown for assessing the effect
of removing virus genes prior to the normalization step.
doi:10.1371/journal.pone.0036324.g006
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A Comprehensive H. zea Transcriptome
The comprehensiveness of annotation was reflected by the

number of protein signatures, GO terms, KO terms, and coverage

of the cellular metabolic network and the immune pathways. The

enormous sequencing depth of a typical RNA-seq experiment are

believed to offer a near-complete snapshot of a transcriptome,

including the rare sequences [38]. The results from this study, as

well as those from other recent RNA-seq studies, suggest that most

mRNAs of the parent organism can be detected from RNA

sequencing of cells in culture. In CHO cells [39], more than 98%

of 28,914 CHO unigenes were mapped by at least one Illumina

read. From cultured human B-cells, Toung et al [40] detected

20,766 genes (over 90%). The H. zea transcriptome presented in

this study had as many sequences with putative protein signatures

and functional categories as those reported for B. mori. The H. zea

Pathway/Genome Database (PGDB) constructed in this study

confirmed the presence of most of the key metabolic pathways

found in other model insects. This paper is the first to describe the

genome-scale metabolic network of a Lepidopteran species.

Transcriptomic studies can likely reveal changes in metabolic or

transporter genes at the genetic level. Research on the effects of

infection on metabolism is emerging, and interesting findings have

been reported regarding insect-microbe metabolic interactions

[41,42].

A Species-specific Microarray for Expression Analysis of
H. zea

A microarray that is not species-specific does not take into

account sequence variation between species, or of strains

compared to those from a reference strain, hence while its

performance may be acceptable for gene identification, it is

inadequate for quantitative expression analysis [19]. This study

demonstrated an affordable approach towards expression analysis

for an organism without pre-determined genomic sequences,

which worked well for H. zea. This approach involved RNA-seq to

obtain coding sequences, followed by the design of a species-

specific microarray for subsequent serial analysis. The microarray

platform is relatively low-cost, hence multiple replicates can be

analyzed, resulting in well-characterized experimental methodol-

ogies, allowing good statistical analysis. The microarray platform

can also provide a high level of accuracy, due to recent

improvements in the length and number of oligonucleotide probes

that can be produced on chips. Furthermore, the use of a large-

scale microarray, such as the case in this study, has substantial

Figure 7. Overview of differentially expressed genes. (A) and (B) show the heatmaps that describe differences in normalized log signal
intensity for the first 100 insect genes and 100 virus genes respectively. I1 and I2 are infection 1 and 2, while U1 and U2 are for uninfected samples 1
and 2 respectively. (C) and (D) show overall differential expression profiles for insect genes and virus genes, respectively. The scatter plots show log
fold change of expression between two replicates of infected vs. two replicates of uninfected samples (computed by a linear model in LIMMA) and
the corresponding Log-odds values. Log-odds is the natural log of the ratio of the probability for the difference being true to the probability of it
being not true, i.e. the higher the value the more confidence of difference.
doi:10.1371/journal.pone.0036324.g007

RNA-Sequencing and Microarray of Helicoverpa zea

PLoS ONE | www.plosone.org 10 May 2012 | Volume 7 | Issue 5 | e36324



advantages as more probes can be tested to deduce the direction of

sequences, and to minimize the possibility of mis-assembly.

Response of H. zea Cells to HearNPV Infection at an Early
Infection Phase

The microarray data suggested that at an early infection phase

(18 h.p.i), apoptosis was likely the main response of H. zea cells to

HearNPV infection, while other immune pathways such as TOLL,

IMD, Jak/STAT and JNK were not important defense mechan-

isms of cultured cells during virus infection. The up-regulation of a

number of apoptosis enhancers (including p53 and p53 related

genes, cytochrome-c, programmed cell death genes, and caspase

genes) as well as the down-regulation of apoptosis inhibitors

(including the key IAP gene), provided evidence that cultured

H. zea cells had triggered apoptosis as a defence against HearNPV

virus infection. The decline in IAP levels alone can sufficiently

trigger apoptosis [43,44]. Schultz and Friesen [45], Huang et al.

[46] and Vandergaast et al. [44] suggested that Sf9 cells respond to

AcMNPV virus infection at an early infection stage upon

recognition of virus DNA replication, which causes the depletion

of IAP or triggers host cell DNA damage responses, resulting in

apoptosis. Likewise, HearNPV-infected H. zea cells at an early

infection phase, (18 h.p.i., confirmed by RT-PCR), appeared to

have induced apoptosis, possibly as a response to signals from

HearNPV virus DNA replication.

In conclusion, this study used a state-of-the-art approach to

generate a comprehensive database of transcriptome sequences

and a microarray platform for H. zea, a member of the globally-

significant Heliothine insect pest complex of agriculture. This

objective was achieved using the latest Illumina sequencing

technology, which produced 100 bps and paired-end reads. From

Figure 8. Comparison of numbers of up-regulated genes and down-regulated genes in each GO group, for infected versus non
infected samples. Numbers of up-regulated genes and down-regulated genes were both divided by the total number of genes in the GO group
that these genes belong to. The ratio for down-regulated genes was then subtracted from the ratio of up-regulated genes to get a score for each GO
group. A positive score suggests the group is up-regulated. Only four groups, namely stress responses, RNA metabolism, enzyme regulator activity
and Golgi apparatus were statistically confirmed as being significantly different.
doi:10.1371/journal.pone.0036324.g008
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the RNA-seq results, an oligonucleotide microarray platform was

constructed and validated as a convenient and affordable means of

analyzing in vitro insect and baculovirus gene expression

simultaneously. Virus-insect interactions are poorly understood.

In this study, microarray analysis showed that apoptosis is likely

the main response of cultured insect cells to baculovirus infection,

at an early infection phase. Hence, virus production may be

increased by controlling apoptosis. Furthermore, the transcript

sequences and microarray platform generated in this study

represent a greatly expanded resource base for H. zea insect-

pathogen interaction studies in general, in particular to investigate

the molecular basis of host range and susceptibility, virus

infectivity and virulence, and the ecology and evolution of

baculoviruses [47]. This work demonstrates the feasibility to

develop a comprehensive transcriptome data base for a complex

cell line in a relatively short period of time and at low cost

compared to that required to develop a full genome. This coupled

with recent advances in microarray technology allows detailed

studies of a cell’s response to virus infections to be made. An

extension of such work to other cell line/baculovirus systems such

as the more commonly used Sf9 and High Five/recombinant

AcMNPV systems could rapidly expand our knowledge of what

controls the specificity, virion and protein yields of these important

in vitro cell culture expression systems.

Materials and Methods

RNA Sequencing
Samples containing 56105 H. zea (HzAM1) cells [48], grown in

shaker-flask suspension cultures using serum free insect medium

(VPM3), were collected for total RNA extraction and DNA

removal using the Qiagen RNAeasy extraction and on-column

DNAse kit (Qiagen, Hilden, Germany). The cell culture

methodology has been described in detail previously [49].

Sequencing was conducted by the Australian Genome Research

Facility (Brisbane, QLD, Australia) following the manufacturer’s

instructions (Illumina, San Diego, CA). Briefly, the sequencing

process included mRNA isolation, cDNA synthesis, adapter

ligation, cDNA fragmentation, gel purification (selected a frag-

ment at 214 bps), PCR enrichment of the purified dsDNA library,

cluster generation, parallel sequencing by synthesis, and imaging.

Clusters were sequenced by two rounds, with 100 cycles per round

and one base read per cycle. This generated two of 100 bps reads

from each direction for each cDNA fragment.

Assembly
Two de novo transcriptome assembly programs, Oases 0.1.2

(http://www.ebi.ac.uk/̃zerbino/oases/), and ABySS 1.2.0 (http://

www.bcgsc.ca/platform/bioinfo/software/abyss), were run using

different k-mers ranging from 20 to 95 bps for ABySS and 21 to

85 for Oases [20,21]. For ABySS, full length reads of 100 bps were

used, while for Oases reads with 10 bps trimmed at the end were

used. In both cases, reads of vague quality score (those with score

B), or of low score (those with scores lower than 20) were removed.

Outputs were compared between different k-mer lengths and

between two assemblers, based on the numbers and lengths of

assembled sequences. The best sets of outputs for Oases and for

ABySS were selected, compared and combined to derive a final set

that contained all Oases sequences, and extra unique sequences

from ABySS that were not present in the Oases output. Short-read

data generated in this study was submitted to the NCBI Sequence

Read Archive (SRA) database (Accession number SRA048534).

Figure 9. Gene set enrichment analysis (GSEA) of four immune-response pathways in infected H. zea cells. A GSEA web-based tool was
used (http://www.broadinstitute.org/gsea, version 3.7), [36]. The enrichment score (ES) reflects the degree to which a gene set is overrepresented at
the top or bottom of an entire ranked list of genes from the microarray data. A positive ES indicates gene set enrichment at the top of the ranked list
(more up-regulated); a negative ES indicates gene set enrichment at the bottom of the ranked list (more down-regulated). Each vertical line in the
horizontal axis reflects a gene.
doi:10.1371/journal.pone.0036324.g009
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Annotation
The functions of sequences (i.e. amino acid sequences and

protein domains) were predicted via BLASTX2.2.0 search [50]

and InterProScan4.6 [51]. Information about protein names, gene

ontology (GO) terms, enzyme commission (EC) numbers,

BLASTX hits, and InterProScan ID were entered into Pathway-

tools13.5 [52], to match sequences with metabolic reactions and

pathways, to construct a pathway/genome database (PGDB) for

H. zea. Pathways of interest were also analysed using information

from the Kyoto Encyclopedia of Genes and Genomes (KEGG)

database [53] and literature data-mining. All assembled sequences

and annotation are presented in the Table S1.

Microarray
A 46180,000 SurePrint Agilent expression array (Agilent, Santa

Clara, CA) was employed so that a high number of probes can be

included to test over 27,000 H. zea sequences and to eventually

select the best probe for each transcript. Six Agilent 60-mer

oligonucleotide probes were designed by eArray (Agilent) for each

transcript, in which each orientation had three probes randomly

distributed across the sequences. Probes that had potential cross-

hybridization were removed. The final probe set for H. zea

sequences included 153,583 probes. In addition, probes for all

135 H.armigera single-capsid nucleopolyhedrovirus (HearNPV)

genes (three probes per gene) were added to investigate host-virus

interactions in culture.

For microarray experiments, total RNA samples (each extracted

from 56105 H. zea (HzAM1) cells) were collected from each of two

uninfected cultures (seeded at 56105 cells/mL, harvested at

18 hours post inoculation) and two HearNPV-infected cultures

(infected at 56105 cells/mL with a multiplicity of infection of

17 PFU/cell, harvested at 18 hours post infection, h.p.i.). The cell

culture and virus infection methodologies have been described in

detail previously [49]. The polyadenylated mRNA of both insect

and virus were purified, one-color labeled, hybridized and scanned

by the Ramaciotti Centre for Gene Function Analysis (Sydney,

NSW,Australia), according to the manufacturer’s instructions

(Agilent). Gene differential expression was analyzed using the

general linear model in the LIMMA R-package [54]. Signals for

virus genes were separated from host genes before normalization.

Inter-array variation was normalized using the ‘‘Quantile’’ method

[35]. Benjamini-Hochberg method was used for false discovery

rate correction, producing P-adjusted values [55]. From the

LIMMA output, to identify functional groups that were differen-

tially expressed, genes that had P-adjusted values lower than 0.05

were grouped into different ontology categories using CateGorizer

tool [28]. Hypergeometric tests with Benjamini-Hochberg correc-

tion were performed for each gene ontology category. More in-

depth analysis of immune related genes were carried out using

Gene Set Enrichment Analysis 2.0 software [36]. The microarray

data have been deposited into the NCBI Gene Expression

Omnibus database (GEO accession number: GSE34418) accord-

ing to MIAME guidelines.

RT- PCR Expression Analysis
RT-PCR was applied for three genes: the viral IE1 gene (one of

the first virus genes to be expressed post infection), the virus DNA

polymerase gene (which is expressed at the onset of virus

replication), and the insect HsP70 gene (which is used by the

insect to respond to virus infection). Total RNA samples, each

extracted from 56105 H. zea (HzAM1) cells, were collected from

HearNPV-infected cultures (prepared as described previously,

with three biological replicates) at 0, 6, 12, 24, 48, and 72 h.p.i.

The RNA was extracted using the Qiagen RNAeasy kit (Qiagen).

Superscript III, with random hexamers, was applied for cDNA

synthesis (Invitrogen, Carlsbad, CA). The epMotion 5075

Robotics System (Eppendorf, Hamburg, Germany) and ABI

PRISMH 7900 Sequence Detection System (Applied Biosystems,

Foster City, CA) were used for assaying.

Supporting Information

Table S1 Annotation of 27,400 H. zea transcripts, which
were used in the microarray. For each sequence, a putative

protein name, an E-value, the best-hit species, sequence identity

and aligment length from protein BLASTX to UniProtKB/Swiss-

Prot database or to the NCBI nr databases are listed. Additionally,

gene ontology (GO) terms (obtained from InteproScan), KEGG

orthologies (obtained from KEGG Automatic Annotation Server)

and enzyme commision (EC) numbers (extracted from BLASTX

to UniProtKB/Swiss-Prot database) are shown.

(XLSX)

Table S2 Annotation and microarray analysis of im-
mune genes. Putative immune related genes were identified

based on KEGG pathways and literature data-mining from related

insect species that have full genome sequences. For each immune

pathway, gene ID, protein names, BLASTX results, and changes

in expression level are shown.

(XLS)

Table S3 Annotation and microarray analysis of meta-
bolic genes. Putative metabolic related enzymes were predicted

by Pathway tools. For each metabolic pathway, gene IDs, protein

names, BLASTX results, and changes in expression level are

shown.

(XLS)

Table S4 Transcript sequences, selected probes and log
signal intensities in the final microarray platform. For

27,400 transcripts in H. zea, IDs, sequences, selected probes and

log signal intensities in all four samples are shown. Full details for

180,880 probes in four samples are available at the NCBI Gene

Expression Omnibus database (GEO accession number:

GSE34418).

(XLSX)

Table S5 Innate immune genes and apoptosis genes in
H. zea as compared to B. mori. Numbers of B. mori genes

were collected from Zhang et al [31], Tanaka et al [57], and from

InterProScan annotation. Numbers of H. zea genes that were up or

down-regulated or unchanged at 18 hours post infection (only up

or down regulated genes that had p-adjusted values, which were

generated by the Limma linear model with the Benjamini–

Hochberg correction method, smaller than 0.05 were counted).

(DOC)
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