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Sign language recognition is challenged by problems, such as accurate tracking of hand gestures, 
occlusion of hands, and high computational cost. Recently, it has benefited from advancements in 
deep learning techniques. However, these larger complex approaches cannot manage long-term 
sequential data and they are characterized by poor information processing and learning efficiency in 
capturing useful information. To overcome these challenges, we propose an integrated MediaPipe-
optimized gated recurrent unit (MOPGRU) model for Indian sign language recognition. Specifically, 
we improved the update gate of the standard GRU cell by multiplying it by the reset gate to discard 
the redundant information from the past in one screening. By obtaining feedback from the resultant 
of the reset gate, additional attention is shown to the present input. Additionally, we replace the 
hyperbolic tangent activation in standard GRUs with exponential linear unit activation and SoftMax 
with Softsign activation in the output layer of the GRU cell. Thus, our proposed MOPGRU model 
achieved better prediction accuracy, high learning efficiency, information processing capability, and 
faster convergence than other sequential models.

Sign language is a vision-based interactive language with unique and complex linguistic rules. It is used by peo-
ple who are hearing impaired to communicate and exchange their feelings, ideas, and thoughts using various 
parts of the body1,2. Since sign language has a unique linguistic structure, it differs from one place to another 
according to its geographic location3. Each country has developed its sign language for communication among 
its deaf and hard-of-hearing communities4. Some of the popular sign languages are American sign language 
(ASL) in the US5,6, British sign language in the UK, Indian sign language (ISL) in India7,8, Korean sign language 
in Korea9. From the World Health Organization report, approximately 500 million people worldwide suffer from 
hearing loss10,11. Because of the high prevalence of the hard-of-hearing community population, there has been 
an increased interest in eliminating communication obstacles faced within the hard-of-hearing community and 
other people with normal hearing12.

Sign language recognition (SLR) develops an assistive system that automatically converts an input sign 
into its corresponding speech or text13. Thus, the SLR system is useful for overcoming the communication gap 
between hearing and nonhearing communities and creates a new path for human-computer interaction-based 
applications14–18. The major challenge to developing a continuous SLR system is finding a modeling prototype that 
acquires the sign gesture and its corresponding text. Starner et al.19 developed a video-based real-time continu-
ous SLR system using a single camera with 40 vocabulary signs of ASL sentences using a hidden Markov model 
(HMM) classifier. Similarly, Vogler and Metaxas20 developed a continuous SLR system using three orthogonally 
positioned cameras to mitigate the problems caused by occlusion and uncontrolled movements in ASL sentences. 
HMM was used for the recognition process with a vocabulary of 53 signs, and the system was tested on 97 sign 
sentences, producing a recognition rate of 92.11% and 95.83% , respectively. From the above literature survey, it 
is crystal clear that all sensor and vision-based techniques are more restrictive and cost effective21,22. Although 
different techniques are available, the challenges of hand tracking23,24, occlusion of hand movements25, high 
computational cost26, feature selection27 and lower learning efficiency28 still exist.
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To address these drawbacks, we proposed a MOPGRU SLR system that diminishes the problem of hand occlu-
sion and lower learning efficiency by adjusting the output of the update gate using the reset gate integrated with 
an open-source framework called the MediaPipe Holistic pipeline29 . Furthermore, we changed the activation 
function in the output layer and candidate memory state of each GRU cell to achieve a faster, simpler, and cost 
effective SLR system. The main contributions of this study are summarized as follows:

•	 We proposed a novel MOPGRU model that calibrate the resultant of the update gate by the reset gate, which 
enchances the learning process of the GRU gating unit, thereby accelerating the convergence rate, eliminating 
gradient depletion problem, and improving the learning efficiency.

•	 We replaced the hyperbolic tangent (Tanh) activation function in the candidate memory state with an ELU 
activation function to overcome the vanishing and exploding gradient problem, and further enhance the 
model. As a result, we obtained lower training time and good performance for the MOPGRU model than 
those of other variants. Additionally, the activation function of the output layer of each GRU cell was replaced 
with Softsign instead of SoftMax to reduce the computational complexity and hence, the training time of the 
model.

The rest of this paper is organized as follows: In “Related work” section introduces existing SLR methods and 
their limitations. In “Proposed methodology” section introduces and describes the proposed methodology. In 
“Experimental results and discussion” section presents the experimental settings, results, comparison of our 
method with other methods, and analyzes the model performance. Finally, “Conclusion” section presents our 
contributions and outlines the future work.

Related work
Previous researchers have emphasized their work on the prediction of sign language gestures to support people 
with hearing impairments using advanced technologies with artificial intelligence algorithms. Although much 
research has been conducted for SLR, there are still limitations and improvements that need to be addressed to 
improve the hard-of-hearing community30. This section presents a brief literature review of recent studies on 
SLR using sensor and vision-based deep learning techniques.

Sensor‑based deep learning techniques.  To bridge the communication gap between the hard-of-
hearing community and normal people, researchers have proposed a real-time ISL hand gesture recognition 
system that uses a Microsoft kinetic RGB-D camera for inputting images and applies deep learning techniques to 
achieve one-to-one mapping between the depth and RGB pixels on training over 45,000 RGB and depth images, 
while achieving a prediction accuracy of 98.81%31. Although the model resulted in good accuracy, it emphasized 
the need for a large dataset with more images to train and a high-pixel RGB camera. Like the aforementioned 
model, an algorithm with a support vector machine and Microsoft kinetic Xbox 360 RGB images for translating 
Indian sign language gestures into English text and speech with 100% prediction accuracy for the signs repre-
senting one numeric value and six ISL alphabets alone was proposed32.

Using an expensive leap motion controller [LMC]26,30, researchers have proposed a training method for ASL 
with an long short-term memory (LSTM) recurrent neural network for handling a sequence of input and yields 
an average accuracy rate of 91.08% . This proposed model has several limitations due to the leap motion controller 
because the number of users affects the model accuracy. Furthermore, this method is limited to recognizing only 
one hand gesture. Neethu et al.33 introduced a deep convolutional neural network (CNN) classification approach 
with a connected component analysis algorithm to segment the fingertips from the hand image and classify only 
eight different gestures into various classes with a 96.2% recognition rate. The performance was analyzed only in 
terms of sensitivity, accuracy, and recognition rate.

Gupta et al.28 proposed a sensor-based multilabel classification to categorize ISL isolated signs by processing 
signals from sEMG and IMUs placed on both the forearms of signers in an integrated manner with some clas-
sification and categorization errors. Similarly, Salem et al.34 proposed a real-time customize glove-based method 
with five-flex and one accelerometer sensor to recognize Arabic sign language gestures and display correspond-
ing English text and audible sounds. Generally, motion gloves sign language prediction has high limitations in 
terms of hand tracking and is uncomfortable for users compared to vision-based methods. Like leap motion 
controllers, they are expensive, time-consuming, and may produce inaccurate calibrations due to wear and tear 
from the frequent usage of gloves.

Vision‑based deep learning techniques.  Rastgoo et  al.35 proposed a real-time isolated hand SLR 
(IHSLR) from an RGB video36 by combining deep learning models, singular value decomposition (SVD), and 
SSD with LSTM with ResNET5037 and further with SSD, 2DCNN, 3DCNN38, and LSTM to obtain features from 
the 3D hand coordinators and achieved a high accuracy of 99%25. The proposed model is simple and fast; how-
ever, the model is not able to recognize in case of high inter-class similarities, and in some cases there also exists 
some misclassification because of the high occlusion of two hands in some signs, making it difficult to predict 
hand signs correctly. Similarly, Chen et  al.39 proposed a three-tier network architecture with the short-term 
traffic prediction model built by using LSTM to simplify network management and to reduce communication 
overheads. Hurroo et al.24 proposed a convolutional neural network (CNN) with the HSV color algorithm and 
various computer vision techniques for recognizing only 10 American Sign gesture alphabets and obtained an 
accuracy of 90% . Action recognition architectures constructed with 3D CNN models such as I3D40 architecture 
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is also used for SLR task in41. Although this method uses low computing power, robustness is not achieved, and 
the prediction accuracy is lower than that of other CNN models.

Ojha et al.42 implemented a fingerspelling sign language translator using a CNN to detect ASL and translate its 
corresponding text and speech in real-time. The proposed model achieved an accuracy of 95% with certain limita-
tions; for example, when running the project, the threshold must be monitored to avoid distorted grayscale in the 
frames if it does not lead to resetting the histogram or looking for appropriate lighting conditions. Additionally, 
several extensive literature on train CNNs for continuous SLR with weakly labeled data has been reported43. 
Here, the CNN inside an iterative expectation-maximization algorithm was trained with over 1 million poorly 
labeled hand gesture images representing the sign language. However, moderate prediction accuracy was achieved 
despite using only the prerecorded pictures and videos as the input, which are unsuitable for real-time hand 
gesture recognition.For continuous SLR with deep learning44, a heuristic approach for epenthesis detection to 
support continuous natural communication between the machine and user was proposed. Although they have 
reduced classification confusion, they showed good results only when tested individually with more resources 
needed for implementing an integrated continuous SLR system.Likewise, several studies exist where both static 
and dynamic gesture recognition were performed using machine learning and deep learning methods9,45–52.

Standard GRU​.  Most computer vision problems require handling temporal dependencies among inputs 
and modeling short-term and long-term sequences. Recurrent neural networks (RNNs) are efficient in manag-
ing and processing such sequential data. Compared to traditional neural networks, RNNs focus on manipulating 
state neurons to learn contextual relations in and between sequential data53. Training RNNs is a difficult task 
due to several limitations and the vanishing and exploding gradient problems. GRUs were applied to solving the 
vanishing and exploding gradients incorporated into conventional RNNs54,55. Among the RNNs, the most fre-
quently used are LSTM networks that have achieved state-of-the-art performance on various deep learning and 
machine learning tasks. As a variant of LSTM, GRU performs equally as an LSTM and produces good results. 
It enhances the configuration of the LSTM units and conjugates the three gating units to two gating units of 
the LSTM as update gate and reset gate. Thus, the parameters of the GRU network model are considerably less, 
thereby sustaining information dependency and reducing the training time. Figure 1 shows the general structure 
of a standard GRU cell.

From Fig. 1, at each time step t, a GRU cell takes the contents of previous hidden state Ht−1 and present input 
Xt , operates them through reset and update gates, and passes the computed current state Ht to the next time step. 
The general formulas of a standard GRU cell are as follows:

(1)Rt = δ(Wr · Xt + Ur ·Ht−1 + Br)

(2)Zt =δ(Wz · Xt + Uz ·Ht−1 + Bz)

(3)Nt = tanh(Wh · Xt + Uh · (Ht−1 ⊙ Rt)+ Bh)

(4)Ht =Zt ⊙ Nt + (1− Zt)⊙Ht−1

Figure 1.   Structure of a standard GRU cell.
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where Rt and Zt denotes the resultant of the reset and update gates at time t in Eqs. (1) and (2), respectively. Nt in 
Eq. (3) denotes a current candidate memory value vector that is computed from a hyperbolic tangent activation 
function (tanh), represented in Eq. (7) at time t. Ht in Eq. (4) indicates the resultant of the standard GRU unit 
at time t − 1 , and computed as a linear interpolation of previous states Ht−1 and Nt using the result from Zt in 
Eq. (2). The Sigmoid activation ( δ ) in Eq. (6) is applied to both Rt and Zt gates to scale the values within 0 and 1. 
⊙ denotes the Hadamard product which is nothing but element-wise multiplication. Xt is the current input fed 
into the network at time t. Wr , Wz and Wh are trainable weights of feed-forward connections, whereas Ur , Uz and 
Uh are weights of the recurrent connections. Br , Bz and Bh are bias vectors. Yt indicates the resultant of the GRU 
model at time t, which gives the detected result using the SoftMax activation function, and Wo , Bo represents the 
weight and bias of Ht . The error at each time step is calculated using the predicted output Ŷt at each time step 
and the actual output Yt at each time step and it is given by:

And the total error is calculated by summing up the errors at all time steps, represented in Eq. (9). From the 
above formulas, the GRU model accomplishes long-distance preservation of valuable particulars by reducing 
the number of gating units, continuously disposing of unwanted particulars, and using the hidden state to store 
information dependencies. Although GRU maintains a long-term information dependency, it has a slow con-
vergence rate and low learning efficiency. Therefore, we proposed an optimized GRU that uses a reset gate to 
optimize the learning structure of GRU and enhance the learning and prediction accuracy.

MediaPipe.  MediaPipe is an open-source framework with a hybrid platform that creates pipelines for pro-
cessing perceptual data, such as images, videos, and audio. It is an extensive approach employed with ML for 
hand tracking and gesture recognition in real-time. It provides more hand and finger tracking solutions by 
accurately detecting the sign gestures. Specifically, we employed a MediaPipe Holistic pipeline to obtain the 
landmarks from the face, hands, and body pose. Figure 2 clearly outlines the overall functionality.

MediaPipe holistic pose landmarks.  The MediaPipe Holistic body pose model infers approximately 33 3D land-
marks consisting of x, y, and z coordinates on the body from the input image or video using its BlazePose 
detector and locates the person/pose regions of interest (ROI) within the frame. Using the ROI-cropped frame 
as input, the pose landmark and division masks within the ROI detect poses successively. Thus, it accurately 
localizes more key points and suitably fits SLR.

MediaPipe holistic hand landmarks.  MediaPipe Holistic hands infer approximately 21 3D hand landmarks con-
sisting of x, y, and z coordinates in just a single frame and produce the desired output by combining two models: 
the palm detection model and the hand keypoint localization model. Initially, the model was employed with a 
single-shot detector called Blaze Palm. This detector supports the MediaPipe to reduce the time complexity of 
palm detection given a large dataset of hand sizes in the input image. This model works on the entire image and 
returns a focused bounding box that highlights the rigid parts, such as palm and fist, for palm detection rather 
than concentrating on unnecessary objects. Then, the model uses the palm detection output to perform hand 
keypoint localization. This produced three possible outputs as follows:

•	 21 hand knuckle points in a 2D or 3D space.
•	 Hand flag showing the probability of hand presence in the input image.
•	 Binary classification of left and right hand.

MediaPipe holistic face landmarks.  The MediaPipe face mesh is a face geometry solution that calculates 468 3D 
face landmarks in real-time with a single input camera and not a depth sensor. It works based on two deep neural 
network models, a detector that computes and operates face locations on a full image and a 3D face landmark 
model that operates on the computed locations that predict approximate surface geometry using regression. 
With accurate cropping of the face, data augmentation processes, such as rotation, scaling, and translation are 
reduced, allowing the network to focus more on coordinate prediction accuracy.

(5)Yt = SoftMax((Wo ∗Ht)+ Bo)

(6)δ(x) =
1

1+ e−x

(7)tanh(x) =
ex − e−x

ex + e−x

(8)Et = − Yt log
(

Ŷt

)

(9)E =
∑

t

Et =⇒ E =
∑

t

−Yt log
(

Ŷt
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Proposed methodology
To accurately recognize the sign gestures and translate them into text, our proposed method comprises three 
stages: data preprocessing and feature extraction, data cleaning and labelling and gesture recognition. Data 
preprocessing and feature extraction are carried over by the MediaPipe framework. Here, features from the 
face, hands, and body are extracted as keypoints and landmarks using built-in data augmentation techniques 
from sequence of input frames taken from a web camera. In stage 2, the extracted keypoints from stage 1 are 
saved in a file to identify and remove the null entries from the data, after which data labelling follows. In stage 
3, the cleaned and labelled gestures are trained and classified by our MOPGRU model for ISL recognition with 
the translated sign gestures in the form of text on the screen. Figure 3 shows a general overview of the proposed 
architecture for an SLR system. For further understanding, the three stages of the proposed methodology are 
elaborately discussed below.

Stage 1: data preprocessing and feature extraction.  For data preprocessing and feature extraction 
from the image, we applied a multistage pipeline from MediaPipe, called MediaPipe Holistic. For each input 
frame from the web camera, the MediaPipe Holistic handled individual models for the hands, face, and pose 
components using a region-appropriate image resolution. The workflow of stage 1 is briefly discussed below:

•	 The human pose and subsequent landmark model were estimated using BlazePose’s pose detector. Then, 
three ROI crops for the face and hands (2× ) were derived from the inferred pose landmarks, and a recrop 
was employed to improve the ROI.

•	 Next, the corresponding landmarks were estimated. To achieve this, the full-resolution input coordinates 
were cropped to the ROIs for task-specific hand and face models.

•	 Finally, all landmarks were combined to yield the full 540+ landmarks.

Stage 2: data cleaning and labelling.  After stage 1, the extracted features, that is, the landmark points 
( 21 ∗ 3+ 21 ∗ 3+ 33 ∗ 4+ 468 ∗ 3 = 1662 ) per frame are flattened, concatenated and stored in a file to check 
and remove any null entries from the data. Data cleaning is important since it prevents failed detection of 

Figure 2.   Overview of MediaPipe holistic.
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features56–58, which occurs when a blurred image is sent to the detector and leads to a null entry into the dataset. 
Thus, when training occurs with this noisy data, the prediction accuracy is reduced and bias may occur. To fit 
the obtained data for the next stage of training, testing and validation, labels are created for each class and their 
corresponding frame sequences are stored.

Stage 3: gesture recognition.  Our proposed MOPGRU model.  The cleaned and labelled data from stage 
2, are then passed to stage 3. The major alteration performed in the standard GRU cell is that its update gate is 

Figure 3.   General overview of our proposed architecture.
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improved, the candidate memory activation function (tanh) in Eq. (3) is substituted by the ELU activation func-
tion, and SoftMax activation function in Eq. (5) by Softsign respectively.

Improving the update gate of the standard GRU cell.  Considering the problems, such as low learning efficiency, 
high computational cost, slow convergence rate and incapable of dropping out the unwanted information in one 
screening with the complex state of time series data of the standard GRU model, we propose a MOPGRU neural 
network model by improving the update gate; that is, modifying the original update gate input Xt to Xt multi-
plied by Rt . Thus, the update gate is adjusted by obtaining feedback from the output of the reset gate. The oppo-
site effects caused by unnecessary information are profoundly avoided by refining the present input information 
Xt by the reset gate attains faster convergence and efficient in learning. Figure 4 shows the neuronal structure of 
our proposed GRU cell. The red dashed box represents the changes made in the update gate with the reset gate 
from the standard GRU; the blue dashed box shows the standard hyperbolic tangent activation replaced with 
ELU activation and the black dashed box shows the SoftMax activation replaced with Softsign activation.

The formula remains unchanged as mentioned in the standard GRU except for Eqs. (2), (3) and (5). The 
modified formula for the proposed MOPGRU model is as follows:

Here, the symbols Zt and Rt in Eq. (10) hold the same meaning as in the standard GRU cell unit, except in Zt 
unit structure. The reset gate, Rt , is multiplied by the input vector Xt and then, by the previous time step Ht−1 in 
Eq. (10) helped to conceal the state weight, so that the resultant of Rt re-screens the present input Xt by adjusting 
Zt to optimize the neuron structure. Our improved GRU cell will not cause any change in computing the deriva-
tive of the loss functions as the weights are not changed. Thus, the proposed MOPGRU model makes more sense 
than the standard GRU, reduces the hidden state and conceals the impoverished gradient to a limited extent. 
Therefore, our proposed model preserves the information dependency of a longer distance, while producing 
higher learning efficiency and prediction accuracy.

Incorporating ELU.  The other change implemented in the standard GRU cell was replacing the candidate mem-
ory tanh activation function with the ELU function, as shown in Fig. 4. This is highlighted with a blue dashed 
box. Thus, Eq. (3) in the standard GRU cell for calculating the candidate memory Nt changes to the following 
form:

The use of the tanh activation function in training feed-forward connections, especially in standard GRU, is 
ineffective as shown in the performance decline when the network has deeper connections59. Additionally, it is 
computationally expensive and has a vanishing gradient due to its exponential operation. Similarly, the rectified 
linear unit (ReLU) activation has the dying ReLU problem as its derivative is 0 for negative inputs, meaning that 
weights are not updated during backpropagation, which leads to zero gradients and dead neurons. Additionally, 
using it for long-range sequences leads to numerical instability because of its unbounded nature60.

The ELU activation function given below in Eq. (12) was employed to determine the candidate memory state 
for the following reasons:

(10)Zt = δ((Wz · Xt + Uz · Ht−1) ∗ Rt + Bz)

(11)Nt = ELU(Wh · Xt + Uh(Ht−1 ⊙ Rt))+ Bh

Figure 4.   Structure of our proposed GRU cell.
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•	 Using ELU in deep neural networks results in higher classification accuracy and speedy learning61.
•	 It does not suffer from vanishing and exploding gradient problems because of its non-saturating character-

istics.
•	 Since ELU is continuous and differentiable, the problem of dying neurons is solved.
•	 Compared to other activation functions, ELU achieves higher accuracy and faster convergence in less training 

time and computational complexity since the negative ELU value permits the mean unit to shift toward 061.

Mathematically, the ELU is defined as,

and its corresponding derivative is defined as,

where α is the ELU hyperparameter that controls the value of negative inputs. From Eq. (13), for all positive 
input values x, the function simply returns the corresponding output Y. However, if the input x is negative, the 
corresponding output Y will be exp(x)− 1 . The output of the derivative function moves closer to one. In order 
to understand the usage of ELU better, let us consider the gradient equation in the BPTT algorithm62:

where

Thus the total gradient is calculated using the Eqs. (14), (15) and (16) with the weight matrix W contains dis-
tinctive weights for current input and previous hidden state for each gate. Each Jacobian ∂Hk+1

∂Hk
 is a product of 

two matrices is a item of two frameworks: the repetitive weight matrix and diagonal matrix composed of the 
subordinate of non-linearity,ELU, related with the hidden units.In nonappearance of any input, i.e.,Xt = 0 , and 
with the choice of starting conditions, the two-norm of each Jacobian in Eq. (14) is indistinguishably one and 
the error gradients don’t develop or decay exponential over time.

Softsign function for output prediction of the GRU cell.  The output layers of the neural network use the SoftMax 
or Sigmoid activation functions for multivariate or binary classification problems, respectively. Softmax activa-
tion is specifically used to normalize the outputs and convert the weighted sum values to probabilities that sum 
to one by exponentiating the features and scale with the sum of the exponents. Because of its exponential nature, 
it is computationally expensive and time-consuming to train the model. Hence, we incorporated the Softsign 
activation function as mentioned in Eq. (17) in the output layer of each GRU neurons as shown in Eq. (18), to 
reduce the time as it finds the quadratic polynomials rather than exponentially. Additionally, as it is zero-cen-
tered, the networks learn effectively and the saturation in the network does not occur easily. Like tanh activation 
, the Softsign ranges from −1 to 1, and is defined as

where |x| is the absolute value of the input point of x. Thus, Eq. (5) in the standard GRU cell for output predic-
tion Yt changes to the following form:

With changes made in Eqs. (10), (12) and (18) the MOPGRU model finally displays the recognized gesture 
result on the screen with its corresponding English text translation, as shown in Fig. 3 from the output of stage 3.

Consent to participate.  Informed consent was obtained from the subject for publication of identifying 
information/images in an online open-access publication.

Experimental results and discussion
Dataset.  A real-time dataset of 30 videos for each sign gesture with 30 frames was created, each with a size of 
640 × 480, using a web camera in various directions and different lighting conditions. There are 13 sign gestures 
in the dataset, as described in Table 1. We separated the collected dataset in the ratio of 70:15:15 to form the 
corresponding training, testing, and validation datasets. Thus, from the 900 images for each sign gesture, 780 

(12)ELU(x) =

{

x, if x > 0

α(exp(x)− 1), if x � 0

}

(13)ELU ′(x) =

{

1, if x > 0

ELU(x)+ α, if x � 0

}

(14)
∂E

∂W
=

∑

k<=t

∂Et

∂W

(15)=
∑

k<=t

∂Et

∂Ŷt

∂Ŷt

∂Ht

∂Ht

∂Hk

∂+Hk

∂W

(16)
∂Ht

∂Hk
=

∂Ht

∂Ht−1

∂Ht−1

∂Ht−2

· · ·
∂Hk+1

∂Hk

(17)Softsign(x) =
x

|x| + 1

(18)Yt = Softsign((Wo ∗Ht)+ Bo).
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images were used for the training set and the remaining 120 images were divided equally, providing 60 images 
each for testing and validation purposes. Additionally, we evaluated our model on two benchmark datasets: the 
Word Level American Sign Language (WLASL) dataset63 and the LSA64 dataset41. The WLASL was created for 
teaching of sign language and hence the data was collected from multiple public resources that includes variety 
of signing styles and different video backgrounds.The LSA64 dataset contains 3200 videos of 64 isolated sign 
gestures from the Argentinian sign language which includes verbs and nouns, performed by 10 different people 
for each word.

Experimental setting.  The simulation was conducted using Python 3.7 version on a desktop computer 
with 32 GB RAM and an Intel Core i7 processor with a frequency of 3.60 GHz, running on Windows 10 Pro with 
a 64-bit operating system. The input image was captured using a web camera with a resolution of 720pixels/30 
fps of RGB images. A sequential model of nine layers were created. Of the nine layers, three are GRU layers, a 
batch normalization layer, two dropout layers, and three dense layers. The first layer of GRU accepts a sequence 
of landmark keypoints (1662) extracted from the frames of each video with the time step of 30 as each video con-
tains 30 frame sequences. For the hidden units at the first time-step, the input-hidden vectors and all elements of 
the initial hidden state were set to 0.The number of hidden units per layer for the model was set to 128, 64 and 32 
respectively. The total number of parameters was approximately 450,445.The dropout ratio was fixed at 20% for 
the hidden and fully connected layers. The training data were set to 100 epochs, with 13 gestures in each batch. 
To optimize the network, the Adam optimization64 method was used and was set to 10−4 with exponential decay 
rates of 0.9 and 0.999, respectively. The class scores were calculated using the SoftMax activation function with 
batch normalized input from the fully connected layer. The number of hidden units per layer for the model was 
set to 128, 64 and 32 respectively. The total number of parameters was approximately 450,445.

Evaluation metrics.  To evaluate the performance of our MOPGRU model, we used the mean squared error 
(MSE), mean absolute error (MAE), and R-squared or coefficient of determination metrics, as listed in Table 2. 
MAE denotes the average of the absolute difference between the predicted and actual values in the dataset. It is 
given by the following formula:

MSE is the average of the squared difference between the predicted and actual values in the dataset and is 
calculated by the following formula:

(19)MAE =
1

N

N
∑

i=1

|yi − ŷ|

Table 1.   13 sign gestures and its label.

Labels Sign gestures (words)

0 Fail

1 Friend

2 Good

3 Hello

4 I love you

5 Like

6 Location

7 Meet

8 Phone call

9 Take care

10 Thank you

11 Think

12 You

Table 2.   Comparison on MAE, MSE, and R2 for different models.

Network model MAE MSE R
2

Simple RNN 4.10 28.90 − 1.38

LSTM 0.75 4.95 0.59

Standard GRU​ 0.44 1.38 0.83

BiGRU​ 0.40 2.50 0.79

BiLSTM 0.85 5.35 0.56

MOPGRU​ 0.22 1.34 0.88
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R2 score indicates how well the model fits the given dataset. It indicates how close the predicted value is to the 
actual data values. The value lies between 0.0 and 1.0, where 0.0 indicates the worst fit and 1.0 indicates the perfect 
fit. It was calculated using the following formula:

where ŷ represents the predicted value of y, and ȳ denotes the mean value of y. Error calculations were performed 
from Eqs. (19), (20), and (21). From Table 2, we see that the MAE and MSE values are higher for simple RNN, 
LSTM, Standard GRU, bidirectional GRU (BiGRU), and deep bidirectional LSTM (BiLSTM), which means that 
the average residual and variance of the residual are high. Previously BiLSTM showed good performance in 
action recognition65, whereas training LSTM and BiLSTM models were not beneficial for our datasets because 
we had limited data for sequence prediction. Furthermore, we attempted to produce comparatively low predic-
tion errors using our proposed MOPGRU model.

Quantitative analysis.  The classification metrics were used to analyze the quality of prediction for each 
sign gesture, as shown in Tables 3, 4, and 5, respectively. These qualities include precision, recall, and F1-score66–68, 
which are calculated using four values: true positives (TP), false positives (FP), true negatives (TN), and false 
negatives (FN). We conducted experiments using different models as mentioned in Table 2 by inserting each 
model in the place of our proposed MOPGRU layers in the architecture presented in the paper. The number of 
correctly predicted data points is called accuracy, and ideally, it must be close to one. The accuracy of the SLR 
system is calculated as follows:

(20)MSE =
1

N

N
∑

i=1

(yi − ŷ)2

(21)R2 = 1−

∑

(yi − ŷ)2
∑

(yi − ȳ)2

Table 3.   Precision. Significant values are in [bold].

Class label Simple RNN LSTM BiLSTM Standard GRU​ BiGRU​ MOPGRU*

0 1 1 1 1 0.5 1

1 – – – 1 0 1

2 1 1 1 1 1 1

3 1 1 1 1 1 0.75

4 1 0 0 0 1 1

5 0 0 0 1 1 1

6 0.67 0.67 0.67 1 0 1

7 1 0.75 0.75 – – 1

8 1 1 1 1 1 1

9 0.5 1 1 1 1 1

10 1 1 1 – – 1

11 0 0 0 0 1 1

12 1 1 1 0.5 1 0.92

Table 4.   Recall. Significant values are in [bold].

Class label Simple RNN LSTM BiLSTM Standard GRU​ BiGRU​ MOPGRU*

0 0.33 1 1 1 1 1

1 – – – 0.5 0 1

2 1 1 1 1 1 1

3 0.5 1 1 1 1 1

4 1 0 0 0 1 0.86

5 0 0 0 1 1 1

6 1 1 1 1 0 1

7 1 1 1 – – 1

8 1 1 1 1 1 1

9 1 1 1 1 1 1

10 1 1 1 – – 0.7

11 0 0 0 0 0.5 1

12 1 0.5 0.5 1 1 1
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Precision is the number of positive predictions divided by the total number of positive class values predicted, 
which is called the positive predicted value. High cost of false positive makes precision an important measure to 
determine. Like accuracy, this must also be close to one. The precision value is calculated as follows:

A recall is the fraction of positive events predicted correctly by the model and high cost of false negative makes 
recall an important measure to determine. It is calculated as follows:

The F1-score or the F-measure is the harmonic mean of precision, and recall means it conveys a balance 
between recall and precision. When there is perfect precision and recall, the F1 score reaches its best value at 1 
and can be calculated using the following formula:

Based on the calculations given in Eqs. (22), (23), (24) and (25), we obtain a classification report as shown 
in Tables 3, 4 and 5. From the classification metrics, the precision, recall, and F1-score of MOPGRU model are 
almost 1 except for two values in both precision and recall, and four values in F1-score, which are still ideally 
close to 1. This shows that our model effectively learned data on complete training. In Contrary, other models 
such as LSTM, Simple RNN, Standard GRU, BiLSTM and BiGRU resulted in good accuracy, but their learning 
efficiency is not good. As a result, these models did not perform well as they contain many zero metric scores 
for precision, recall, and F1-score.

Considering the R2 values, our proposed MOPGRU outperforms the other three models with the highest score 
of 0.88, which is closer to 1, indicating that the model has a good fit. However, a negative score in the Simple 
RNN indicates that the model has the worst fit. Figure 5a and b show the training accuracy and loss of different 
models and Fig. 6a and b show the validation accuracy and loss of different models used to classify 13 individual 
sign gestures from the dataset. From Fig. 5, we can conclude that the training is unstable due to the fluctuation 
between the accuracy and epochs, as well as with loss and epochs. However, in the case of MOPGRU, the training 
is smooth and faster with efficient data learning. Therefore, our proposed model produces higher performance 
with minimum loss compared with other models, such as RNN, LSTM, standard GRU, BiGRU, and BiLSTM, 
respectively. By comparing the models with respect to both the test accuracy and loss, as shown in Figs. 7 and 8, 
we conclude that our proposed MOPGRU model achieved the highest test accuracy of 95% compared to other 
models such as LSTM with 85% , Simple RNN with 80% standard GRU with 85% accuracy, BiGRU with 90% , and 
BiLSTM with 85% and minimum loss of 0.21 compared to others.

Comparative analysis.  To access the efficiency and performance of our proposed MOPGRU model, we 
conducted experiments on the two different benchmark datasets LSA64 and WLASL100 respectively and com-
pared our results with different existing state-of-the art models like I3D, Pose-based temporal graph convolu-
tional network (Pose-TGCN) and Pose-based gated recurrent unit (Pose-GRU). We train the model with the 
same parameters mentioned in63 and achieved high recognition accuracy than the existing method. As com-
pared to other models used in the experiment, the learning efficiency and the convergence speed of our pro-

(22)Accuracy =
TP + TN

TP + TN + FP + FN

(23)Precision =
TP

TP + FP

(24)Recall =
TP

TP + FN

(25)F1 =
2TP

2TP + FP + FN

Table 5.   F1-Score. Significant values are in [bold].

Class label Simple RNN LSTM BiLSTM Standard GRU​ BiGRU​ MOPGRU*

0 0.5 1 1 1 0.67 1

1 – – – 0.67 0 1

2 1 1 1 1 1 1

3 0.67 1 1 1 1 0.86

4 1 0 0 0 1 0.92

5 0 0 0 1 1 1

6 0.8 0.8 0.8 1 0 1

7 1 0.86 0.86 – – 1

8 1 1 1 1 1 1

9 0.67 1 1 1 1 1

10 1 1 1 – – 0.82

11 0 0 0 0 0.67 1

12 1 0.67 0.67 0.67 1 0.96
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Figure 5.   Learning graph with training accuracy and loss for 100 epochs of different models used.

Figure 6.   Learning graph with validation accuracy and loss for 100 epochs of different models used.

Figure 7.   Model comparison in terms of test accuracy in percent ( %).
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posed MOPGRU was also high with the use of a smaller number of parameters and the activation function 
during training. Datasets which are existing have their own properties to deal with the isolated word level sign 
recognition task. However, they fail to capture the complexities of the task due to inadequate amount of instance 
and signers. Thus we evaluated our model on two benchmark datasets that have adequate amount of instance 
and signers. The recognition accuracy on both the datasets are presented in Table 6.

Conclusion
In this study, we proposed a MOPGRU model for ISL recognition. Specifically, we modified the update gate of 
the standard GRU cell by multiplying its output by the reset gate. With our improved update gate mechanism, the 
output of the reset gate re-screens the information and removes the unwanted information in the data, thereby 
giving more attention to the important information. We cost-effectively implemented the model, which resulted 
in improved learning efficiency, prediction accuracy, and information processing capability of the standard GRU 
neural network. Furthermore, experimental results showed that compared to simple RNN, LSTM, standard GRU, 
BiGRU, and BiLSTM prediction models, MAE and MSE values of our proposed GRU neural network model 
were very low with high R-squared values. Therefore, our proposed MOPGRU captured the full information 
dependency in time series data with a high prediction accuracy of an average of 95% and a faster convergence 
speed. Although our model performs well in terms of accuracy and learning efficiency, this study was conducted 
with a limited dataset. Thus, for future work, we aim to improve our SLR system by expanding the dataset with 
more vocabulary to predict continuous sign language sentences.

Data availibility
The datasets generated during and/or analysed during the current study are available from the corresponding 
author on reasonable request.
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