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Abstract

Here we present the genome of Methylovulum psychrotolerans strain HV10-M2, a methanotroph isolated from
Hardangervidda national park (Norway). This strain represents the second of the two validly published species genus
with a sequenced genome. The other is M. miyakonense HT12, which is the type strain of the species and the type
species of the genus Methylovulum. We present the genome of M. psychrotolerants str. HY10-M2 and discuss the
differences between M. psychrotolerans and M. miyakonense. The genome size of M. psychrotolerans str. HV10-M2 is
4,923,400 bp and contains 4415 protein-coding genes, 50 RNA genes and an average GC content of 50.88%.

Keywords: Methylovulum psychrotolerans HV10-M2, Methylovulum, Gammaproteobacteria, Methanotroph, High-altitude

Introduction

Methanotrophs are a group of microorganisms that utilize
methane as the sole energy and carbon source. They are
important contributors to the global carbon budget and
climate change, reducing methane emissions to the atmos-
phere as they represent the only known biological methane
sink [1]. Aerobic methane oxidation can be performed by
members of the phyla Proteobacteria (classes Alphaproteo-
bacteria and Gammaproteobacteria) and Verrucomicrobia
[2, 3]. The recently described genus Methylovulum [4]
belongs to the family Methylococcaceae within the class
Gammaproteobacteria. Their cells are described as aerobic,
non-motile gram-negative bacteria with coccoid or
rod-shape cells, they grow with methane and methanol
as carbon sources and they have been isolated from
cold environments [5]. So far, only one species within
this genus, Methylovulum miyakonense HT12, has
published available genome data. However, the 16S
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rRNA gene sequence of three isolates belonging to the
Methylovulum genus have been recently reported [5].
Here we report the characteristics of M. psychrotolerans
HV10-M2 (Fig. 1), isolated from plant material collected
from a peat bog saturated with water at Hardangervidda, a
high-altitude (>1230 m above sea level) national park
located in central Norway. We present the genome of M.
psychrotolerans str. HV10-M2, and provide first insights
into the genomic and physiological differences between
M. psychrotolerans HV10-M2 and M. miyakonense HT12.

Organism information

Classification and features

M. psychrotolerans HV10-M2 was isolated from wet
plant material located in a peat bog at the high-altitude
(1230 m above sea level) national park Hardangervidda
(Norway) (GPS: 60.22 N, 7.25 E) on July 17, 2015. Air
temperature during sampling was 9 °C. The strain was
enriched from approximately 4 g of the plant material
collected from the peat bog which was added directly to
a 120 mL sterile serum flask containing 20 mL of LMM
medium (Low-Salt-Methanotrophic medium; KNO; 0.
1gL !, MgSO, 0.1 g L™, CaCl,2H,0 0.02 g L™, KBr
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Fig. 1 Transmission electron microscope picture of the strain Methylovulum psychrotolerans HV10-M2. Cell wall (CW) and intracytoplasmatic membrane
(ICM) are labelled in the pictures. Scale bars represent 500 (left panel) and 100 (right panel) nm

0.01 g L™" [6]), closed with a butyl rubber stopper and
sealed with an aluminum crimp. Methane (purity 99.5%,
Yara Praxair, Oslo, Norway) was amended with a syringe
through a 0.2 pm DynaGard® filter (CA, USA) to a final
ratio of 4:1 (methane/air; v/v). The flask was incubated
under dark conditions at 16 °C for three weeks
without shaking. The gas mixture was restored every
seven days, and growth was monitored using phase
contrast microscopy (Eclipse E400 microscope, Nikon
Corporation, Tokyo, Japan).

The enrichment culture was transferred five times into
serum flasks with LMM medium as described above.
Serial dilutions (10”° to 10™®) were then prepared and
aliquots of 0.1 mL of each dilution were spread onto
LMM agar plates. Plates were incubated at 16 °C in jars
filled with a methane:air gas mixture (4:1, v/v). Single
pink colonies (previously isolated M. psychrotolerans
strains show pink pigmentation [5]) were picked and re-
streaked onto new agar plates. Finally, one single colony
was transferred into a serum flask with LMM medium
(see above) and incubated for one week at 16 °C. Purity
of the isolate was confirmed by PCR and transmission
electron microscopy (TEM, at 60 kV, Jeol JEM-1230,
Tokyo, Japan). Contamination was assessed as reported
previously [6, 7].

M. psychrotolerans HV10-M2 grows between 4 °C and
25 °C, with optimal growth between 13 °C to 20 °C.
Strain HV10-M2 grows using methane and methanol as
the carbon and energy source. The optimal pH for
growth 6.8. Cells of HV10-M2 are aerobic, non-motile,
coccoid- to rod-shaped and form light pink colonies
when checked on LMM agar plates. Average cell size is
2 um. The characteristics of M. psychrotolerans HV10-
M2 are summarized in Table 1.

The 16S rRNA gene of M. psychrotolerans HV10-M2
shows more than 99% sequence identity with M.

psychrotolerans Sphl, Sph2 and Oz2 (GenBank accession
numbers KT381578, KT381580 and KT381582, respect-
ively; Fig. 2). However, none of those strains has genome
data publicly available. The highest sequence identity
with a strain with genome data was M. miyakonense
HT12. The two strains M. psychrotolerans HV10-M2
and M. miyakonense HT12 show 95% sequence identity
in the 16S rRNA gene (Fig. 2).

Genome sequencing information

Genome project history

M. psychrotolerans HV10-M2 was whole genome se-
quenced at the Department of Bioscience at Aarhus
University, Denmark in September 2016. The genome
project was deposited in GOLD under the project
Ga0185950. The Whole Genome Shotgun project was
deposited at GenBank with the accession number
CP022129. Summarized information about the project
and the sequencing platform details are included in
Table 2.

Growth conditions and genomic DNA preparation

M. psychrotolerans HV10-M2 was cultivated in a
120 ml serum flask at 16 °C containing LMM medium
with methane addition. After turbidity was observed
(approximately 2 months), it was transferred onto
LMM agar plates and incubated with methane as
headspace gas (4:1, v/v). A single colony was trans-
ferred into a flask containing LMM medium and
finally, 1.5 mL of the culture was harvested by centri-
fugation and genomic DNA was isolated from the
pellet using the GenElute Bacterial Genomic DNA kit
(Sigma Aldrich, USA) following the manufacturer rec-
ommendations and purified using the DNA Clean and
Concentrator kit (Zymo Research, USA).
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Table 1 Classification and general features of Methylovulum
psychrotolerans strain HV10_M2"

MIGS ID  Property Term Evidence
code®
Classification Domain Bacteria TAS [34]
Phylum Proteobacteria TAS [35]
Class TAS [36]
Gammaproteobacteria
Order Methylococcales TAS [37]

[
Family Methylococcaceae  TAS [38]
[

Genus Methylovulum TAS [4]
Species psychrotolerans ~ TAS [5]
Strain: Sphi TAS [5]
Gram stain Negative IDA
Cell shape Coccoid / Rod-shape IDA
Motility Non-motile IDA
Sporulation Non-sporulating IDA
Temperature range 4-25 °C IDA
Optimum temperature  13-20 °C IDA
pH range; Optimum 5-7,68 IDA
Carbon source Methane IDA
MIGS-6  Habitat Peat bog IDA
MIGS-6.3  Salinity ND -
MIGS-22  Oxygen requirement Aerobic IDA
MIGS-15  Biotic relationship Free-living IDA
MIGS-14  Pathogenicity Non-pathogen NAS
MIGS-4  Geographic location Hardangervidda, IDA
Norway
MIGS-5 Sample collection 2015 IDA
MIGS-4.1  Latitude 6022 N IDA
MIGS-4.2  Longitude 725 EF IDA
MIGS-44  Altitude 1230 m as.l. IDA

“Evidence codes - IDA Inferred from Direct Assay, TAS Traceable Author Statement
(i.e, a direct report exists in the literature), NAS Non-traceable Author Statement
(i.e, not directly observed for the living, isolated sample, but based on a generally
accepted property for the species, or anecdotal evidence). These evidence codes
are from the Gene Ontology project [39]

Genome sequencing and assembly

The genomic DNA of strain HV10-M2 was sequenced
with the Illumina MiSeq Reagent Kit V3 (Illumina, CA,
USA) and the sequencing libraries were prepared using
the Nextera XT Library Preparation Kit (Illumina). A total
of 4,933,624 sequence reads were generated. FastQC [8]
was used for quality control. Reads were adaptor- and
quality trimmed using Trimmomatic v0.36 [9] when bases
were at the end of the reads and when the average
quality was below the quality threshold (Phred score
< 33) with the parameters: CROP:289, HEADCROP:
19, SLIDINGWINDOW?:4:20, MINLEN:100, resulting
in 4,019,650 paired-end reads and 4.92 Mb with an
overall coverage estimate of 303.7x. Assembly of the data
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was performed using SPAdes v3.9.0 [10] with the “—care-
ful” option and the k-mer values 21, 33, 55, 77, 99, 127.
The assembly was evaluated with QUAST v4.3 [11]. The
assembly yielded 186 contigs with a total length of
4,923,400 bp, and an N, value of 71,358 bp.

Genome annotation

Gene prediction and annotation was performed using the
standard operating procedure of the Integrated Microbial
Genomes platform developed by the Joint Genome Insti-
tute [12]. In addition, the genome of M. psychrotolerans
HV10-M2 was submitted to BlastKOALA [13] and
Pathway tools [14] to be compared against the KEGG [15]
and MetaCyc [16] databases, respectively, for pathway
predictions.

Genome properties

The properties of the draft genome of M. psychrotoler-
ans HV10-M2 are shown in Table 3 and the genes asso-
ciated with COG functional categories in Table 4. The
genome consists of 4,923,400 bp with a GC content of
50.88%. The genome is estimated to be 99% complete as
determined by CheckM v1.0.7 [17] compared to the
family Methylococcaceae. In total 4465 genes were pre-
dicted: 50 RNA genes and 4415 protein-coding genes. In
addition, 2344 genes were assigned in COG functional
categories. The PHAST program, used to detect pro-
phages sequences in bacterial genomes [18], determined
no evidence of completed prophages in the genome of
Methylovulum psychrotolerans HV10-M2.

Insights from the genome sequence

Here we present the draft genome sequencing and anno-
tation of M. psychrotolerans HV10-M2. The 16S rRNA
gene of Methylovulum psychrotolerans HV10-M2 shows
a 99% sequence identity with M. psychrotolerans strains
Sphl, Sph2 and Oz2 as well as Methylovulum sp. Ebl
and Methylococcaceae bacterium M200 (see also Fig. 2).
The highest identity to a strain with an available genome
sequence was 95% with Methylovulum miyakonense
HT12, which is the only genome sequenced species
within the Methylovulum genus.

Extended insights

Methanotrophic microorganisms oxidize methane to car-
bon dioxide and water. In a first step, methane is converted
into methanol in a process catalyzed by the methane mono-
oxigenase enzyme (MMO). There are two types of MMO,
the membrane-bound particulate MMO (pMMO), which is
found in all methanotrophs except for some members of
the genera Methylocella and Methyloferula [19, 20], and the
cytoplasmatic soluble MMO (sMMO), which is limited to
very few species [21]. In the genome of M. psychrotolerans
HV10-M2, the presence of a single copy of the gene cluster
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values less than 50 are not shown

Methylovulum psychrotolerans 0z2 (KT381582)
Methylococcaceae bacterium M200 (HM564015)
Methylovulum psychrotolerans Sph2 (KT381580)
9 |- @ Methylovulum psychrotolerans HV10-M2 (CP022129)
o1 Methylovulum psychrotolerans Sphl (KT381578)
Methylovulum sp. EB1 (KX129798)
@ Methylovulum miyakonense HT12 (NR112920)
@ Methylococcaceae bacterium Sn10-6 (KP793700)
99— Methylomonas lenta R-45377 (NR133783)
L Methylomonas sp. R-45362 (FR798952)
100[ @ Methylobacter tundripaludum SV96 (NR042107)
Methylobacter psychrophilus Z-0021 (NR025016)
Methylobacter ucrainicus B-3405 (LT220842)
98— @ Methylobacter marinus B-3087 (LT220840)

81 63E Methylobacter mobilis (NR104922)

100L— @ Methylosarcina fibrata AML-C10 (NR025039)
@ Escherichia coli AML-C10 (J01859)

Methylosarcina quisquiliarum AML-D4 (NR025040)

Fig. 2 Phylogenetic tree. The tree is based on the 16S rRNA gene sequences of the best hits of cultured strains in the nucleotide database from
NCBI (retrieved on June 5, 2017). The tree was reconstructed by using maximum likelihood analysis and the Jukes-Cantor nucleotide substitution
model as implemented in MEGA v7 [40]. Robustness of the tree was determined using 1000 bootstrap replicates. Sequences were aligned with
MUSCLE [41] in MEGA V7. The tree was rooted against the 165 rRNA gene sequence of Escherichia coli. Accession numbers are provided within
parenthesis. The strain presented in this study is marked with a red dot. Strains with available genome data are marked with black dots. Bootstrap

pmoABC was observed (locus tags RS17435, RS17440,
RS17440). The pmoABC cluster contains the genes encod-
ing for the pMMO. However, the mmoX gene encoding for
the SMMO was absent in the genome of M. psychrotolerans
HV10-M2. The mmoX gene is reported to be present in M.
miyakonense HT12. To confirm the absence of this gene in
M. psychrotolerans HV10-M2, the mmoX gene sequence
was blasted against the genome of M. psychrotolerans
HV10-M2 using the sequence of M. miyakonense HT12 as
query (Genbank accession number AB501287). In addition,
a mmoX-specific PCR with the primer set 882F/1403R [22]
was performed. Both approaches confirmed the absence of

Table 2 Project information

MIGS ID Property Term
MIGS 31 Finishing quality High-quality-draft
MIGS-28 Libraries used Paired-end NexteraXT DNA
MIGS 29 Sequencing platforms lllumina MiSeq
MIGS 31.2 Fold coverage 303.7X
MIGS 30 Assemblers SPAdes 3.9.0
MIGS 32 Gene calling method Prodigal v2.6.2
Locus Tag CEK71
Genbank ID CP022129
GenBank Date of Release 2017-06-27
GOLD ID Gp029646
BIOPROJECT PRINA391059
MIGS 13 Source Material Identifier HV10-M2

Project relevance Environmental

the mmoX gene in M. psychrotolerans HV10-M2. Addition-
ally, the pxmABC operon described in some gammaproteo-
bacterial methanotrophs [23], was not observed in the
genome of M. psychrotolerans HV10-M2.

The following step in the oxidation of methane is the
conversion of methanol into formaldehyde. This reaction
is catalyzed by a methanol dehydrogenase that contains
a pyrroloquinoline quinone as a cofactor and requires a
cytochrome ¢ as electron acceptor [24]. The gene clus-
ters associated with this step present in the genome of

Table 3 Genome statistics

Attribute Value 9% of Total
Genome size (bp) 4,923,400 100
DNA coding (bp) 4,194,869 85.20
DNA G+ C (bp) 2,504,955 50.88
DNA scaffolds 186 100
Total genes 4465 100
Protein coding genes 4415 98.88
RNA genes 50 1.12
Pseudo genes 0 0
Genes in internal clusters 804 18.01
Genes with function prediction 2984 66.83
Genes assigned to COGs 2344 52.50
Genes with Pfam domains 3159 70.75
Genes with signal peptides 438 9.81
Genes with transmembrane helices 897 20.09
CRISPR repeats 0 0
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Table 4 Number of genes associated with general COG functional
categories

Code Value %age Description

J 194 748 Translation, ribosomal structure and
biogenesis

A 2 0.08 RNA processing and modification

K 124 478 Transcription

L 121 4.66 Replication, recombination and repair

B 1 0.04 Chromatin structure and dynamics

D 40 1.54 Cell cycle control, Cell division,
chromosome partitioning

\ 88 339 Defense mechanisms

T 182 7.01 Signal transduction mechanisms

M 231 89 Cell wall/membrane biogenesis

N 56 2.16 Cell motility

U 56 2.16 Intracellular trafficking and secretion

@) 137 528 Posttranslational modification, protein
turnover, chaperones

C 161 6.2 Energy production and conversion

G 97 374 Carbohydrate transport and metabolism

E 160 6.17 Amino acid transport and metabolism

F 63 243 Nucleotide transport and metabolism

H 156 6.01 Coenzyme transport and metabolism

I 68 262 Lipid transport and metabolism

P 154 593 Inorganic ion transport and metabolism

Q 45 1.73 Secondary metabolites biosynthesis,
transport and catabolism

R 243 9.36 General function prediction only

S 148 5.7 Function unknown

- 2121 475 Not in COGs

The total is based on the total number of protein coding genes in the genome

M. psychrotolerans HV10-M2 are: (i) the gene cluster
mxaF] that encodes the components active in methanol
oxidation (locus tags RS12435, RS12440); (ii) the cluster
mxaACKL required for MDH synthesis and PQQ inser-
tion into the MDH (locus tags RS12465, RS12475,
RS12480); and (iii) the gene cluster pggABCDE involved
in the PQQ biosynthesis (locus tags RS20845, RS01900,
RS01880, RS05860, RS12150). The MDH enzyme is also
present in M. miyakonense HT12. The gene xoxF that
encodes for a polypeptide with similar sequence to the
MxaF protein, has been suggested as an alternative
to the MDH [25]. High identity (89%) between a
gene encoding for a PQQ-dependent dehydrogenase
in M. psychrotolerans HV10-M2 (locus tag RS12435)
and a methanotrophic XoxF protein (Accesion num-
ber: SAJ59293), suggesting that this protein could be
also present in M. psychrotolerans HV10-M2.

The next step is the formaldehyde oxidation. This step
is crucial, as formaldehyde is a cytotoxic compound. The
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methanotrophs can use different pathways to perform
oxidation of formaldehyde to formate. In the tetrahydro-
methanopterin (H4yMPT)-linked C; transfer pathway,
presence of the genes encoding for the tetrahydrometha-
nopterin protein and processes such as fae, mch and
mtdB, were observed in the genome of M. psychrotoler-
ans HV10-M2. Most likely the HyMPT-linked pathway
will act as a secondary pathway involved in formalde-
hyde assimilation as the Ribulose MonoPhosphate will
act as the principal pathway [24]. In addition, like in
most of the methylotrophs, presence of the genes encod-
ing for the tetrahydrofolate pathway including the
methylene-H,F dehydrogenase and methenyl-H4F cyclo-
hydrolase enzymes of the FoID [24], are also present in
the genome of M. psychrotolerans HV10-M2 (locus tags
RS10730, RS15610).

Methanotrophic microorganisms can be divided into
type I (Gammaproteobacteria) and type 11 (Alphaproteo-
bacteria) based on the cyclic pathway followed to perform
C; assimilation. Recently, type X methanotrophs have also
been described [26]. Type I methanotrophs, such as M.
psychrotolerans HV10-M2, use the RuMP cycle, whereas
type II methanotrophs use the serine cycle. Briefly, in the
first step of the RuMP pathway D-arabino-3-hexulose-6-
phosphate is formed from ribulose-5-phosphate, which
will be later converted into fructose-6-phosphate. Then,
fructose-6-phosphate is converted into Fructose-1,6-
bisphosphate through the 6-phosphofructokinase using
PP; as the donor in a reversible reaction. Finally, an aldol-
ase will form glyceraldehyde-3-phosphate.

Several genes encoding for enzymes used in the Serine
cycle such as hydroxytransmethylase, serine-glyoxylate
aminotransferase and hydroxypyruvate reductase were
also present in the genome of M. psychrotolerans HV10-
M2. However, the serine cycle is not completed, as the
genes encoding for the malyl-CoA lyase enzyme could not
be found in the genome. This is not surprising as other
type I methanotrophs such as M. miyakonense HT12,
Methylobacter tundripaludum SV96 [27] or Methylomi-
crobium album BG8 [28] also contain the genes encoding
for most of the serine pathway. However, in the latter two,
the phosphoenolpyruvate carboxylase enzyme is absent in
the genome while in the Methylovulum strains is present.
So far, there is no knowledge about any methanotrophic
strain encoding for all the enzymes in both, the RuMP
and the serine cycle.

The oxidation of formate to CO, is performed by the
formate dehydrogenase enzyme. The genes encoding for
the FDH enzyme were also present in the genome of M.
psychrotolerans HV10-M2 (locus tag RS07700). It has
been previously reported that this step is less demanding
in organisms using the RuMP pathway for formaldehyde
assimilation, such as M. psychrotolerans HV10-M2, and
therefore FDH activities are very low [24].
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It is known that some methanotrophs such as mem-
bers of the genera Methylococcus and Methylocaldum
(Type X methanotrophs), have genes encoding for
enzymes involved in the Calvin-Benson-Basham cycle
responsible for carbon dioxide fixation [29]. However,
no evidence of the genes encoding for the ribulose-1,5-
biphosphate carboxylase/oxygenase (RuBisCO), cbbL,
¢bbS and cbbQ, was found in the genome of M. psychro-
tolerans HV10-M2.

Methanotrophic bacteria also play a major role in the
nitrogen cycle. The MMO can oxidize ammonia into
nitrite and nitrous oxide as they are evolutionary related
[30]. The prevailing view was that only type II and type
X methanotrophs could have the ability to fix nitrogen,
and although recently it has been suggested that some
type I methanotrophs (Methylomonas and Methylobac-
ter) could also perform nitrogen assimilation. Although
in the genome of M. psychrotolerans HV10-M2 the
nitrogenase gene cluster nifDKH was present (locus tag
RS1055, RS01060, RS01050), the anfG gene encoding for
the nitrogenase delta subunit was absent, therefore M.
psychrotolerans HV10-M2 cannot fix nitrogen. This
result matches with other members of the genus Methy-
lovulum where no growth in nitrogen-free medium was
reported [4]. The nitrite reductase genes nirK and nirS
involved in the formation of nitric oxide were not found
in the genome of M. psychrotolerans HV10-M2, further-
more the genes norBC, involved in the following reac-
tion (formation of nitrous oxide from nitric oxide), were
not detected in the genome of M. psychrotolerans
HV10-M2. Although the nitrite reductase genes are
common in Gammaproteobacteria methanotrophs, they
have not been found in others such as M. miyakonense
HT12 or Methylomicrobium alcaliphilum or Methylo-
monas denitrificans [4, 31]. The absence of the genes
norBC, present in the latter methanotrophs, in M. psy-
chrotolerans HV10-M2 could be due to the complete-
ness of the genome. Additionally the presence of the
haoAB genes, encoding for the hydroxylamine de-
hydrogenase, that have been observed to be variable in
Gammaproteobacteria methanotrophs, are absent in
the genome of M. miyakonense HT12 and M. psychro-
tolerans HV10-M2.

Compared to the reference strain of the Methylovulum
genus, Methylovulum miyakonense HT12, there are genetic
and morphological differences with M. psychrotolerans
HV10-M2. The former has a pink color while the latter
exhibited brown color. Additionally, the sSMMO enzyme
has been found only in one strain within the Methylovulum
genus (M. miyakonense HT12). Further, the optimal growth
temperature range between M. psychrotolerans and M.
miyakonense is different. M. psychrotolerans is psychrotoler-
ant with an optimal growth temperature between 13 and
20 °C, whereas Methylovulum miyakonense HT12 is
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mesophilic with an optimal temperature between 24 and
32 °C. Interestingly, most of the characteristics not shared
between those strains such as, the pink color and the
absence of the sSMMO enzyme, are common within the M.
psychrotolerans strains including the strain M200 in the
family Methylococcaceae [32] (Information about Methylo-
vulum sp. Eb1 is not available).

Those differences together with the 95% identity in the
16S rRNA gene between M. miyakonense HT12 and M.
psychrotolerans HV10-M2 could suggest that the former
belong to a different genus. To investigate this, the aver-
age nucleotide identity using BLAST were performed
with the draft genomes. The strains shared ANIb values
of 79.2%, being the highest amongst the closest strains
with genome data available (Additional file 1: Table S1).
Furthermore, recently it has been proposed that a pro-
karyotic genus can be defined as a group of species with
pairwise values in the percentage of conserved proteins
higher than 50% [33]. The POCP value between M.
miyakonense HT12 and M. psychrotolerans HV10-M2
was 62.9%, therefore suggesting that M. miyakonense
HT12 and M. psychrotolerans HV10-M2 belong to the
same genus.

Conclusions

In the present study, we present the high-quality draft
genome of Methylovulum psychrotolerans HV10-M2. The
genome consists of 4,923,400 bp in 4415 protein-coding
genes, 50 RNA genes with and an average 50.88% GC
content. As the Methylovulum genus has been recently de-
scribed [4] only one genome has been available so far and
this is from Methylovulum miyakonense HT12. M. psychro-
tolerans HV10-M2 has a 95% sequence identity with M.
miyakonense HT12. In addition, there are some differences
between both species, such as the mmoX gene, which
encodes for the sMMO enzyme. The mmoX gene is present
only in M. miyakonense whereas in M. psychrotolerans is
absent. The other differences are the colour, as M. miyako-
nense showed a brown colour and M. psychrotolerans is
pink, and the optimal growth temperature. M. miyakonense
is mesophilic and M. psychrotolerans is psychrotolerant.

Additional file

Additional file 1: Table S1. ANIb analysis results with the similarities
between the draft genomes of the four closest strains to M. psychrotolerans
HV10-M2. (DOCX 15 kb)
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