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ABSTRACT: Machine learning (ML) identification of covalently
ligandable sites may accelerate targeted covalent inhibitor design
and help expand the druggable proteome space. Here, we report
the rigorous development and validation of the tree-based models
and convolutional neural networks (CNNs) trained on a newly
curated database (LigCys3D) of over 1000 liganded cysteines in
nearly 800 proteins represented by over 10,000 three-dimensional
structures in the protein data bank. The unseen tests yielded 94
and 93% area under the receiver operating characteristic curves for
the tree models and CNNs, respectively. Based on the AlphaFold2
predicted structures, the ML models recapitulated the newly
liganded cysteines in the PDB with over 90% recall values. To
assist the community of covalent drug discoveries, we report the predicted ligandable cysteines in 392 human kinases and their
locations in the sequence-aligned kinase structure, including the PH and SH2 domains. Furthermore, we disseminate a searchable
online database LigCys3D (https://ligcys.computchem.org/) and a web prediction server DeepCys (https://deepcys.computchem.
org/), both of which will be continuously updated and improved by including newly published experimental data. The present work
represents an important step toward the ML-led integration of big genome data and structure models to annotate the human
proteome space for the next-generation covalent drug discoveries.
KEYWORDS: covalent drug discovery, machine learning, protein structures, database, alphafold, kinases

1. INTRODUCTION
Over the past two decades, targeted covalent inhibitor (TCI)
discovery has become mainstream in the efforts to overcome
limitations of traditional reversible inhibitors and expand the
druggable proteome space.1−3 In the TCI design, an
electrophilic functional group (also known as the warhead) is
incorporated into a reversible ligand to enhance potency,
selectivity, and target residence time or to inhibit a previously
deemed undruggable protein, e.g., KRAS-G12C that lacks a
traditional ligandable pocket for reversible binding.4 An
irreversible and sometimes also reversible covalent bond is
formed between the warhead and a nucleophilic (reactive)
amino acid residue in the target protein. Cysteine is the most
nucleophilic amino acid and has been the most popular for
covalent ligation. In fact, all FDA-approved TCIs are directed
at a cysteine.5

In silico approaches hold great promise to accelerate
proteome-wide TCI discovery efforts. In recent years,
molecular dynamics (MD) simulations6−8 have been devel-
oped to assess cysteine reactivities and ligandabilities; however,
they cannot be scaled up to the proteome level due to the high
computational cost. Machine learning (ML) models trained on
the cysteine-liganded cocrystal structures in the protein data
bank (PDB) have also been reported to evaluate the cysteine

ligandabilities. In the earlier work, the support vector machine
(SVM) models were trained on 1057 cysteine-liganded
cocrystal structures of 515 proteins and achieved the best
area under the curve of receiver operating characteristic (AUC
the receiver operating characteristic or ROC), recall, and
precision of 0.73, 0.62, and 0.41, respectively,9 in an unseen
test. In a most recent publication,10 the graph neural network
(GNN) models DeepCoSI were trained on the CovalentInDB
database, which contains 10,042 cysteine-liganded cocrystal
structures of 259 proteins, with the best training AUC of 0.92.

The emergence of the powerful and continuously improving
AlphaFold2 (AF2) structure prediction engine12 further
underscores the potential utility of structure-based ligandability
prediction tools. In this work, we present a new database
LigCys3D (https://db.computchem.org/), which annotates
1133 ligandable cysteines of 778 proteins and their X-ray
crystal structure representations in the PDB, including the
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cysteine-liganded and unliganded forms. Employing this
database, we trained and validated two types of ML models:
the decision tree models and the three-dimensional convolu-
tional neural networks (3D-CNNs). To our best knowledge,
LigCys3D is the largest to date and significantly surpasses
those used for the previous ML models9,10 in terms of the
number of unique cysteines, proteins, as well as the number of
structural representations. Another unique feature of this work
is the inclusion of ligand-free (apo) X-ray structures in the
training set, which is expected to increase the extrapolation
power of the ML models. Finally, the development of decision
tree models (as opposed to the black box neural networks)
based on physicochemical features allows us to dissect the
physical determinants and gain systematic understanding of
covalent ligandabilities. In multiple unseen tests, the XGBoost
models and CNNs delivered the AUCs of 94% ± 1% and 93%
± 3%, respectively. The models were also applied to
recapitulate the newly liganded cysteines based on AF2
predicted structures, giving recall values over 90%. Finally, a
web server https://deepcys.computchem.org/ was developed
to assist the community with covalent drug discovery.

2. RESULTS AND DISCUSSION

2.1. Construction of a Structure Database of
Cysteine-Liganded Proteins Determined by
Crystallography

In order to train the ML models, we first built a database of
proteins containing cysteines that have been covalently
modified by ligands. The recently published CovPDB13 and
CovalentInDB10 databases together contain 659 liganded
cysteines in 484 unique proteins. We performed an exhaustive
search in the PDB and found an additional 474 liganded
cysteines in 296 unique proteins. Together, we compiled 1133

liganded cysteines in 778 unique proteins. These cysteines will
be referred to as positives. The rest of the 3077 cysteines in
these proteins are unliganded, which will be referred to as
negatives. We note that although the unliganded cysteines are
more reliable negatives than the cysteines in proteins that have
not been cysteine-liganded before, false negatives are still
possible. Using the most recent PDBx/mmCIF files by
SIFTS,14 we matched each cysteine with the (gene) accession
number and residue ID in the UniProt knowledge base
(UniProtKB).11 76% of the cysteine-liganded proteins are
enzymes, including 101 proteases, 59 kinases, and 433 other
enzymes (Figure 1a). Channels/transporters/receptors (58),
transcription factors, and regulators (41) are also present,
along with 66 proteins that do not have functional
classifications based on UniProtKB11 or SCOP215 (Figure 1a).

The CovPDB13 and CovalentInDB10 databases contain only
the cysteine-liganded PDB structures, based on which the
previously reported ML models were trained.9,10 This is not
ideal as the conformational variability is neglected, which may
limit the model transferability (see a later discussion). Thus,
we augmented the data set to a total of 10,105 positive entries
(10,105 X-ray structures representing 1133 positive cysteines)
and 97,754 negative entries (97,754 X-ray structures
representing 3084 unique negative cysteines). The quaternary
structure was built based on the bioassembly information in
the PDB. On average, each positive cysteine is represented by
∼9 structures, and in most of these structures, the positive
cysteine is not liganded, i.e., the structure is either ligand-free
or in complex with a reversible ligand. We will refer to this data
set as LigCys3D (ligandable cysteine three-dimensional
structure database) hereafter. Since there are significantly
more negatives than positives, we randomly downsampled the
negative entries to 10,267, i.e., 10,267 X-ray structures
representing 3084 negative cysteines (an average of ∼3

Figure 1. Analysis of the ligandable cysteines and the associated X-ray structures in the down-sampled LigCys3D. (a) Functional classes of the
proteins that have at least one ligandable (positive) cysteine according to the structures deposited in the PDB. Functional information is taken from
UniProtKB.11 or SCOP215 (b) Number of positive and negative cysteines, and the number of PDB structures representing these cysteines. A
positive cysteine is represented by up to 10 and an average of ∼9 structures, while a negative cysteine is represented by up to 4 and an average of
∼3 structures. (c) Number of nonunique cysteines that are in monomer, dimer, and multimer structures based on the biological assembly
information in the PDB. (d) Number of PDB structures that represent positive or negative cysteines that are near the PPI or not. A PPI cysteine
was defined using a distance cutoff of 4.5 Å between the sulfhydryl sulfur and the nearest heavy atom in another chain. (e) Nedd4-1 (cyan)
contains a cysteine (C627, orange) at the PPI with ubiquitin (magenta) in the PDB entry5C7J. While not liganded in this structure, Cys627 is
liganded by a covalent inhibitor in a different, monomeric structure (PDB ID: 5C91). (f) Number of PDB structures that are apo (ligand free) or
holo (bound to any ligand) for positive and negative cysteines.
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structures per negative cysteine). In total, 20,259 entries were
curated as the data set for model hold-out, training, and cross
validation (CV, Figure 1b).
2.2. Structural Diversity, Variability, and Allostery Are
Represented in the Augmented Data Set

Considering the quaternary structures associated with the
entries, 8757 are monomers, 7196 are dimers, and 4306 are
multimers (Figure 1c). In addition, 685 structures associated
with the (119) positive cysteines and 392 structures associated
with the (110) negative cysteines are located at the protein−
protein (or protein−nucleic acid) interfaces (PPIs, Figure 1d),
as defined by using a distance cutoff of 4.5 Å between the

cysteine sulfur and its nearest heavy atom from a different
chain in the PDB file. An interesting PPI example is the HECT
E3 ubiquitin ligase Nedd4-1, which regulates metabolism,
growth, and development and is a promising target for treating
cancers and other diseases (Figure 1e).16 Nedd4-1 has a
noncatalytic cysteine C627, which is located at the binding
interface with ubiquitin (PDB ID: 5C7J)17 and has been
modified by a covalent inhibitor (PDB ID: 5C91).16 In
addition to the cysteine-liganded structures, through data
augmentation, the positive cysteines are also represented by
cocrystal structures in complex with reversible ligands as well
as surprisingly more than 50% ligand-free structures. For the

Table 1. Performance of the Tree-Based and CNN Models in the CVs and Unseen Testsa

metrics ET XGBoost LightGBM CNN

CV test CV test CV test CV test

AUC 0.89 ± 0.00 0.94 ± 0.01 0.90 ± 0.00 0.94±0.01 0.90 ± 0.00 0.93 ± 0.01 0.98 ± 0.01 0.93±0.04
recall 0.81 ± 0.01 0.90 ± 0.02 0.88 ± 0.01 0.93±0.02 0.78 ± 0.01 0.86 ± 0.02 0.93 ± 0.01 0.96±0.02
precision 0.77 ± 0.01 0.93 ± 0.01 0.74 ± 0.01 0.91±0.01 0.79 ± 0.01 0.94 ± 0.01 0.92 ± 0.02 0.89±0.03
selectivity 0.82 ± 0.01 0.82 ± 0.02 0.76 ± 0.02 0.77 ± 0.03 0.84 ± 0.01 0.85 ± 0.02 0.94 ± 0.02 0.69 ± 0.10
NPV 0.85 ± 0.00 0.75 ± 0.03 0.89 ± 0.01 0.81 ± 0.05 0.84 ± 0.00 0.70 ± 0.03 0.94 ± 0.01 0.86 ± 0.06
ACC 0.81 ± 0.00 0.88 ± 0.01 0.81 ± 0.01 0.89 ± 0.01 0.82 ± 0.00 0.86 ± 0.01 0.93 ± 0.02 0.88 ± 0.04
F1 0.79 ± 0.00 0.91 ± 0.01 0.80 ± 0.01 0.92±0.01 0.78 ± 0.01 0.90 ± 0.01 0.92 ± 0.02 0.92±0.02

aMetrics are the average and standard deviation from the 10-fold CV or the unseen tests from 30 train, CV, and test experiments for ET and
XGBoost, and 6 train, CV, and test experiments for LightGBM and CNN. Cysteines do not overlap between the training and test data sets. The
same train and test sets were used for all models. The test AUC, recall, precision, and F1 score of the top tree model and CNN are highlighted in
bold font. The metrics from the null model (random guess) are near 0.5 since the number of positives and negatives is nearly equal in the training
and testing sets.

Figure 2. Performance of the tree-based models for predicting cysteine ligandabilities. (a) Model workflow based on the Extreme Gradient
Boosting (XGBoost) classifier. (b) ROC curve for the XGBoost models obtained from 6 rounds of data splitting followed by training with 10-fold
CV. The AUC is 0.94. (c) Recall/precision/F1 score as a function of the classification threshold. The highest F1 score of 0.92 was achieved at a
threshold of 0.30. (d) Performance metrics of the XGBoost models for cysteines in monomer, dimer, and multimer structures. (e) Performance
metrics of the XGBoost models for cysteines at the interfaces (PPIs) or not. (f) Permutation-based feature importance scores for the top five
features: the side chain cysteine SASA (sasa_side); secondary structure of the cysteine + 4 position (dssp_4); the distance from the cysteine sulfur
to the nearest pocket (sg_pocket_d1); the minimum distance to any nonpolar atom in a different residue (npol_1); and the number of heavy
atoms within 15 Å of the cysteine sulfur (n_hv_15). (g) “Waterfall” SHAP value plot to explain the ligandability prediction for C627 in Nedd4-1’s
structure (PDB: 2XBB; UniProt: P46934, C627). The five most impactful features (values are given next to the names) are shown on the top and
the rest 29 features are collapsed into one and shown on the bottom. The corresponding SHAP values shown in red (positive) or blue (negative)
bars accumulate to shift the expected model output E[f(x)] from the random guess output (0.15) to the real output ( f(x) = 0.978), where f(x) is
the model output before the logistic link function is applied.
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positive entries, 3912 are ligand-free and 3695 are ligand-
bound, while for the negative entries, 3601 are ligand-free and
3003 are ligand-bound (Figure 1f). These analyses demon-
strate that our data augmentation strategy affords structure
diversity and variability, which we surmised to be essential for
training truly predictive and transferable models. The inclusion
of structural variation may also help with the detection of
cryptic pockets.18 We should also note that in the LigCys3D
data set, each protein has on average 1.5 ligandable cysteines,
which suggests that allosteric sites are also represented.
2.3. Top Three Tree Models Are Highly Predictive of
Ligandable Cysteines

The recent constant pH MD titration simulations of a large
number of kinases uncovered common structural and physical
features for reactive cysteines (high tendency to deprotonate at
physiological pH) and ligandable cysteines.6,8,19,20 Thus, we
surmised that feature-based ML classification models such as
decision trees may be suited for predicting cysteine
ligandabilities. Based on the findings from these studies,6,8,19,20

we devised a set of descriptors (37 after removal of
multicollinearity, see the Materials and Methods section) for
training the tree-based classifiers using PyCaret.21 Given the
small training data set, tree models avoid the overfitting
problem that plagues the more sophisticated models that make
use of vast parameter space. From the downsampled
LigCys3D, 10% of the entries were randomly picked as
holdouts for the “unseen” test, while the remaining 90% of the
entries were reserved for training/CV. UniProt accession
number and residue IDs were used to ensure that cysteines are
unique between the training/CV and test sets. The 10-fold CV
was used, where different folds have unique cysteines.
Following CV, the model was retrained with hyperparameter
tuning before being applied to the test set. This process (data
splitting, training/CV, and test) was repeated six times to
generate statistics for the model evaluation. To verify that the
data splitting is unbiased and to generate more robust statistics,
we also repeated the above process 30 times for the ET model.
The resulting metrics are very similar, with the test AUC value
unchanged (Table S1).
The eXtreme Gradient Boosting (XGBoost), Extra Tree

(ET), and Light Gradient Boosting (LightGBM) are the top
three best performing models according to the AUC, recall,
precision, and F1 score in the unseen tests (Table 1). These
four metrics analyze the model performance in different ways.
The AUC is an aggregate measure of true and false positive
rates across all possible classification thresholds. Recall
measures the accuracy of the positive predictions given a
threshold , while precision measures the percentage of positive
entries correctly identified. The F1 score is the harmonic mean
of recall and precision. Note, we also calculated the selectivity
and negative predictive value (NPV), which, respectively,
measure the accuracy and precision of predicting negatives.
These metrics are de-emphasized in this work because our
training set might contain false negatives as discussed before
and knowing the positives are more relevant in drug discovery.
The best XGBoost gave an AUC of 0.94 ± 0.01 (Figure 2b)

and a maximum F1 score of 0.92 ± 0.02, which was achieved at
the threshold value of 0.30 (Figure 2c). With this threshold,
the recall and precision are 0.93 ± 0.02 and 0.91 ± 0.01,
respectively (Table 1). The test metrics of the ET classifier
closely follow those of the XGBoost. Considering the test
AUC, recall, and precision of 0.93−0.94, 0.89−0.96, and 0.89−

0.91, respectively, the top three tree-based models are highly
predictive of the ligandable cysteines. Note, some test metrics
of the tree models are higher than those of the CVs. This is
because the CV metrics were calculated by averaging the
models trained on 9-fold of data, while the test metrics were
for the model trained on the entire 10-fold of data with the
optimized hyperparameters.
2.4. Model Performance Is Unbiased with Respect to
Protein Quaternary Structure and Proximity to Interface

It is important to verify that the model performance is
unbiased with respect to the protein quaternary structures and
their proximity to interfaces (if any). We compared the
XGBoost model performance metrics for cysteines in the
monomer, dimer, and multimer structures (Figure 2d and
Table S2). The AUCs for monomers and dimers are identical
(0.94), and it is only marginally lower for multimers (0.92).
While the recall or precision for monomers and dimers is also
identical (0.93 or 0.92, respectively), it is only somewhat lower
for multimers (0.87 and 0.86, respectively). As to non-PPI vs
PPI cysteines, the AUC, recall, and precision are nearly
identical (Figure 2e and Table S3). These analyses
demonstrate that the models are equally predictive for large
protein assemblies and PPIs. The latter is desirable as TCI
discovery targeting PPIs has been very challenging.22

2.5. Cysteine Ligandability Is Determined by a Set of
Structural and Physicochemical Features

A significant advantage of decision tree as opposed to neural
network models is interpretability. The permutation feature
importance scores were calculated to understand the structural
and physicochemical features that determine the cysteine
ligandability. The feature importance score represents the
decrease in the model score when a feature is randomly
shuffled.23 Accordingly, cysteine’s side chain solvent-accessible
surface area (sasa_side) is by far the most important feature
(Figure 2f), which is readily understood as solvent exposure
promotes cysteine reactivity due to the stabilizing solvation
free energy of the anionic thiolate state. However, an earlier
study found a poor correlation between the solvent
accessibility and thiol reactivity.24 An early bioinformatics
analysis showed that cysteine is the least-exposed amino acid,25

and the recent constant pH MD simulations showed that many
hyperreactive cysteines in kinases19,20 and other proteins7 are
buried. We will return to this discussion. The next four
features: the secondary structure at the cysteine + 4 position
(dssp_4), the distance from the cysteine sulfur to the nearest
pocket (sg_pocket_d1), the distance to the nearest nonpolar
atom in another residue (npol_1), and the number of heavy
atoms within 15 Å from the cysteine sulfur (n_hv_15), are also
consistent with intuition or knowledge from other studies. In
accord with the importance score of dssp_4, the N-terminal
capping (Ncap) cysteine on a helix has been suggested as
highly reactive two decades ago,26 which is supported by the
fact that the front-pocket Ncap cysteine is the most popular
site of targeted covalent inhibition among all kinases.19 Similar
to the BURIED term in the empirical pKa prediction program
PROPKA,27 the two features npol_1 and n_hv_15 indicate
how deeply the cysteine is buried, which affects both the
cysteine reactivity and ligand accessibility.

Complementary to the feature importance scores, the game-
theoretic SHapley Additive exPlanations (SHAP) values
inform the impact of feature values on the prediction
outcomes.28,29 A positive or negative SHAP value increases
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or decreases the model output of a prediction from its
expectation value estimated by randomly guessing from the
features.29 As an example, Figure 2g explains the model
prediction for C627 in Nedd4-1 (PDB: 2XBB) based on the
SHAP values of the features. While the sasa_side is small (1.25
Å2) and decreases the model output by 0.61, the other four
important features, the cysteine sulfur distance to the interface
(d_interface, 3.99 Å), to the nearest pocket (sg_pocket_d1,
3.00 Å), and to the second nearest potential hydrogen bond
donor nitrogen (hb_N2, 5.64 Å), as well as the number of Cα
atoms within 12 Å of the cysteine sulfur (n_ca_12, 36)
increase the model output by 0.53, 0.32, 0.26, and 0.20,
respectively. Together with the 0.13 positive contribution from
the rest of the features, the model output f(x) is upshifted from
the expected value (E[f(x)]) of 0.15 to the value of 0.978,
which returns a class probability score of 0.73.
2.6. Covalent Modification Perturbs the Cysteine Structure
Environment
Structural perturbation by reversible ligands is a well-known
phenomenon.30 We hypothesized that covalent modification of
a cysteine perturbs its structural environment. To test this
hypothesis, we plotted the distributions of the cysteine side
chain SASA and the distance to the nearest pocket, which are
important features of the tree models (Figure 3). For the

LigCys3D cysteines, the positives are separated into the
modified and unmodified groups, which refer to whether the
cysteine is liganded or modified in the structure or not. Note,
the unmodified structures can be either apo or in complex with
a reversible ligand. Interestingly, the major peak of the SASA
distribution for the modified positives is at ∼20 Å2, while that
of the unmodified positives is at ∼5 Å2, which is close to the
peak of the negatives (near zero) (Figure 3a). This analysis
suggests that covalent modification perturbs the protein

structure so as to increase cysteine’s solvent exposure.
Furthermore, while a larger fraction of ligandable cysteines
are solvent exposed as compared to the unligandable cysteines,
a significant fraction of ligandable cysteines are actually deeply
buried. The latter is consistent with the notion that cysteine is
the least solvent-exposed amino acid25 and our recent finding
that most reactive cysteines in kinases8,19,20 and other proteins
are in fact buried.7

The distribution of the cysteine distance to the nearest
pocket displays a peak near 3 Å for both modified and
unmodified positives (near 3 Å, Figure 3b); however, the
modified positives have a higher peak intensity, suggesting that
covalent ligand binding may slightly “pull” the cysteine toward
the pocket. Interestingly, the distribution of the negatives also
displays a peak near 3 Å, although with a lower peak height as
compared to the positives, and importantly, the distribution
has a fat tail, suggesting that many negative cysteines are far
away from any pocket, as expected.
2.7. Importance of Including Cysteine-Unmodified
Structures in the Training Set

Given that covalent ligation perturbs the structure such that
the difference in the cysteine environment between the
modified positives and negatives is larger than that between
the unmodified positives and negatives (Figure 3), we
hypothesized that models trained using the modified structures
may give a “deceptively” higher performance than models
trained with the unmodified structures. To test this, we
compare the performances of the ET models trained with the
modified (model 1), unmodified (model 2), and combined
(model 3) structures. Confirming our hypothesis, the unseen
test AUC, recall, and precision of model 1 are all above 0.95,
whereas the AUC of model 2 dropped to 0.85 and recall/
precision to 0.75/0.78 (Tables 2 and S6). Even though the
training data set of model 3 is the largest, 68% larger than
model 1, the AUC is slightly lower at 0.94 and recall/precision
is 0.89/0.93.

We compare the prediction metrics of model 1 with the
published metrics of the previous two models9,10 that were
trained using a smaller data set and the cysteine-liganded
structures only. Note, this comparison is for information only
and needs to be taken with a grain of salt due to the difference
in the training and test data. The ET metrics (AUC, recall, and
precision all above 0.95) surpass the feature-based SVM model
(test AUC, recall, and precision of 0.73, 0.62, and 0.41),9

which may be attributed to the larger data set and the use of

Figure 3. Cysteine’s conformational environment is different between
the modified and unmodified structures. (a) Distributions of the
cysteine side chain SASA. Modified Pos (dashed red) and unmodified
Pos (solid red) refer to the positive structures in which the cysteine is
liganded and unliganded, respectively. The ligand was removed in the
SASA calculations. The inset shows an overlay between the
unmodified (PDB: 7LTX) and modified (PDB: 2JIV) X-ray structures
of the EGFR kinase. The front-pocket C797 has a SASA value of 16.9
and 44.6 Å2 in the apo and holo states, respectively. (b) Distributions
of the distance from the cysteine sulfur to the nearest pocket (alpha
sphere).

Table 2. Impact of Training with Unmodified Structures on
the ET Model Predictionsa

modelb model 1 model 2 model 3
structures modified unmodified combined
Pos/Negc 5931:5931 4061:4061 9992:10,267
AUC 0.96±0.00 0.85 ± 0.02 0.94 ± 0.00
recall 0.95±0.01 0.75 ± 0.03 0.89 ± 0.02
Prec 0.96±0.01 0.78 ± 0.03 0.93 ± 0.01
F1 0.95±0.01 0.77 ± 0.03 0.91 ± 0.01

aAverage and standard deviation of the metrics from the six model
predictions are given. The metrics of the best model are highlighted in
bold font. bModel 1, model 2, and model 3 refer to the ET models
trained with the cysteine-liganded, cysteine-unliganded, and com-
bined structures, respectively. cThe number of positives and negatives
in the entire data set (training, CV, and unseen test).
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the physio-chemical features born out of our previous
mechanistic studies of cysteine reactivities and ligandabil-
ities.6,19,20 The ET model’s test AUC (0.96) is also slightly
higher than the training validation AUC (0.92) of the most
recent GNN model (other metrics were not reported).10

Since in prospective predictions modified structures are
unavailable, we asked if the models should be trained with the
unmodified structures only. To address this question, we
applied the three ET models to the ligandable cysteines
discovered in an early chemoproteomics experiment conducted
in cell lysates.31 These cysteines are not in LigCys3D; i.e., they
do not have modified structures. As expected, model 1 has by
far the lowest recall; however, model 3 is slightly better than
model 2 in both recall and precision (Tables 2 and S6). This
analysis demonstrates that structure variation (including both
modified and unmodified structures) further enhances the
extrapolation power of the models.
2.8. CNN Models Show a Similar Performance as the
XGBoost Models

Since many of the tree model features are spatially related, we
reasoned that three-dimensional convolutional neural networks
(3D-CNN) may offer high performance. We adapted and
modified the 3D-CNN architecture of Pafnucy, which was
developed for protein−ligand binding affinity predictions32 and
recently adapted for protein pKa predictions.

33 In our modified
architecture, a cubic grid of 20 × 20 × 20 Å with a resolution
of 1 Å was created centering at the cysteine sulfur, and each
voxel represents a nearby atom and encodes 20 features
(Figure 4a). To remove rotational variance, each cubic box was
generated 20 times by randomly rotating the PDB coordinates.
The input grid is processed by a block of 3D convolutional
layers that have 128 filters (Figure 4a, details see the Materials
and Methods section). To allow comparison to the tree
models, data splitting and CV were conducted in the same
manner. Interestingly, the 3D-CNN gave very similar results to
the best tree model XGBoost, with the AUC, accuracy, and
precision of 0.93 ± 0.04, 0.96 ± 0.02, and 0.89 ± 0.03,
respectively (Table 1). It is also noteworthy that the standard
deviations in the test metrics resulting from the six data splits,

training/CV, and testing are overall slightly larger than those of
the XGBoost models (Figure 4b). Although the best average
F1 score (0.92) is the same as the XGBoost models, it is
achieved with a lower prediction probability threshold (0.15,
Figure 4c).

We also examined the CNN performance for different
protein quaternary structures and PPI vs non-PPI cysteines in
comparison to the XGBoost models (Figure 4d and Table S4).
While the AUC, recall, and precision are maintained between
monomers and dimers with the XGBoost models, there is a
0.02 decrease in the average AUC or recall and 0.03 decrease
in the average precision going from monomers to dimers with
the CNN models. As to multimers, the average AUC or recall
drop only by 0.01 relative to the dimers (smaller than the
XGBoost models) but the precision drops by 0.08 (larger than
the XGBoost models). This analysis suggests that the
classification power of the CNN models deteriorates slightly
more for dimers and multimers as compared to the XGBoost
models.

The trend in the model performance differences among
quaternary structures is consistent with those between the PPI
and non-PPI cysteines (Figure 4e and Table S5). While the
average AUC and recall are maintained going from the non-
PPI to the PPI cysteines with the XGBoost models, the
respective decrease is 0.03 and 0.02 with the CNNs. As to the
precision, the decrease from the non-PPI to the PPI cysteines
is only 0.01 as compared to 0.03 with the XGBoost models.
Interestingly, the standard deviations among the different
CNN tests are doubled going from the non-PPI to the PPI
cysteines, which is consistent with the XGBoost tests, although
the standard deviations of the latter are overall significantly
smaller. One possible reason for the performance deterioration
of the CNNs for dimers and multimers is the finite-size grid,
which may exclude part of the chains that carries relevant
information for model prediction. In contrast, the features used
in the tree models cover all residues in the bioassembly
regardless the distances to the cysteine of interest.

Figure 4. Performance of the three-dimensional CNN. (a) Architecture of the 3D-CNN for cysteine ligandability predictions. (b) ROC curve
obtained from 6 train/test experiments. The AUC is indicated for the average curve. (c) Recall/precision/F1 score as a function of the classification
threshold. The best F1 score 0.92 is achieved at a threshold of 0.15. (d) Comparison of the CNN performance metrics for cysteines in monomer,
dimer, and multimer structures. (e) Comparison of the CNN performance metrics for PPI and non-PPI cysteines.
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2.9. External Evaluation on the Newly Published
Ligandable Cysteines Captured by X-ray Crystallography

To further evaluate the ET and CNN models, they were tested
on a new, nonoverlapping data set of 30 unique proteins with
38 covalently liganded cysteines, for which the cocrystal
structures were deposited in the PDB after the LigCys3D was
constructed in Nov 2022. To demonstrate the general utility of
the ML models, the AF2 structures were used for making
predictions. The ET model recapitulated 35 out of 38 (a recall
of 0.92), while the CNN recapitulated 34 out of 38 liganded
cysteines (a recall of 0.90, see Table S7). Curiously, both the
ET and CNN missed C269 in isocitrate dehydrogenases 1
(IDH1, UniProt ID O75874). Closer examination revealed
that the covalently liganded IDH1 is an R132H mutant,
whereas the AF2 structure used for the predictions is of the
wild type (WT). Comparison of the deposited X-ray structure
of the R132H mutant (PDB ID: 8HB9)34 with the WT AF2
structure showed that the pocket near C269 is enlarged in the
mutant. This difference could explain the false negative
predictions. Another cysteine that both ET and CNN models
missed is C412 of the YTHDF1 protein (UniProt ID
Q9BYJ9). In the deposited X-ray structure (PDB ID:
7PCU).35 C412 is fully exposed to solvent; however, in the
AF2 structure, it is fully buried as a nearby loop (residues 95−
114) is collapsed onto the pocket where the cysteine resides.
These two cases show that the accuracy of the ligandability
prediction is dependent on the quality of the AF2 predicted
structure, which is a limitation of structure-based ML models.
Effects of mutations and loop modeling are challenging for the
current AF2 model, and the ligandability predictions will
benefit from the continued improvement of the AlphaFold
structure prediction engine.
2.10. Prospective Prediction of Ligandable Cysteines in
the Human Kinome

Human kinases are important drug targets, and most FDA-
approved covalent drugs are kinase inhibitors directed at a
cysteine in the catalytic or allosteric pocket of the kinase
domain. LigCys3D contains 46 unique liganded cysteines in 37
kinases, and all but two are in the kinase domain (red circles in
Figure 5). The front pocket αD helix, with 10 unique cysteines
belonging to different kinases, is the most targeted location.
This is consistent with the constant pH MD simulations, which
showed that the cysteine at or near the N-terminal cap of the
αD helix is hyper-reactive due to the local hydrogen bonding
and electrostatic environment.19 Other popular locations for
cysteine ligation are the N-terminal part of the activation loop
(ALN, 8 cysteines), αE (5 cysteines), and the C-terminal end
of βI (βIC or p-loop, 4 cysteines).
The human kinome contains 536 kinases;37 however, only a

small fraction (37 according to the cocrystal structures in the
PDB) have been covalently drugged. Thus, we applied the ML
models based on the AF2 structures to make predictions of the
ligandable cysteines in the rest of the 481 kinases, accounting
for not only the kinase domain but also the PH, SH1, and SH2
domains. Note, 18 kinases that do not have AF2 structure
models in the EBI repository were excluded, and since no
ligandable cysteines were predicted in the SH1 domain, it is
excluded in the discussion below.
A total of 1083 cysteines in the kinase, PH, and SH2

domains of 392 kinases were predicted to be ligandable, and 89
kinases were predicted to have no ligandable cysteine. Figure 5
shows the number of the predicted ligandable cysteines and

their locations in a kinase structure according to the multiple-
sequence alignment of Modi and Dunbrack.36 Note, 79
predicted ligandable cysteines in 28 kinases are excluded in
Figure 5 due to the lack of sequence alignment information.
Three kinase locations with the most positive cysteines are
ALN, the C-terminal end of the activation loop (ALC), and
αH (Figure 5). Other interesting locations include αD, αE,
βIC, and αC. All of these locations have been covalently
targeted in other kinases (according to LigCys3D). Thus, our
kinome-wide predictions demonstrate new opportunities for
covalent kinase inhibitor design but also suggest potential
selectivity problems. Interestingly, the ML predictions
uncovered 7 previously untargeted locations that contain
predicted ligandable cysteines, including the PH domain, the
N-terminal end of βI (βIN), βIII−αC, βIV−βV, αE−βVI, FL-
αG, and αG−αH (Figure 5). Many of these locations are in
the loops connecting two secondary structures.

Figure 5. Ligandable cysteines in the kinase, PH, and SH2 domains of
the human kinases. (a) The PH (yellow), SH2 (dark red), and
catalytic (magenta for β strands and cyan for helices) domains of a
kinase are shown in a representative AF2 model structure of BTK
(Uniprot ID: Q06187). The loops and regions not in the PH, SH2, or
kinase domains are colored gray. The various structure elements in
the kinase domain (named according to Modi and Dunbrack36) as
well as the PH and SH2 domains are labeled. (b) The number of
liganded cysteines in LigCys3D (gray crosses, left y axis) and the
predicted ligandable cysteines for the 397 (typical) human kinases not
in LigCys3D (red circles, right y axis) mapped onto the various
structure elements of the kinase domain as well as the PH and SH2
domains (dashed box). The multiple sequence alignment based on
the kinase domain is taken from Modi and Dunbrack.36 The
consensus predictions by the ET, XGBoost, and LightGBM models
are shown. The domain and structure element names are ordered by
the sequence and only those with at least one ligandable cysteine are
shown (no ligandable cysteines were predicted for the SH1 domain).
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2.11. Development of a Live Online Database (LigCys3D)
and Prediction Server (DeepCys)

To assist the community of TCI discoveries, we implemented a
searchable web database LigCys3D (https://ligcys.
computchem.org/). Each row or entry is a ligandable cysteine
in a protein, along with the following information as columns:
the PDB ID, chain ID, PDB residue ID, Uniprot ID, Uniprot
residue ID, bioassembly type, the calculated side chain SASA,
distance to a protein−protein interface, distance to the nearest
pocket, as well as whether the cysteine is covalently modified
by a ligand in the particular structure (PDB file). Any
information specified in the column can be filtered, and a list of
matched entries are generated. The user can download the
matched entries or the entire database as a CSV file. The
database will be continuously updated to include newly
discovered ligandable cysteines in the PDB.
We also implemented a web server DeepCys (https://

deepcys.computchem.org/) that can predict cysteine ligand-
ability given a PDB ID, Uniprot ID, or a structure file in the
PDB format. Provided a PDB ID, the web server queries the
RCSB repository for the bioassembly file. Provided a Uniprot
ID, the web server queries the AlphaFold Protein Structure
Database of EMBL-EBI (https://alphafold.ebi.ac.uk/) for a
corresponding AF2 predicted structure. Once a structure file is
retrieved or provided, the server uses the models trained in this
study (which will be continuously improved based on the
continuously expanding training data) to make ligandability
predictions for all cysteines in the protein. The results are in
the format of a CSV file, which contains the chain ID, residue
ID, classification probability, and ligandability prediction for
each cysteine. The CSV file will be sent to the user-provided
email address.

3. CONCLUSIONS
Exploiting a newly curated database (LigCys3D) of ∼1000
liganded cysteines in ∼800 proteins represented by ∼10,000
three-dimensional structures in the PDB, we developed the
tree-based and 3D-CNN models for proteome-wide cysteine
ligandability predictions. In multiple unseen tests, the ET and
XGBoost models gave an AUC of 94%, while the CNN models
gave an AUC of 93%. Based on the AF2 predicted structures,
the ET model and CNN recapitulated the newly liganded
cysteines with recall values of 92 and 90%, respectively. The
fact that the tree models have orders of magnitude smaller
parameter space (i.e., less than 40 structural and physicochem-
ical features) than CNNs reinforces the notion that the
reactivity and ligandability of cysteines are largely determined
by the structure environment, solvent accessibility, and
potential hydrogen bonding as well as electrostatic inter-
actions. Also, the tree models avoid the overfitting problem
facing the more sophisticated ML models that make use of very
large parameter space.
Despite the promising test results, the models have several

limitations that need to be addressed in future work. First, the
training data set is very small and underrepresents trans-
membrane proteins, transcription factors, and other non-
enzymes. Second, the potential effects of mutation and post-
translational modification on the structure as well as the
membrane environment of transmembrane proteins are not
accounted for. Third, the current AF2 engine offers a very
limited accuracy for predicting loop conformations. Finally, the
model performance can perhaps be more accurately assessed

by using sequence-based data splitting. Nonetheless, the
present work represents an important step toward the ML-
led integration of big genome and structure data to annotate
the human proteome space for the next-generation covalent
drug discoveries. To assist the community in the covalent drug
design efforts, we report the predicted ligandable cysteines in
392 human kinases and their locations in the sequence-aligned
kinase structure, including the PH and SH2 domains.
Furthermore, we disseminate a web database (https://ligcys.
computchem.org/) and a web prediction server (https://
deepcys.computchem.org/), both of which will be continu-
ously updated and improved by including newly published
experimental data.

4. MATERIALS AND METHODS

4.1. Construction of the LigCys3D Database
Two recently published databases, CovPDB13 and CovalentInDB,10

compiled cysteine-liganded cocrystal structures in the RCSB Protein
Data bank (PDB). These two databases have overlap, and together
they provide 2875 cysteine-liganded cocrystal structures representing
662 liganded cysteines in 489 unique proteins. We conducted an
exhaustive search in the PDB and found additionally 472 liganded
cysteines in 294 unique proteins. We note, the “L-peptide linking”38

cysteines that were chemically modified at locations other than the
sulfur (SG) atom or simply oxidized were excluded, as well as the
cysteines involved in disulfide bonds, zinc-finger coordination, or
iron−sulfur clusters. Following the compilation of the cysteine-
liganded structures, we used SIFTS14 to annotate the liganded
cysteines with UniProt accession numbers and residue IDs (https://
www.uniprot.org),11 which allowed us to retrieve all PDB entries
associated with these cysteines. We refer to a cysteine as positive if it
is liganded in any crystal structure, and the other cysteines in these
structures are referred to as negatives. Note, the bioassembly
structures (CIF files) were downloaded, and the coordinates of
missing atoms or residues if any were added using pdbfixer (https://
github.com/openmm/pdbfixer).39 We refer to this data set as
LigCys3D.
4.2. Data Engineering for the ML Models
To construct an ML training set with balanced positive and negative
classes and to reduce model training time, we downsampled the
number of structures in LigCys3D as follows. For each positive
cysteine (based on the UniProt accession number and residue ID), all
cysteine-liganded structures were included, and the cysteine-
unliganded structures were selected using a SASA-based protocol
(see below) such that the total number of structures does not exceed
10. The cysteine-liganded and unliganded structures are termed the
liganded and unliganded positives, respectively. For each negative
cysteine, all and up to a total number of 4 structures were selected
using a similar SASA-based protocol (see below). To maximize
structural variation, the unliganded positive structures were put into
four bins based on the cysteine side chain SASA values, and one
structure was randomly picked from each bin. Similarly, the structures
representing a negative cysteine were put into ten bins based on the
SASA values, and one structure was randomly picked from each bin.
Subsequently, a training data set (downsampled from LigCys3D) was
constructed, comprising 9992 positive (1133 unique positive cysteines
in 9992 structures) and 10,267 negative (3084 unique negative
cysteines in 10,267 structures) entries. We will use this data set for
model training and testing.
4.3. Feature Engineering for the Tree Models
Features are critical for the performance of tree-based models. We
conceived a set of structural and physicochemical features based on
our findings from the constant pH MD analysis of cysteine reactivities
and ligandabilities in a large number of kinases6,8,19,20 and other
enzymes.7 In total, eights types of features were calculated based on
the input structure, including solvent accessibility (proximity to
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hydrophobic residues and the cysteine SASA calculated with
NACCESS40); distance to pockets (defined by fpocket41); potential
hydrogen bonding; electrostatic interactions; secondary structures
(calculated with Biopython42); residue flexibility (calculated with
PredyFlexy43); distance to protein−protein/nucleic acid interface;
and presence or absence of ligand binding. A detailed list of the
features that were tested is given in Supporting Information Methods.
After removal of highly correlated features, 37 features were left (see
Supporting Information Methods).
4.4. Data Splitting and Training of the Tree Models
PyCaret21 was used for building tree-based classifiers. We manually
separated 10% of the data as the unseen test set and 90% as the
training set (see below). The training set was used for 10-fold CVs.
To ensure that the training and testing sets do not contain structures
representing the same cysteine, we first grouped the structures
according to the UniProt residue IDs and then performed the
training-test split by the UniProt residue IDs. In the CV, the
groupKfold method was used to avoid placing (modified or
unmodified) structures associated with the same cysteine in different
folds.

Although ligandability of a cysteine is mainly determined by its
local conformational environment,6−8 cysteines in two highly similar
structures resulting from two similar sequences may have similar
ligandabilities. To accurately calculate the sequence similarity between
two proteins, sequence alignment needs to be performed, which
would be a prohibitively large effort for our data set. In the previous
ML model development,9,10 sequence-based clustering of proteins by
cd-hit44 was used in data splitting; however, the cd-hit method44 is
based on simple word (small stretch of sequence) counting and not
an actual sequence alignment. Thus, we opted to skip the sequence
clustering step and rely on multiple random data splittings in model
evaluation. This is a limitation, which should be addressed in future
work.

Multicollinearity was removed with a threshold of 0.9. This leads to
a total of 37 features (see above). Categorical features were one-hot
encoded. Model training used the binary cross-entropy as a loss
function and default hyperparameters. The default scikit-learn search
library was used to search the hyper-parameters, which were tuned
using the tune_model function in PyCaret 5000 times by optimizing
the F1 score across all validation folds. Following tuning, the best
hyper-parameters were used to train the entire training set, and the
final model was saved for predictions on the unseen test set or the
ABPP data set. Feature importance scores were generated using the
evaluate_model function. To generate statistics for model evaluation,
the above process was repeated 6 times, and the average and standard
deviation of the model performance metrics were calculated.
4.5. Training of CNNs
The test-train splitting and 10-fold CV were performed in the same
manner as for the tree models. The 3D-CNN architecture was
adapted and modified from the Pafnucy model,32 which was recently
adapted for protein pKa predictions.33 The input of the CNN
represents a 3D image of the protein with 20 color channels.
Specifically, a 20 Å 3D grid centered at the SG atom of the cysteine of
interest was created. The protein heavy atoms were mapped to the
grid with a 1 Å resolution, and each grid point was encoded with 20
features (the default is zero if no atoms): one-hot encoding of 5 atom
types C, N, O, S, and others; 1 integer (1/2/3) for atom
hybridization; 1 integer for the number of bonded heavy atoms; 1
integer for the number of bonded hetero atoms; one-hot encoding (5
in total) of the SMARTS patterns45 hydrophobic, aromatic, acceptor,
donor, and ring; 1 float for grid charge; one-hot encoding of 6 residue
types Asp/Glu, Lys/Arg, His, Cys, Asn/Gln/Trp/Tyr/Ser/Thr, and
others. Each cubic box was generated 20 times by rotating the
coordinates in the PDB structure to remove the rotational variance.

Keras 246 was used to build the CNN. The CNN model contains
two Conv3D layers and each Conv3D layer has 128 filters, kernel size
5, activation function relu, and “same” padding, followed by a pool
size 2 MaxPool3D layer and a BatchNormalization layer. Next, a
GlobalAveragePooling3D layer is added to do global pooling, and

then the data are flattened by a 128 units Dense layer with relu
activation, normalized by a BatchNormalization layer, and filtered by a
0.5 ratio Dropout layer. Finally, a Dense layer of 1 unit and sigmoid
activation function is used to generate a binary classification result.
Batch size is set to 32 and binary cross-entropy is used as loss
function. 50 epochs of training in Adam optimizer are used, with the
learning rate of 0.0001 and early stopping if the validation loss
plateaus in 5 epochs. The model with the lowest loss in the validation
set is saved for the tests on the unseen LigCys3D data and the new
AF2 data. In these tests, we used the voting result based on the
predictions by the 10 saved models from CVs. The voting threshold
was determined by the average F1 score on the test set across 6 train/
CV:test splitting experiments. For the unseen and external testing, the
predictions were determined by majority voting.
4.6. External Validation on the Newly Liganded Cysteines
Structure files that were deposited in the PDB between 11/29/2022
and 10/11/2023 and have publications were retrieved and analyzed as
to (1) whether the cysteines are covalently modified as defined above;
(2) whether the corresponding protein is present in LigCys3D; and
(3) whether an AF2 structure corresponding to the Uniprot accession
number is available in the EMBL-EBI AlphaFold repository (https://
alphafold.ebi.ac.uk/). The AF2 structures were subsequently used in
the ligandability predictions.

4.7. Prediction of Ligandable Cysteines in the Human
Kinome
We collected the human kinase list from KinMap.37 For those with
AF2 predicted structures, ligandability predictions were made by
using three tree methods (ET, XGBoost, and LightGBM) and the
consensus scheme. The kinase domain information was extracted
from the Uniprot Family & Domains section and if the domain name
starts with text Kinase domain, the corresponding residue range is
considered as a kinase domain for that Uniprot ID. We also used the
KinCoRe alignment file36 downloaded from the website http://
dunbrack.fccc.edu/kincore/biojs to assign the structure location for
each cysteine in the kinase domain. For cysteines in the PH, SH2, and
SH1 domains, if the Uniprot domain name starts with them, then the
original domain names are renamed as the short forms so that
multiple SH2 domains are combined. For those cysteines that are in
the kinase domain but are not found in KinCore, the domain name is
just Kinase domain but they are not shown in Figure 5. Cysteines not
in the kinase, PH, SH1, and SH2 domains are not discussed in this
study. For the location names in KinCore, A was replaced with α to
indicate α-helix, B was replaced with β to indicated β-sheet, and an
Arabic number was replaced by a Roman number. These changes
were made to be more consistent with those in the literature.
4.8. Calculation of Model Performance Metrics
Given a confusion matrix composed of the number of true positives
(TPs), true negatives (TNs), false positives (FPs), and false negatives
(FNs), the model performance metrics, recall (or true positive rate
TPR), precision, specificity, negative predictive value (NPV),
accuracy (ACC), and F1 score are defined as follows.

= +Recall TP/(TP FN) (1)

= +precision TP/(TP FP) (2)

= +selectivity TN/(TN FP) (3)

= +NPV TN/(TN FN) (4)

= + + + +ACC (TP TN)/(TP TN FP FN) (5)

= × × +F1 2 recall precision/(recall precision) (6)

The AUC is calculated by integrating the area under the ROC
curve, which consists of the recall and false positive rate (1�
selectivity) at all possible classification threshold values.
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