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High-performance neutralizing antibody against influenza virus typically recognizes the
globular head region of its hemagglutinin (HA) envelope glycoprotein. To-date, approved
human vaccination strategies have been designed to induce such antibodies as a sole
means of preventing the consequences of this infection. However, frequent amino-acid
changes in the HA globular head allow for efficient immune evasion. Consequently,
vaccines inducing such neutralizing antibodies need to be annually re-designed and re-
administered at a great expense.These vaccines furthermore provide little-to-no immunity
against antigenic-shift strains, which arise from complete replacement of HA or of neu-
raminidase genes, and pose pandemic risks. To address these issues, laboratory research
has focused on inducing immunity effective against all strains, regardless of changes in the
HA globular head. Despite prior dogma that such cross-protection needs to be induced by
cellular immunity alone, several advances in recent years demonstrate that antibodies of
other specificities are capable of cross-strain protection in mice.This review discusses the
reactivity, induction, efficacy, and mechanisms of antibodies that react with poorly acces-
sible epitopes in the HA stalk, with the matrix 2 membrane ion channel, and even with the
internal nucleoprotein.These advances warrant further investigation of the inducibility and
efficacy of such revolutionary antibody strategies in humans.
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INTRODUCTION
Influenza virus epidemics are characterized by a 3-day fever, res-
piratory affliction, and muscle pain affecting many individuals
suddenly, a rise in elderly hospitalization and death, and wide-
spread (pandemic) outbreaks at 10- to 50-year intervals (Potter,
2001; Gerdil, 2003; Taubenberger and Kash, 2010). These charac-
teristic patterns allow estimation of influenza occurrences in the
distant past (Potter, 2001; Gerdil, 2003). The term “influenza” is
derived from the Italian word for“influence,”based on its temporal
association with, and initially presumed causality of astronomi-
cal patterns observed in winter skies, when flu outbreaks tend to
occur (1989; Gerdil, 2003). This conclusion appeared reasonable
only in the absence of alternative evidence. Despite more than
300 years of observation, identification of a causative agent, and
even development of prevention strategies, influenza outbreaks
still cost society billions of dollars in healthcare and lost produc-
tivity (Li and Leader, 2007; Molinari et al., 2007; Nichol et al.,
2009; Nichol, 2011). To deal with this burden, influenza vaccina-
tion strategies have focused on inducing antibodies that neutralize
virus by binding to the highly variable globular head domain of
its hemagglutinin (HA) envelope spike (Tsuchiya et al., 2001; Tosh
et al., 2010; Xu et al., 2010; Han and Marasco, 2011). However,
efficient viral immune evasion driven by these antibodies neces-
sitates costly re-formulation and re-administration efforts that
struggle to keep pace with HA head antigenic changes (antigenic
drift) and with replacement of HA in its entirety (antigenic-shift).
This process has been repeated for decades with the presumed

logic (to a degree, based on unawareness of alternative evidence)
that classical neutralization is the only feasible means to prevent
the consequences of this infection. However, a recent antigenic-
shift-induced influenza pandemic in the year 2009 (Fraser et al.,
2009; Neumann et al., 2009) underscores the long-overdue need
to implement alternative vaccination strategies that do not rely on
antibody recognition of the variable HA globular head. Encour-
agingly, antibodies against other viral components have shown
significant efficacy in animal models. Here, we discuss such anti-
bodies and their implications for advancing human immunization
strategies against influenza virus.

SEASONAL HEMAGGLUTINATION-INHIBITING ANTIBODY
HA is a transmembrane glycoprotein in the influenza virus lipid
envelope (Skehel and Wiley, 2000; Rossman and Lamb, 2011).
HA is composed of a membrane-distal globular head domain
that mediates host-cell receptor binding, and a membrane-
proximal stalk domain that directs envelope fusion with the
host-cell (Skehel and Wiley, 2000; Gamblin and Skehel, 2010;
Figure 1). Anti-HA head antibodies can inhibit virus replica-
tion in true neutralization assays (inhibiting virion entry into
host cells) in vitro, functioning both independently of additional
host-derived effector molecules, but are also capable of coop-
erating with complement, depending on the antibody subclass
(Mozdzanowska et al., 1999). In humans and experimental ani-
mals, pre-existing neutralizing antibody titers correlate with less
febrile illness, fewer days of virus shedding, and lower viral titers
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FIGURE 1 | Neutralizing antibody binding to hemagglutinin. (A) Gross
structure of the hemagglutinin (HA). HA1 (light blue) makes-up most of the
globular head domain as well as a polypeptide extension into the stalk area.
HA2 (dark blue) makes-up the membrane-proximal stalk domain. (B)

Schematized secondary structure of HA stalk monomer (HA2) in the
pre-fusion conformation (adapted from Han and Marasco, 2011). Cylinders
represent α helices and broad blue arrow represents a β sheet. Middle red
line represents N-terminal fusion peptide. Previously defined subdomains
are labeled with capital letters. Gray arrows point to epitope locations for
the indicated broadly neutralizing antibody clones (nAb, seeTable 1).

after infection (Murphy et al., 1972). The cause-and-effect rela-
tionship between anti-HA antibody and in vivo antiviral efficacy
against matched strains is well-validated in laboratory animals

both by active vaccination (Brett and Johansson, 2005; Nayak
et al., 2010) and by passive transfer of antibody (Mozdzanowska
et al., 1999; Yu et al., 2008). Functional activity of HA globu-
lar head-reactive antibodies can be approximated through their
ability to inhibit virus-induced agglutination of vertebrate red
blood cells in vitro – hence the term “hemagglutination inhibi-
tion” (HAI). Although “HAI” and “neutralizing antibody” have
been frequently used interchangeably in the past, recent appreci-
ation of virus-neutralizing antibodies lacking HAI activity (dis-
cussed below) are leading to more discriminate use of such terms.
Additionally, multiple HAI-independent antibodies described in
the sections below provide broader definitions of “protection” to
include mechanisms other than preventing virion entry into host
cells, because such antibodies nonetheless can reduce viral load
and delay or prevent infection-induced death in experimental
animals.

The receptor-binding site on the HA globular head is sur-
rounded by protruding peptide loops. Anti-head antibodies
against these loops sterically hinder receptor binding, and effi-
ciently prevent host-cell attachment and virus entry, as depicted
in Figure 2 (Skehel and Wiley, 2000; Han and Marasco, 2011).
Thus, these classical, HAI-competent neutralizing antibodies are
the condoms of the immune system, in that they provide an effec-
tive barrier method. Unfortunately, one size does not fit all. The
HA head protruding loops are highly variable among virus strains,
and the head-binding antibodies do not neutralize viruses that are
not closely related to the immunogen (Yu et al., 2008; Hensley
et al., 2009; Skountzou et al., 2010).

HA subtypes for influenza A are categorized based on a nomen-
clature that began with retrospective identification of the strain
responsible for the 1918 influenza pandemic (H1N1, “Spanish
Flu”), which killed 50 million humans world-wide (Basler and
Aguilar, 2008; Taubenberger and Kash, 2010). Since this out-
break, the amino-acid globular head sequence of H1 circulating
in humans significantly drifted from the 1918 H1 sequence, while
H1 concurrently circulated in swine with little divergence (Krause
et al., 2010; Xu et al., 2010). After genetic reassortment with human
and avian viral strains, swine H1 recently re-introduced itself into
human circulation, causing a wide-spread, although less severe
H1N1 pandemic in the year 2009 (Fraser et al., 2009; Itoh et al.,
2009; Neumann et al., 2009; Smith et al., 2009). Whereas pre-2009
seasonal H1 human strain amino-acid sequences were only 50–
60% identical with 2009 H1, 1918, and 2009 H1 were 80% identical
to each other (Xu et al., 2010). This pattern likely explains a curious
2009 pandemic resistance among older adults previously exposed
to the 1918 virus, correlating with long-lived cross-neutralizing
antibodies in this cohort that is otherwise most susceptible to sea-
sonal outbreaks (Yu et al., 2008; Fraser et al., 2009; Itoh et al., 2009;
Xu et al., 2010; Xie et al., 2011).

As would be expected from the similarity between 1918 and
2009 H1 molecules, antibodies induced in humans before 1920
have HAI and neutralizing activity against 2009 H1N1 pandemic
virus (Hancock et al., 2009; Krause et al., 2010). At least some of
these antibodies can also reduce lung viral titers when passively
transferred into mice challenged with 2009 H1N1 virus (Krause
et al., 2010). However, such antibodies show little, if any, recog-
nition of strains circulating in the decades more immediately
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FIGURE 2 | Influenza virus infection and mechanisms of HA-specific

neutralizing antibodies. Unimpeded influenza virus binds to receptors on
the host-cell plasma membrane (A) and is internalized. The resulting vesicles
become acidified via the M2 proton channel. This pH reduction results in HA
conformational change that catalyzes the fusion of the host vesicle
membrane with the viral envelope (B). The virion is subsequently dissociated
into the cytoplasm (C), followed by transport of the ribonucleoprotein viral
genome segments into the nucleus for replication and transcription (not
shown). HAI-competent antibodies that bind to HA globular head effectively
inhibit virion binding to host cells, preventing virus entry (D).
HAI-independent neutralizing antibodies that react with the HA stalk region
can prevent the conformational changes of this antigen and prevent fusion
of viral envelope with host membrane (E). Not drawn to scale.

preceding the 2009 pandemic (Yu et al., 2008; Hancock et al.,
2009). Priming mice by either sub-lethal infection or by vacci-
nation with inactivated 1934 and 1957 H1N1 strains can induce
HAI against 2009 H1N1, and vice versa (Skountzou et al., 2010).
These reactivities correlate with cross-protection against lethality
after challenge with live virus (Skountzou et al., 2010). However,
priming mice with later (1983 and 1999) H1N1 strains is much
less effective at inducing HAI against 2009 H1N1 (Skountzou et al.,
2010). Therefore, the antigenic distance acquired over the seasons
may contribute to waning cross-protection in humans, possibly
explaining the unusually high incidence of the 2009 H1N1 infec-
tion in younger individuals (Fraser et al., 2009). These observa-
tions indicate that although cross-protection with HAI-competent
antibodies is possible, it is a continually moving target.

Among human, swine, and avian influenza virus reservoirs,
16 total HA subtypes have been identified that are clustered into
two phylogenetic groups based on amino-acid sequence (Skehel

and Wiley, 2000; Gamblin and Skehel, 2010; Han and Marasco,
2011; Medina and Garcia-Sastre, 2011). Phylogenetically, H1 clus-
ters with H2, H5, H6, H8, and H9, whereas H3 clusters with H4
and H7 (Throsby et al., 2008; Sui et al., 2009; Han and Marasco,
2011; Medina and Garcia-Sastre, 2011). Between 1918 and 2009,
two additional pandemics arose from genetic replacement of cir-
culating H1 with H2 in 1957, and then replacement of H2 with
H3 in 1968 (Basler and Aguilar, 2008; Taubenberger and Kash,
2010; Nabel et al., 2011). Since an accidental re-introduction of
H1N1 virus in 1977, H1N1 and H3N2 viruses have co-circulated
in humans, continuing to cause annual seasonal epidemics (2011).
Unlike H1 and H3 viruses, H5-containing viruses are more com-
mon in birds than in humans. However, in 1997, the first of several
sporadic and fatal (60% mortality) human cases were reported in
Asia (Basler and Aguilar, 2008; Korteweg and Gu, 2008). To-date,
H5N1 transmission from human-to-human has been rare (Kor-
teweg and Gu, 2008). Yet, given the highly pathogenic nature of
such viruses, a pandemic threat remains if even minor genetic
changes in HA were to confer more efficient transmission among
humans (Basler and Aguilar, 2008). A lack of existing herd immu-
nity to H5 in humans coupled with the extreme virulence of such
viruses predicts a pandemic of the severity more similar to that of
the 1918 outbreak, rather than the more mild occurrence in 2009
(Basler and Aguilar, 2008). Rare cases of infection with H7N7 and
H9N2 viruses have also been detected in humans, associated with
agricultural exposure (Peiris et al., 1999; Koopmans et al., 2004;
Taubenberger and Kash, 2010). Thus, continual HA drift in circu-
lating human strains, emergence of new subtype sequences, and
even re-emergence of archaic sequences from animal reservoirs, all
of which may have little recognition by existing human immunity,
provide a challenging task of seasonal vaccine matching as well as
diverse opportunities for continued pandemic risks.

Current influenza vaccine strategies in humans, most com-
monly inactivated virus preparations, are designed to induce anti-
HA globular head antibodies (Mossad, 2007, 2008; Du et al., 2010;
Tosh et al., 2010). Thus, HAI has been used as a measure of vac-
cine “take” and its presumed indication of “protection” (Whitley
and Monto, 2006; Xie et al., 2011). Seroprotective levels of HAI
are reported to be induced in 75–98% of individuals vaccinated,
with an antiviral efficacy of 25–75% (Ohmit et al., 2006; Nichol
et al., 2007; Beran et al., 2009; Jackson et al., 2010; Xie et al., 2011).
The accuracy of these latter values can be influenced by seasonal
virus attack rates, study cohorts, degree of strain matching, and
study endpoint criteria (Ohmit et al., 2006; Nichol et al., 2007;
Jackson et al., 2010). Rise in circulating antibody-secreting cells
(ASC) against the vaccine occurs within a week of immunization,
concurrently with rise in HAI (which persists for weeks whereas
ASC responses subsequently decline; Halliley et al., 2010). About
40% of the ASC against seasonal influenza vaccine are against
HA, 20% of which are HAI-competent (Wrammert et al., 2008).
Given their relative specificity to the immunogen (Lee et al., 2011),
these ASC responses are thus a very useful tool to measure vac-
cine immunogenicity without confounding effects of pre-existing
antiviral serum antibody titers.

Because HA amino-acid sequences continue to drift (Han and
Marasco, 2011), seasonal inactivated influenza vaccine is refor-
mulated each year in an attempt to match the virus strains that
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are predicted to circulate (Gerdil, 2003; Mossad, 2007, 2008;
Tosh et al., 2010). Because H1 and H3 influenza A viruses have
been co-circulating together with influenza B since 1977, the cur-
rent seasonal inactivated influenza vaccine consists of one H1N1
strain, one H3N2 strain, and one influenza B strain (Gerdil, 2003;
Mossad, 2007, 2008; Tosh et al., 2010). This combination is referred
to as the trivalent-inactivated vaccine, TIV. Because circulating
H2N2 was replaced by H3N2 influenza in 1968, H2 strains are
no longer included in annual vaccinations. Thus, HAI against
H2N2 is highest in people between 61 and 70 years of age, and
is very rare in people under 40 (as of 2011; Nabel et al., 2011).
However, given the re-emergence of swine H1N1 as a de novo
pandemic despite existing human H1N1 in circulation, concern
has been raised that a similar re-emergence could occur with
H2 (Nabel et al., 2011). Whether such a threat warrants pre-
emptive H2N2 vaccinations is currently debated (Nabel et al.,
2011). Such measures for any of the remaining HAs may have
a high cost-to-benefit ratio, because they cannot be predicted with
certainty.

In addition to limited cross-reactivity, HAI-competent anti-
bodies are efficient at selecting escape mutants in vitro (Tsuchiya
et al., 2001). Furthermore, serial passage of influenza virus in
homologously vaccinated mice promotes the recovery of prog-
eny viruses with mutated HA globular head sequences (Hensley
et al., 2009). Such escape mutants are resistant to in vitro HAI
and neutralization with polyclonal antibody, strongly correlating
with increased host-cell binding capacity of the mutant viruses
(Hensley et al., 2009). These mutant viruses are rapidly selected
for in co-infections with the parental wild-type virus strain (Hens-
ley et al., 2009). Therefore, despite the efficacy of anti-globular
head antibodies, HAI-resistant viruses are efficiently selected by
matched influenza vaccines and the antibodies that they induce.

ANTIBODIES AGAINST HA STALK DOMAIN
As discussed above, HAI-competent neutralizing antibodies are
highly efficient at preventing and clearing influenza virus infec-
tion, but also provide a selective pressure for viral immune eva-
sion. Thus, cross-protection against variant viral serotypes would

require the immune system to recognize more conserved epitopes,
which tend to be less accessible than the HA globular head. Such
epitopes can be found in the membrane-proximal stalk region
of HA (Han and Marasco, 2011; Figure 1B; Table 1). Anti-stalk
antibodies lack HAI activity and do not inhibit virion binding to
mammalian host cells, but nonetheless have neutralization activ-
ity in sensitive assays using HA-expressing pseudoviruses, and also
passively protect mice from lethal challenge in vivo (Okuno et al.,
1994; Throsby et al., 2008; Sui et al., 2009). Structural model-
ing suggests that these antibodies bind a hydrophobic patch in
the stalk region helical bundle of the protein’s tertiary struc-
ture (Throsby et al., 2008; Ekiert et al., 2009; Sui et al., 2009).
Binding of cell surface HA by anti-stalk antibodies is sensitive
to low pH and to reducing agents (Throsby et al., 2008), indicat-
ing conformation-sensitive recognition of the molecule. Anti-stalk
antibody binding does not change HA trimer structure, and actu-
ally prevents pH-induced “post-fusion-like” conformation change
(Ekiert et al., 2009). These observations suggest that the antiviral
mechanism of anti-stalk antibodies involves inducing conforma-
tional changes that interfere with HA-mediated virus–host-cell
fusion (Figure 2). This suggestion is supported by a cell culture-
based syncytia-forming assay (Sui et al., 2009). However, a recently
described anti-HA stalk antibody has been shown to have reduced
in vivo efficacy if the constant region is mutated to eliminate com-
plement binding, and is nearly (but not completely) eliminated
if it cannot bind Fc receptors (Corti et al., 2011). To what degree
these different mechanisms are responsible for the in vivo antivi-
ral activity of different clones of these antibodies remains to be
determined. Understanding these mechanisms will be useful in
determining what antibody effector subclasses will be most useful
to engineer for passively transferred antibodies and to induce with
selected adjuvants in human vaccinations. Comparable in vivo
efficacy and in vitro function have also been described for a mon-
oclonal antibody recognizing a conserved epitope in the underside
of the HA globular head (Oh et al., 2010).

As would be expected from antigenic sequence conservation,
anti-stalk antibodies initially generated against H5 react with and
show in vitro activity against other phylogenetic group 1 HAs,

Table 1 | HA stalk-reactive antibodies that have been structurally analyzed.

Ab clone Source Strain reactivity Epitope location* Ab chains used V genes HCDRs used Reference

FI6 Sequence-optimized from

human plasma cell cultures

Both group 1 and

group 2

Fusion peptide and

A helix**

Both HC and LC VH3-30,

Vκ4-1

3 only Corti et al. (2011)

F10 Phage-display library

selected with H5

Group 1 only A helix** Only HC VH1-69 1, 2, and 3 Sui et al. (2009),

Corti et al. (2011)

CR6261 Human IgM

memory-phenotype B cell

phage-display library

selected with H5

Group 1 only A helix Only HC VH1-69 1, 2, and 3 Ekiert et al. (2009),

Throsby et al. (2008)

CR8020 Immortalized human

memory-phenotype B cells

selected with fluorescently

labeled H3

Group 2 only Base β sheet and

fusion peptide

Both HC and LC VH1-18,

Vκ3-20

1, 2, and 3 Ekiert et al. (2011)

∗See Figure 1B.∗∗FI6 and F10 cross-compete.

Ab, antibody; HC, antibody heavy chain; LC, antibody light chain; HCDRs, complementary-determining regions of the antibody heavy chain.
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including H1, H2, H6, H8, and H9 (Throsby et al., 2008; Ekiert
et al., 2009; Sui et al., 2009; Corti et al., 2010; Steel et al., 2010; Wei
et al., 2010). However, such cross-reactivity is typically limited to
group 1 HAs, as these antibodies poorly react or function against
the group 2 proteins H3, H4, or H7 (Throsby et al., 2008; Ekiert
et al., 2009; Sui et al., 2009; Corti et al., 2010; Steel et al., 2010; Wei
et al., 2010). Similarly, anti-stalk antibodies injected in vivo gener-
ated against H5 trimers protect mice from lethal doses of group 1,
but not group 2 viruses (Okuno et al., 1994; Throsby et al., 2008;
Sui et al., 2009; Wrammert et al., 2011). Reciprocally, another anti-
body clone has been described that can function effectively against
group 2, but not group 1 viruses (Ekiert et al., 2011). The anti-
group 2 antibody binds the HA stalk closer to the viral envelope
compared with the epitope bound by group 1-reactive antibodies
(Figure 1B; Table 1; Ekiert et al., 2011). Additional clones have
been identified that can effectively function against both group 1
and group 2 viruses (Corti et al.,2011). Some intriguing differences
between the pan-reactive clones and the group-restricted clones
include the derivation of the latter from CD138+ plasma cells
as opposed to IgM memory-phenotype B cell sequences, as well
as a more restricted use of complementary-determining region
(Table 1). These differences possibly suggest distinct induction
pathways of pan-specific and group-specific responses. The cost-
benefit relationship of determining how to confidently induce one
pan-specific response with monovalent vaccination versus devel-
oping bivalent vaccines to induce a combined response to Group
1 and Group 2 viruses remains to be determined.

The characterization of stalk-reactive antibodies is a promising
advance for improving cross-protective human vaccine develop-
ment. To fully take advantage of this benefit, it is important
to understand how such antibodies can be induced. Interest-
ingly, cross-reactive anti-HA stalk monoclonal antibodies have
been generated from the acute response to 2009 H1N1 pandemic
virus and also from healthy subjects vaccinated with inactivated
virus (Corti et al., 2010, 2011; Sui et al., 2011; Wrammert et al.,
2011). Whereas these approaches used cell and molecular biol-
ogy techniques to isolate and express these antibody specificities,
it is unknown how to induce high-titer anti-HA stalk antibody
in humans. Anti-HA stalk antibodies can be induced in mice by
priming with HA-encoding DNA followed by seasonal TIV boost
(Wei et al., 2010). This strategy has the advantage of using material
(TIV) already approved for human use. Anti-HA stalk antibody
can also be induced by immunizing mice with virus-like particles
containing a “headless” HA protein lacking the globular domain
(Steel et al., 2010). In both of these approaches, protection by
active immunization and by passive serum transfer is restricted to
viruses whose HAs are in the same phylogenetic group as that of the
immunogen (Steel et al., 2010; Wei et al., 2010). However, if mice
are instead vaccinated with a construct of only the long α helix of
the H3 stalk (strain A/HK/68 HA amino acids 76–130 fused with
the carrier protein, keyhole limpet hemocyanin), improved mouse
survival and reduced viral load is observed for both group 2 and
for some group 1 viruses (Wang et al., 2010). Although this protec-
tion is less robust in the opposite group, this result indicates that
a more cross-protective epitope(s) is contained within the long
α helix that is/are immunogenically obscured by the remainder
of the stalk domain. This critical finding will likely help advance
development of human vaccines to induce such antibodies.

Despite the promising cross-protective potential demonstrated
for anti-HA stalk antibodies, such antibody can select virus escape
mutants in vitro after several passages (Tsuchiya et al., 2001;
Throsby et al., 2008). Such viral escape mutants are character-
ized by replacements of lysine 40 to either arginine or glutamine,
as well as threonine 273 replaced with lysine (Tsuchiya et al., 2001).
However, HAI-competent neutralizing antibody selects mutant
viruses at a higher rate than non-HAI neutralizing antibody when
compared side-by-side (Tsuchiya et al., 2001). Thus, at least in
the shorter term, anti-stalk antibodies are more cross-protective
with less potential for promoting immune evasion compared with
HAI-competent antibodies. These observations strongly suggest
that advances in vaccine development would benefit from shift-
ing focus from HAI-dependent to HAI-independent antibody
induction. Notably, homosubtypic-immune serum in which HAI
antibodies predominate, can transfer immune protection from
death in as little as 10 μl per recipient mouse (Brown et al., 2006),
whereas the anti-stalk-immune serum has been tested at 200 μl
(Wang et al., 2010). Careful side-by-side comparisons of puri-
fied antibody will need to be performed to determine whether or
not anti-HA stalk antibodies have particular quantitative advan-
tages over those against highly conserved proteins, discussed in
subsequent sections.

ANTIBODY AGAINST NEURAMINIDASE
Neuraminidase (NA) is the second major influenza transmem-
brane glycoprotein, which exists as a homotetramer in the viral
envelope (Gamblin and Skehel, 2010). NA cleaves sialic acid from
the surface of infected cells and from newly formed viruses,
allowing new virus release while preventing virion aggregation
(Gamblin and Skehel, 2010). In vitro, anti-NA antibody does
not neutralize virus (prevent host-cell entry), but instead pre-
vents viral plaques from enlarging (Mozdzanowska et al., 1999).
Thus, antibody-mediated inhibition of NA enzymatic activity may
function to prevent new virion release (Figure 3). NA-inhibiting
serum titers correlate with lower incidence of influenza-induced
febrile illness, fewer days of virus shedding, and lower viral titers
in humans (Murphy et al., 1972). Although NA-reactive antibody
can be induced in humans after TIV immunization, this induction
is reported to occur in fewer individuals than those that experience
HAI induction with the same vaccine (Powers et al., 1996). Swine
vaccination with inactivated virus has also failed to induce NA
reactivity (Kim et al., 2006). Immunization of laboratory animals
with NA protein or DNA induces NA-inhibiting antibody titers
that correlate with reduced viral load, although such immuniza-
tion can be less effective than HA immunization (Johansson and
Kilbourne, 1993; Johansson et al., 1998; Brett and Johansson, 2005;
Nayak et al., 2010). Similarly, passive transfer of anti-NA mono-
clonal antibody into mice can reduce viral load upon challenge
infection, but the clones tested thus far appear to be less effective
than anti-HA or anti-M2 (matrix 2) antibody (discussed below;
Treanor et al., 1990; Mozdzanowska et al., 1999; Sandbulte et al.,
2007). Reports differ on how well NA vaccination can cross-protect
laboratory animals against NA-heterologous virus of the same sub-
type as the vaccine (Johansson et al., 1998; Brett and Johansson,
2005; Sandbulte et al., 2007). However, whole virus vaccination of
mice does not induce in vivo selection of NA mutants, as is the
case for HA (Hensley et al., 2009). Nonetheless, in the context of
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FIGURE 3 | Influenza virus release and possible mechanisms for

antibodies against NA and M2e. Infected host cells package eight
ribonucleoprotein genome segments into viral buds formed by M1 capsid
monomers (gray diamonds) and host plasma membrane containing HA,
NA, and M2 (A). M2 catalyzes membrane fusion to pinch-off newly budded
virions, which initially remain tethered to sialic acid on the host-cell surface
(B). NA enzymatic activity cleaves the interactions of tethered HA (not
depicted) and NA with sialic acid, effectively releasing the new virions (C).
Antibodies against M2e may interfere with the pinching-off stage of viral
budding (D), whereas antibodies against NA may prevent final release of
the virion (E). See Figure 2 for symbol legend. Not drawn to scale.

other options for antibody reactivities against influenza virus, the
relative efficacy and immunogenicity of anti-NA antibody have
prompted little sustained interest by vaccinologists.

FUNCTIONAL NON-NEUTRALIZING ANTIBODIES AGAINST
CONSERVED ANTIGENS
MATRIX 2 EXTERNAL DOMAIN
Matrix 2 (M2) is a third transmembrane protein expressed in
the influenza A virus envelope (Lamb et al., 1985; Jegerlehner
et al., 2004; Gabbard et al., 2009; De Filette et al., 2011; Ross-
man and Lamb, 2011). M2 homotetramers form a proton channel
that participates in virus budding by orchestrating membrane
pinching-off into enveloped virions (Rossman and Lamb, 2011).
In vitro, anti-M2 antibodies prevent virus release into culture
supernatant and also reduce viral plaque size without affecting
plaque number (Mozdzanowska et al., 1999; Gabbard et al., 2009;
Nayak et al., 2010). Thus, like anti-NA antibodies, anti-M2 anti-
bodies may restrict viral propagation by preventing new virion
release (Figure 3). In vivo, anti-M2 antibody can reduce mouse
lung viral load and rescue survival after virus challenge (Treanor
et al., 1990; Mozdzanowska et al., 1999; Jegerlehner et al., 2004;
Ernst et al., 2006; Tompkins et al., 2007; El Bakkouri et al., 2011).
This protective effect does not require lymphocytes to function
downstream of the antibody (Jegerlehner et al., 2004; Zharikova
et al., 2005), but does require activating Fc receptors as well as
clodronate-sensitive cells (El Bakkouri et al., 2011), suggesting
macrophage involvement in the antiviral mechanism. In fact, Fc

receptor expression on alveolar macrophages is sufficient to medi-
ate anti-M2 antibody-mediated protection (El Bakkouri et al.,
2011). Thus, whether the mechanism suggested by in vitro data
in the absence of macrophages (Figure 3) is simply not responsi-
ble for in vivo efficacy or requires cooperation with Fc receptors is
unknown.

In mice, respiratory infection with live influenza A virus (Feng
et al., 2006; Rangel-Moreno et al., 2008) or vaccination with inac-
tivated virus (Jegerlehner et al., 2004) induces little, if any, anti-M2
serum antibody. Such poor responses may result from the poorly
exposed external domain (M2e), which is only 23 amino acids
on the virus’ exterior. Nonetheless, protective titers of anti-M2e
antibody correlating with reduced viral load and improved post-
infection survival can be induced by immunizing animals with
plasmid and viral vectors encoding M2 (Epstein et al., 2000, 2005;
Tompkins et al., 2007; Lo et al., 2008; Misplon et al., 2010; Nayak
et al., 2010) or by immunizing with M2e peptide expressed as
a chimeric molecule with larger proteins (Neirynck et al., 1999;
Jegerlehner et al., 2004; Ernst et al., 2006; De Filette et al., 2011).
Such protein fusions are poorly immunogenic and poorly effec-
tive if only the N-terminal nine amino acids of M2e are used
(De Filette et al., 2011), indicating that the protective epitopes are
between amino acids 10 and 23, corresponding to the sequence
proximal to the viral membrane when in situ. The immunogenic-
ity and efficacy of M2 immunization in mice has been linked to
host genetic factors, including major histocompatibility loci (Mis-
plon et al., 2010). Thus, careful consideration needs to be given
to how specific T cell help for M2e-specific antibodies could be
induced among genetically diverse human individuals.

At the amino-acid level, M2e is ∼90% identical among
influenza A strains (Gabbard et al., 2009). This conservation is
likely why M2e vaccination or passive transfer of M2e-immune
antibody can protect mice from various strains of influenza
(Neirynck et al., 1999; Ernst et al., 2006; Tompkins et al., 2007).
However, a position-10 amino-acid difference between human
(proline) and avian (leucine) strains can prevent cross-protection
with the same antibodies (Tompkins et al., 2007). Additionally,
antibody-resistant mutants can be selected in vitro, which are
then resistant to the antiviral effects of these antibodies in vivo
(Zharikova et al., 2005). Such M2e-escape mutants tend to have a
proline-10 change to either histidine or leucine (Zharikova et al.,
2005; Gabbard et al., 2009). Thus, like anti-stalk antibodies, anti-
M2e antibodies are more cross-reactive and cross-protective than
anti-head HAI-competent antibodies, but are nonetheless not
completely universal.

NUCLEOPROTEIN
Influenza nucleoprotein (NP) is a histone-like polypeptide that
forms the chromatin structure of the virus’ RNA genome (Portela
and Digard, 2002; Hutchinson et al., 2010). In infected host cells,
NP also participates in viral RNA synthesis and ribonucleopro-
tein complex nuclear translocation (Portela and Digard, 2002;
Hutchinson et al., 2010). It is thus not immediately apparent that
antibody against such a protein would be able to find its cognate
antigen during an infection in order to stimulate putative antiviral
reactions, the nature of which, would be even less obvious. How-
ever, as early as 2 days after mouse infection with influenza virus,
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cell-free NP protein is readily detectable in the airways (LaMere
et al., 2011a). Whether such release of this protein is associated
with death of infected cells or some other mechanism linked to
the virus replication cycle is unknown. Similarly, the role, if any, of
plasma membrane-associated NP detected on cultured cells (Vire-
lizier et al., 1977; Yewdell et al., 1981) in virus replication is also
unknown.

NP antigen has long been an attractive candidate for a uni-
versal influenza vaccine, due to its extensive conservation among
influenza A strains (Shu et al., 1993; Portela and Digard, 2002).
In fact, NP immunization promotes viral clearance and prevents
mortality in mice after challenge with various viral serotypes
(Wraith et al., 1987; Ulmer et al., 1993, 1998; Fu et al., 1999;
Epstein et al., 2000, 2005). NP-immune protection correlates with
the induction of NP-specific CD8 T cell responses (Wraith et al.,
1987; Ulmer et al., 1993, 1998; Fu et al., 1999; Epstein et al.,
2000, 2005; Lo et al., 2008), and T cell depletion can abrogate
NP-immune protection (Ulmer et al., 1998; Epstein et al., 2000).
This evidence was initially interpreted to mean that NP-immune
protection in a universal human vaccine should be solely based
on inducing the appropriate T lymphocyte responses, and that
anti-NP antibody would have little, if any, role in this process.
Nonetheless, NP-immune antibody can promote virus clearance
and survival in mice (Carragher et al., 2008; LaMere et al.,
2011a,b), and may explain the need for B cells and antibody in
subtype cross-protection induced by previous infection with HN-
disparate strains (heterosubtypic immunity; Nguyen et al., 2007;
Rangel-Moreno et al., 2008; LaMere et al., 2011a).

Compared with antibodies against virion envelope proteins, the
antiviral mechanisms of anti-NP antibody are much less appar-
ent. As expected, anti-NP antibody does not neutralize virus or
substantially change viral plaques in vitro (Mozdzanowska et al.,
1999; Gabbard et al., 2009). However, cross-protective influenza-
immune non-neutralizing antibody can cooperate with cultured
macrophages to inhibit virus replication (Sambhara et al., 2001),
although it is unclear if this effect is due to anti-NP anti-
body. Cultured influenza-infected cells with NP exposed on the
plasma membrane can be lysed by complement in the presence
of anti-NP antibody (Yewdell et al., 1981). Whether comple-
ment or other non-neutralizing mechanisms such as antibody-
dependent cell-mediated cytotoxicity (Ahmad et al., 2001; Forthal
et al., 2001; Gomez-Roman et al., 2005; Hessell et al., 2007)
or antibody-mediated cytokine induction (Palmer et al., 2000;
Chehadeh et al., 2001; Hober et al., 2001; Stratov et al., 2008) con-
tribute to the in vivo activity of anti-NP antibody is unknown.
At least some of the in vivo antiviral activity of this anti-
body against lethal, but not sub-lethal influenza infection has
been attributed to type I interferon receptor signaling (LaMere
et al., 2011a). Whether the source of the interferon is plas-
macytoid dendritic cells, natural killer cells, or some other cell
type remains to be determined. In vivo, the antiviral activity of
anti-NP antibody is partially dependent on activating Fc recep-
tors expressed on hematopoietic cells (LaMere et al., 2011a).
Thus, the antiviral reactions of this antibody may begin with
the formation of immune complexes once NP is released from
infected cells (Figure 4). Such immune complexes would then
be capable of engaging Fc receptors on one or more effector

FIGURE 4 | Proposed mechanisms for antibody against influenza

nucleoprotein. Virus-infected cells (typically epithelia) release NP protein
(A), which would then be available to NP-specific antibody. Immune
complexes formed by antigen and antibody (B) could thus engage Fc
receptors on leukocytes (C,F) triggering antiviral reactions. These reactions
may include enhanced antigen presentation by dendritic cells or other
antigen-presenting cells (C,D), which could then in turn enhance antiviral T
cell responses capable of eliminating virally infected epithelia (E).
Alternatively or additionally, Fc receptor engagement on macrophages or
other leukocytes (F) may execute antiviral reactions directly (G) or more
indirectly by enhancing the antiviral T cell response at various levels (H).
Anti-NP antibody engagement of plasma membrane-associated NP could
also trigger complement-mediated lysis of infected cells (I).

leukocytes, that would then trigger further reactions to elimi-
nate virions and/or virally infected cells. Whether the candidate
leukocytes are macrophages or some other cell type remains to be
determined.

When immune complexes consisting of antibody with cognate
antigen (including anti-NP with NP protein) bind to Fc recep-
tors on dendritic cells, they can enhance dendritic cell activation
and antigen-presenting activity in vitro (Regnault et al., 1999;
Rodriguez et al., 1999; Machy et al., 2000; Dhodapkar et al., 2002;
Bergtold et al., 2005; Groh et al., 2005; Harbers et al., 2007; Zheng
et al., 2007). Furthermore, anti-NP antibody can enhance NP-
specific T cell responses when injected into mice, detected as either
cytotoxic T cell activity (Zheng et al., 2007) or by flow cytom-
etry as MHC–NP peptide-binding CD8+ T cells (LaMere et al.,
2011a). Notably, when NP-immune antibody is transferred into T
cell-deficient mice or into mice depleted of CD8+ cells, its antivi-
ral activity is reduced or abrogated (Mozdzanowska et al., 1999;
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Zharikova et al., 2005; Carragher et al., 2008; LaMere et al., 2011a).
Thus, the antiviral mechanism of this antibody involves both Fc
receptors and T cells, suggesting that immune complex stimula-
tion of antigen presentation through these receptors may enhance
cytotoxic T cell responses that can eliminate virus (Figure 4).
In support of this mechanism, optimal heterosubtypic immunity
correlates with both NP-specific CD8 T cell responses as well as
anti-NP IgG responses (Rangel-Moreno et al., 2008; LaMere et al.,
2011a). Importantly, antiviral mechanisms triggered by immune
complex formation or by recognition of cell-bound NP would not
require direct antibody engagement with replication-competent
virus. Thus, unlike the antibodies described above, anti-NP anti-
body would be highly unlikely to provide a selective pressure for
viral immune evasion.

Experimental infection of laboratory animals with influenza
virus induces an NP-reactive serum IgG response within 2 weeks
(Epstein et al., 1997; Kim et al., 2006; Rangel-Moreno et al.,
2008; LaMere et al., 2011a,b). NP-reactive antibody can also be
detected in most human subjects (Cretescu et al., 1978; Sukeno
et al., 1979; Yamane et al., 1981; Ennis et al., 1982; Khurana et al.,
2009; LaMere et al., 2011b), likely due to some prior exposure
to influenza virus. In fact, the early transient antibody-secreting
cell response in mice and humans during the first week of infec-
tion includes reactivity to NP (LaMere et al., 2011a; Lee et al.,
2011). Whether this response is induced by soluble NP released
during infection (LaMere et al., 2011a) or cell surface-associated
NP during infection (Yewdell et al., 1981) is unknown. It was
originally assumed that this antibody contributed little, if at all,
to accelerated clearance of subsequent exposure to HN-disparate
viruses (heterosubtypic immunity). However, mice with defec-
tive antibody production or defective B cell development have
poor heterosubtypic immunity (Nguyen et al., 2007; Rangel-
Moreno et al., 2008; LaMere et al., 2011a), which in the latter
case, can be rescued by injection with anti-NP IgG (LaMere et al.,
2011a).

Given the antiviral activity of this antibody and its contribution
to mouse heterosubtypic immunity, why then, does the human
population with anti-NP IgG remain susceptible to influenza-
mediated illness? On one hand, the antiviral mechanisms func-
tional in mice may simply not be present or sufficient in humans.
Alternatively, the antiviral activity may go undetected, as no studies
to-date have measured anti-NP antibody as a function of infection
frequency, viral shedding, or signs of influenza-like illness. It may
also be the case that the levels of this antibody are simply too low
in some individuals. In mice, injection of purified anti-NP IgG
requires a final equilibrated serum titer of 105 to reduce viral load
(LaMere et al., 2011a), but serum titers in humans tend to be at
least 10-fold lower (LaMere et al., 2011b). The relative functional
equivalence of these values among species is unknown, but the
results nonetheless suggest that high titers of this antibody are
necessary for antiviral efficacy.

An additional factor in the efficacy of anti-NP antibody may
be the availability of antiviral CD8 T cells with which these anti-
bodies need to cooperate (possibly as a direct part of the anti-
body’s mechanism; Mozdzanowska et al., 1999; Zharikova et al.,
2005; Carragher et al., 2008; LaMere et al., 2011a). Influenza-
specific T cell immunity wanes significantly over time (McMichael

et al., 1983; Liang et al., 1994). Thus, the efficacy of anti-
NP antibody may vary in different individuals depending on
their serum titer, together with how recent the previous infec-
tion was, in addition to other unidentified factors. In this case,
vaccination strategies to boost existing anti-NP antibody titers
may extend or rejuvenate poor long-lived heterosubtypic immu-
nity. In fact, boosting influenza H3N2 virus-immune mice with
purified NP protein can accelerate viral clearance after subse-
quent H1N1 challenge, correlating with increased titers of anti-
NP IgG (LaMere et al., 2011b). This effect can be recapitulated
by passive transfer of the antibody prior to challenge (LaMere
et al., 2011b). Furthermore, anti-NP IgG can rescue diminished
mouse heterosubtypic immunity up to 1.5 years after the primary
infection (LaMere et al., 2011b). Thus, vaccination strategies to
boost existing levels of anti-NP antibody may be a very feasi-
ble approach to inducing long-lived resistance to all influenza A
strains.

Interestingly, despite abundant NP content in seasonal TIV,
annual immunizations typically do not boost existing anti-NP
antibody levels in humans (Ennis et al., 1982; LaMere et al., 2011b).
Unadjuvanted TIV, as given to humans, also poorly induces anti-
NP antibody in influenza-naïve mice (LaMere et al., 2011b). Thus,
vaccine strategies to boost this effective antiviral immunoglob-
ulin would need to be in a different form from the current
vaccines, such as purified protein. It is unknown if live, cold-
adapted influenza vaccine (FluMist®) induces serum or mucosal
antibody against NP in humans. However, intranasal vaccina-
tion with cold-adapted virus induces anti-NP (but not anti-M2e)
antibody in mice, correlating with protection against lethal het-
erosubtypic challenge (Lo et al., 2008; Price et al., 2009; Soboleski
et al., 2011). Whether such cross-protective effects correlate with
anti-NP antibody levels in human FluMist® recipients remains to
be determined.

Overall, the evidence from mice indicates that antibodies
against the conserved antigens M2e and NP are highly effective
against multiple influenza A strains. Because the development and
use of influenza vaccines were, for many decades, focused on anti-
bodies against the ever-changing external viral antigens, seriously
shifting our efforts toward greater cross-protection by human vac-
cination focused on these more conserved antigens would be a
revolutionary advance.

ANTIBODIES REACTIVE WITH OTHER INFLUENZA VIRUS
ANTIGENS
As discussed above, strong experimental data indicate that HAI-
independent antibodies against HA stalk domain,against M2e,and
against NP have clear advantages over HAI-competent antibod-
ies in controlling influenza infections because they can recognize
more viral strains and are less likely to promote high-rate immune
evasion (Table 2). It has additionally been argued that sterilizing
neutralization mechanisms that rapidly eliminate challenge virus
before the adaptive immune system can respond effectively pre-
vent the induction of heterosubtypic immunity (Bodewes et al.,
2009, 2010). Thus, carefully choosing which antiviral antibodies
to induce may allow optimization of the most effective long-term
cross-protective responses. With this concept in-mind, develop-
ing strategies to induce such antibodies should consider whether
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Table 2 | Comparison of antiviral antibodies showing efficacy against influenza virus.

Target

antigen

In vitro

mechanism

In vivo

requirements

Immunogenicity Advantages Disadvantages

HA head Prevent receptor

binding

T and B

cell-independent

Good with infection, inactivated

virus, or DNA/viral vectors

True barrier of infection Poor cross-protection; strong

selection for immune evasion

HA stalk Inhibit membrane

fusion

Unknown Good with (pandemic) infection,

DNA prime with TIV boost, or

long α helix fused to KLH

Cross-protection among

HA subtypes within a

group

Less protective between HA

groups; selection possible

NA Prevent virion

release

T and B

cell-independent

Good with infection, inactivated

virus, or DNA/viral vectors

Prevents early virus

spread

Selection possible (?); appear

to be less efficacious than

other antibodies

M2e Prevent virion

release

T and B

cell-independent;

needs FcR; can

function through FcR

on Mφ

Poor with infection or

inactivated virus; Good with

protein fusion or DNA/viral

vectors

Cross-protective among

human and mouse

viruses

Some selection possible;

alone works poorly against H5

avian viruses if not matched at

aa P10

NP Stimulate DC

activation; stimulate

complement-

mediated

cytolysis

Optimal activity

requires FcR on

leukocytes and T

cells/CD8+ cells

Good with infection, purified

protein, or DNA/viral vectors;

poor with inactivated virus

Reacts with all influenza

A sequences;

mechanism unlikely

requires association

with virion (unlikely to

promote selection)

High titers of antibody needed

NS1 Unknown Unknown Good with infection; poor with

protein immunization

Not associated with

virion (unlikely to

promote selection)

Moderate conservation of Ag

among viral strains

FcR, Fc receptors; TIV, trivalent-inactivated influenza vaccine; KLH, keyhole limpet hemocyanin; Mφ, macrophages; Ag, antigen; DC, dendritic cell.

Table 3 | Antibodies with unknown efficacy against influenza virus.

Target antigen Reported in serum samples

M1 Mouse infection; swine infection; H5N1-convalescent

human serum; rare in human volunteers experimentally

infected

PB1 H5N1-convalescent human serum

PB2 H5N1-convalescent human serum

PB1-F2 H5N1-convalescent human serum; infected mice;

seasonal-convalescent human serum

PA H5N1-convalescent human serum

NS2 H5N1-convalescent human serum; swine infection

additional influenza-reactive antibodies (Table 3) could make
further contributions.

Influenza matrix 1 (M1) protein, which constitutes the
influenza viral coat, is >90% conserved at the amino-acid level
among examined sequences (Lamb and Lai, 1981; Ito et al.,
1991; Berthoud et al., 2011). Thus, antibody reactions against M1
would be expected to recognize multiple viral serotypes. Like anti-
NP, anti-M1 antibody is induced by influenza infection of mice
(Johansson et al., 1987) and swine (Kim et al., 2006). In one study,
M1-specific antibody has been detected in convalescent serum
from 5 of 5 H5N1 survivors (Khurana et al., 2009). However,
an experimental human infection-induced a rise in anti-M1 in
only ∼4% of volunteers, few of whom began with anti-M1 anti-
body; by contrast, anti-NP antibody was much more common

at baseline, and 14.2% of volunteers had a rise in anti-NP after
infection (Cretescu et al., 1978). Whether the less common induc-
tion of anti-M1 results from less or differential exposure of the
antigen to B cells during infection is unknown. Unlike NP (Vire-
lizier et al., 1977; Yewdell et al., 1981), M1 has not been detected on
the surface of infected cells in culture (Mozdzanowska et al., 1999).
It is unknown whether anti-M1 antibody is capable of antiviral
activity. One tested monoclonal antibody against M1 neither neu-
tralized virus in vitro nor cleared virus from infected scid mice
(Mozdzanowska et al., 1999). However, it cannot be excluded that
like anti-NP, this antibody could have antiviral activity at higher
titers and/or in the presence of T lymphocytes.

The non-structural 1 (NS1) influenza gene product is expressed
in infected cells, but not in virions (Hale et al., 2008). NS1 is a mul-
tifunctional virulence factor that disrupts the interferon response
to virus, in addition to other mechanisms (Hale et al., 2008). Anti-
body against this protein is induced after influenza infection in
mice (LaMere et al., 2011a,b), swine (Kim et al., 2006), and human
(Khurana et al., 2009). Although induction of anti-NS1 antibody
through active vaccination of influenza-naïve mice had little effect
on viral clearance in our hands (unpublished), boosting existing
levels of antibody induced by previous infection correlated with an
early increase in viral load after challenge infection (LaMere et al.,
2011a). However, preliminary results suggest that such boosting
can reduce viral titers at 1 week, and that this effect can be trans-
ferred by immune serum (unpublished). The amino-acid identity
of NS1 among most human influenza strains is reported to be
greater than 93%, although these differ from avian strains by up to
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40% (Hale et al., 2008; Kuo et al., 2010). Thus, the antiviral capa-
bilities of anti-NS1 antibodies might be limited in instances of
zoonotic transmission of the latter viruses. As a non-virion pro-
tein, however, any antiviral reactions of these antibodies would
be highly unlikely to select for escape-mutant viruses. Antibodies
against the NS1 splice variant, NS2, are also induced after influenza
infection (Kim et al., 2006; Khurana et al., 2009); however, their
antiviral potential is unknown.

Antibody against the influenza RNA polymerase subunits PA,
PB1, PB2, and against the reading frame-shift product of the
PB1 RNA genome segment called PB1-F2 have been detected
in humans and mice known or likely to have been exposed
to influenza infection (Khurana et al., 2009; Krejnusova et al.,
2009). To our knowledge, antiviral activity of such antibodies has
not been tested. The putative efficacy of anti-PA antibody could
depend on whether it is capable of inducing corresponding specific
T cell responses, as is the case with anti-NP antibody. Unlike virus-
reducing NP-specific T cells, PA-specific T cells can increase viral
load in virus-challenged mice (Crowe et al., 2005, 2006). Thus,
antibodies against PA may result in proviral conditions. A T cell-
independent antiviral role for any polymerase-specific antibodies
cannot be excluded, however.

Overall, newly appreciated antiviral activities of antibodies
against HA stalk, M2e, and NP (Table 2), possibly in addition to
other less-explored reactivities (Table 3) provide diverse opportu-
nities for developing more cross-protective, and conceivably uni-
versal, influenza vaccines. Whether such strategies will be optimal
alone, in combination with HAI antibodies, or with each other
remains to be determined. Vaccination with a combination of M1
and NP DNA in a modified vaccinia vector was recently demon-
strated to be safe and to induce antigen-specific T cell responses
in a human phase-I trial (Berthoud et al., 2011). Follow-up tri-
als should include an analysis of anti-M1 and anti-NP antibody
in the context of virus attack rate, viral load, and influenza-like
illness in vaccinated compared with control subjects. Testing dif-
ferent formulations to optimize long-lived serum antibody against
these antigens, such as whole protein immunization, can also be
compared in the future.

One important consideration for formulation and scheduling
approaches to induce multiple antibodies against influenza virus
is the fact that one antigen may influence the immunogenicity
of another. In chickens, HAI and neutralizing activity induced by
HA DNA vaccination with a Newcastle disease virus vector can be

inhibited by co-vaccination with an M2-encoding vector (Nayak
et al., 2010). Reciprocally, NA and/or HA co-immunization can
inhibit chicken antibody responses to M2 as well (Nayak et al.,
2010). These effects on antibody levels correlate with the relative
efficacy of the respective vaccinations against highly pathogenic
influenza viral load and host animal survival (Nayak et al., 2010).
It is unknown if the inhibitory effects of M2 with HA and NA
immunogenicity are due to responses to the antigens per se, or due
to these vectors influencing each others’ gene product expression.

Seasonal TIV (consisting of proteins from whole, inactivated,
detergent-split virus) induces little anti-NP antibody in mice; how-
ever, TIV together with purified NP protein at a low dose that does
not induce anti-NP antibody on its own, induces a strong anti-NP
response (LaMere et al., 2011b). By contrast, anti-NP IgG titers
induced by high-dose NP protein can be suppressed by high doses
of TIV (LaMere et al., 2011b). Thus, the stoichiometry of NP with
other TIV components can influence the antibody response to
NP protein. It is unknown which TIV component(s) confer this
effect. Such considerations, as well as further animal and human
trials will be needed to develop optimal immunogenicity protocols
for protective influenza antigens.

Although influenza was initially named based on an erro-
neously concluded causality (1989; Gerdil, 2003), this disease
clearly “influences” human civilization in profound ways (Li and
Leader, 2007; Molinari et al., 2007; Nichol et al., 2009; Nichol,
2011). In turn, we have put enormous effort into countering
influenza virus with an immune mechanism that fails to keep
pace with, and can even drive viral escape. The recent influenza
pandemic of 2009, together with abundant animal reservoirs of
new viral serotypes, some of which are highly pathogenic, illus-
trate a pressing need to change the course of our approach. To this
end, exploitable mechanisms that are more cross-protective and
are much less likely to promote viral escape can be mediated by
antibodies against multiple viral antigens. Clearly, we have a great
capacity to “influence” our own fate by applying the experimental
findings about these antibodies to practical human use.
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