
entropy

Article

Two-Party Privacy-Preserving Set Intersection
with FHE

Yunlu Cai 1 , Chunming Tang 1,2,* and Qiuxia Xu 3

1 School of Mathematics and Information Science, Guangzhou University, Guangzhou 510006, China;
caiyunlu@gzhu.edu.cn

2 State Key Laboratory of Cryptology, P.O. Box 5159, Beijing 100878, China
3 School of Mathematics and Systems Science, Guangdong Polytechnic Normal University,

Guangzhou 510665, China; xia_mi0622@126.com
* Correspondence: ctang@gzhu.edu.cn

Received: 28 October 2020; Accepted: 22 November 2020; Published: 25 November 2020 ����������
�������

Abstract: A two-party private set intersection allows two parties, the client and the server,
to compute an intersection over their private sets, without revealing any information beyond
the intersecting elements. We present a novel private set intersection protocol based on Shuhong
Gao’s fully homomorphic encryption scheme and prove the security of the protocol in the
semi-honest model. We also present a variant of the protocol which is a completely novel
construction for computing the intersection based on Bloom filter and fully homomorphic encryption,
and the protocol’s complexity is independent of the set size of the client. The security of the protocols
relies on the learning with errors and ring learning with error problems. Furthermore, in the cloud
with malicious adversaries, the computation of the private set intersection can be outsourced to the
cloud service provider without revealing any private information.

Keywords: private set intersection; privacy-preserving; fully homomorphic encryption; secure
multiparty computation

1. Introduction

In 1978, Rivest first presented the idea of fully homomorphic encryption (FHE) [1].
Gentry constructed the first specific FHE scheme in 2009 [2]. Since then, dramatic progress in FHE
is made by Gentry and many other researchers around the world. The first generation is based on
an approximate GCD problem of integers and ideal lattices [2,3]; the second generation is based
on ring learning with errors (RLWE) and learning with errors (LWE) problems, and developed
several techniques, including re-linearization, key switch and modulus reduction, for decreasing
noise growth [4,5]; the third generation involves the GSW scheme, which is based on approximate
eigenvalues and RLWE [6]. Shuhong Gao’s scheme [7] is a compressed fully homomorphic encryption
scheme, denoted by SGFHE below, and this scheme has three features: (1) The cipher with private key
encryption is expanded six times and with public key encryption is 10 + log2(n), where n (a power
of 2) is the block length of the message; the computation of all ciphertexts is modulo r, where r = 16n;
and the boundary of noise size is n− 1. (2) The bootstrapping algorithm needs only a bootstrapping
key and the boundaries of the noise size of the output ciphers are still n− 1 with no failure at all. (3) the
security of Shuhong Gao’s scheme is based on the learning with errors problems and ring learning with
errors problems, and for the block length of any message n ≥ 512, it costs at least 2160 bit operations for
breaking the scheme with the current approaches. In addition, with TFHE bootstrapping [8], the LWE
cipher produced could be invalid with a probability of about 2−33 (for n = 500). That probability is
very small, and for computing many functions it is useful; however, it cannot be applied to functions

Entropy 2020, 22, 1339; doi:10.3390/e22121339 www.mdpi.com/journal/entropy

http://www.mdpi.com/journal/entropy
http://www.mdpi.com
https://orcid.org/0000-0003-4920-7523
http://dx.doi.org/10.3390/e22121339
http://www.mdpi.com/journal/entropy
https://www.mdpi.com/1099-4300/22/12/1339?type=check_update&version=3

Entropy 2020, 22, 1339 2 of 15

that require more than 233 bit operations (unless increasing n). In SGFHE, the error size of the LWE
ciphers after bootstrapping are always bound by n − 1; this feature is not available in other FHE
schemes. The total time cost for the bootstrapping procedure of the SGFHE scheme is about 130 ms,
that is, 10 times as much as TFHE.

Secure multi-party computing (SMPC) is mainly about how to compute a function safely without a
trusted third party. Secure multi-party computing was first proposed by Yao Qizhi in 1982. After being
developed by Goldreich, Micali, Wigderson et al. [9], secure multi-party computing became a very
active research field in modern cryptography. The research on MPC [10] is divided into general
schemes and specific schemes designed for certain computing scenarios; the general scheme is not as
efficient as a specific optimized scheme that is specially designed for a certain application. In practical
applications, specific schemes are more widely used [11]. Secret sharing [12], garbled circuit [13,14],
oblivious transfer [15], commitment schemes [16] and homomorphic encryption [17] are the key
pieces of technology to realize SMPC, and SMPC is of great significance in the study of secret sharing
schemes and privacy protection, where it is widely used in correlation analysis, data security queries,
trusted data exchanges, etc. [18–22].

Private preserving set intersection (PSI) computing is an important aspect in secure multi-party
computing. It not only performs well in scientific computing, but in real life many data can be
represented by sets, so it can be used in privacy protection computing to complete corresponding data
computing in the sets. The private preserving set intersection computing is the basic operation in
many applications, such as machine learning, data mining [23], secure distributed data connection [24]
and in privacy protection law enforcement, where it is especially widely used.

1.1. Related Work

Several specialized PSI protocols have been proposed in the literature which are more efficient
than using general secure computation [33]. The main methods are: based on oblivious polynomial
evaluation [25], based on an oblivious pseudo-random function [26], based on a blind signature [27],
based on homomorphic encryption [28], based on the Bloom filter [29], etc. Shen Liyan et al. [30] gave
a detailed overview of the development prospects of private preserving set intersection computing,
the protocol developed by Google scholar. Mihaela Ion et al. [11] applied private preserving set
intersection computing to advertising cooperation.

1.2. Contributions

We present three private set intersection protocols. First, we propose a novel private set
intersection protocol based on Shuhong Gao’s fully homomorphic encryption scheme and prove the
security of the protocol in the honest-but-curious model. We then present a variant of promoted
protocol. We also present a variant of the protocol which is a completely novel construction
for computing the intersection based on the Bloom filter and a fully homomorphic encryption;
this protocol’s complexity is independent of the set size of the client. The security of the protocol relies
on the learning with errors and ring learning with errors problems. Furthermore, in a cloud with
malicious adversaries, the computation of the private set intersection can be outsourced to the cloud
service provider without revealing any private information. The ciphertext extension of the protocols
is small so that the protocols have strong practicability.

The remainder of the paper is structured as follows: We next review the basic concepts and
techniques used in Section 2. In Section 3, we introduce the homomorphic operation used. We describe
the basic two-party computing protocol, the improvement protocol and the two-party computing
protocol based on the Bloom filter in Section 4. We present our conclusions in Section 5.

Entropy 2020, 22, 1339 3 of 15

2. Basic Concepts and Techniques

2.1. Notation

Let χ be an error distribution; according to the distribution χ, x ← χ is randomly chosen. For an
integer n ≥ 1, let Rn = Z[x]/(xn + 1), Rn,q = Z[x]/(xn + 1, q), where (xn + 1, q) represents the ideal of
Z[x] generated by xn + 1 and q. For any polynomial f (x) = ∑d

i=0 fi(xi) ∈ R(x), we define the ∞-norm
as || f (x)||∞ = max

0≤i≤d
| fi|.

2.2. LWE Ciphers and Modulus Reduction

Regev proposed LWE problem [31,32] over Zq. Let χ be a probabilistic distribution, and s ∈ Zn
q be

an arbitrary vector that is a secret key of any user. (a, b) is an LWE sample, where a ∈ Zn
q is selected

randomly and uniformly, b ≡ 〈s, a〉+ e (mod q), e← χ.
Let Dq = bq/4c, 1 ≤ τ ≤ Dq/2, a ← Zn

q , and compute b ≡ 〈s, a〉 + e + xDq (mod q) for
encrypting one bit, e ∈ [−τ, τ]. Let Es(x) = (a, b) ∈ Zn

q ×Zq, (a, b) is the LWE ciphertext for x ∈ {0, 1}.
Note that Dq = bq/2c in Regev’s but Dq = bq/4c in SGFHE scheme for homomorphic bit operations.

Modulus reduction can reduce the LWE ciphers of Zq to Zr where r is far less than q.

Lemma 1 ([7]). Let s, a ∈ Zn
q , e ∈ Zn

q with |e| ≤ τ, Dr = br/4c, and b ≡ 〈s, a〉+ e + xDq (mod q).
(1) Suppose τ ∈ q(n− 3)/(2r), q ≥ 4r and s ∈ {0, 1}n. b′ = brb/qe , a′ = bra/qe; then

b′ ≡
〈
s, a′

〉
+ e + xDr (mod r).

(2) Let ` =
⌈

logq
2

⌉
, q ≥ 16. Suppose that τ ≤ q(n` − 5)/(2r) with s ← Zn

q . Then there exist

s′ ∈ {0, 1}nl , a′ ∈ Zn`
r and b′ ∈ Zr, satisfying

b′ ≡ s′(a′)t + e′ + xDr (mod r),

where e′ ∈ Z, |e′| ≤ n`.

2.3. RLWE Ciphers

Lyubashevsky et al. introduced the RLWE problem to acquire more efficient encryption
schemes [33]. An RLWE sample v = (a(x), b(x)) ∈ R2

n, where a(x)← Rn,q, a(x) = ∑n−1
i=0 aixi, and

b(x) := s(x)a(x) + e(x) (mod (xn + 1, q))

for some e(x)← Rn, ||e(x)||∞ ≤ τ, τ is the bound of error.

v(−s(x), 1)t ≡ e(x) (mod (xn + 1, q)).

Let m(x) = ∑n−1
i=0 mixi, where mi ∈ {0, 1} denotes an n-bit message. The RLWE cipher of m(x)

with error size τ is
REs(m(x)) = v + m(x)Dq(0, 1) ∈ R2

n,q.

Suppose REs(m(x)) = (a(x), b(x)). We have

b(x)− s(x)a(x) ≡ m(x)Dq + e(x) (mod (xn + 1, q)),

when τ ≤ Dq/2, the message m(x) can be recovered from m(x) ≡ b(x)− s(x)a(x) (mod (xn + 1, q)).

Entropy 2020, 22, 1339 4 of 15

2.4. GSW Ciphers and External Product

2.4.1. Gadget Matrix

Suppose that B and l are positive integers so that B` ≥ q. Suppose that when g = (1, B, · · · , B`−1),
an arbitrary a ∈ Zq could be denoted by

a = a0 + a1 + · · ·+ a`−1B`−1 = (a0 + a1, · · ·+ a`−1)gt,

where ai ∈ Z has a small size. Let −B/2 ≤ ai ≤ B/2; then (a0 + a1, · · · + a`−1) is unique.
Let −2B ≤ ai ≤ 2B; the lemma as following is straightforward to prove.

Lemma 2 ([7]). Let B` ≥ q, a ∈ Z. For 0 ≤ i ≤ `− 1, choose xi ← Z, |xi| ≤ 3B/2, which is uniform,
random and independent. Suppose that

a− (x0 + x1B + · · ·+ x`−1B`−1)

≡ y0 + y1B + · · ·+ y`−1B`−1 (mod q)

where |yi| ≤ B/2. Set ai = xi + yi; then (a0, a1, · · · , a`−1) is uniform random solution to

a ≡ a0 + a1B + · · ·+ a`−1B`−1 (mod q)

with |ai| ≤ B/2.

Hence, any list of elements in Zq can be extended. That is, each polynomial a(x) ∈ Rn,q can be
denoted by

a(x) = a0(x) + a1(x)B + · · ·+ a`−1(x)B`−1

= (a0(x), a1(x), · · · , a`−1(x))gt,

where ||ai(x)||∞ ≤ 2B. A gadget matrix of (2`)× 2 is defined as

G =

(
gt 0
0 gt

)
.

Any (a(x), b(x)) ∈ R2
n,q can be denoted by

(a(x), b(x)) = u(x)G (1)

where u(x) ∈ R2`
n is selected randomly and uniformly, and ||u(x)||∞ ≤ 2B. Here G−1, only as an

operator, acts on the right of (a(x), b(x))(G is not a square matrix, so it has no inverse).

u(x) = (a(x), b(x)) / G−1

A row vector u(x) has 2` polynomials; the coefficients of the polynomials are small and at
most 2B. This can increase the dimension to decease the coefficient. By the above definition, we have
the following equation.

(v / G−1)G = v, ∀v ∈ R2
n,q

Entropy 2020, 22, 1339 5 of 15

2.4.2. External Product

Suppose that a row vector v = (a(x), b(x)) ∈ R2
n,q, and arbitrary matrices A ∈ R2`×2

n,q of 2`× 2,
define the external product of v and A as

v� A = (v / G−1)A ∈ R2
n,q;

it is a random vector; for v / G−1 is a random vector of 1× 2`. By definition, the external product
satisfies the right distributive, namely, for arbitrary two matrices A, B ∈ R(2`)×2

n,q of 2`× 2, we have

v� (A + B) ≡ (v / G−1)(A + B)

= (v / G−1)A + (v / G−1)B

= v� A + v� B (mod (xn + 1, q)).

2.4.3. GSW Ciphers

Let an n-bit secret key s(x) = ∑n−1
i=0 sixi, where si ∈ {0, 1}, RLWE sample A← R2`×2

n,q (the rows of
A are RLWE samples) and a GSW cipher for m(x) ∈ Rn is

GSWs(m(x)) = A + m(x)G ∈ R2`×2
n,q ;

according to the definition of RLWE sample

A(−s(x),−1)t ≡ w(x) (mod (xn + 1, q)),

where w(x) ∈ R2`
n , and ||w(x)|| ≤ τ; τ is the error size of GSW ciphers.

Lemma 3 ([7]). Let m0(x), m1(x) ∈ Rn be any two polynomials. For any REs(m0(x)) with error size τ and
any GSWs(m1(x)) with error size τ1, we have

REs(m0(x))� GSWs(m1(x)) = REs(m0(x)m1(x))

and REs(m0(x)m1(x)) which has an error size of at most τ||m1(x)||∞ + 4Bn`τ1.

2.5. Bloom Filter

A Bloom filter [34] is a compact data structure for probabilistic set membership testing, and can
insert and query data efficiently. The Bloom filter provides a time and space-efficient method to check
whether there is an element in the set. A Bloom filter consists of a binary vector and a set of hash
functions; bj represents the j-th bit of the Bloom filter b and all elements of the empty Bloom filter are 0.
Any Bloom filter b includes the three steps as follows:
Create(α) : Create an empty Bloom filter with α bits; the hash function {hi|0 ≤ i < β} is:

hi : {0, 1}∗ → {0, . . . , α− 1}.

Add(x) : Compute β hash values gi = hi(x) of the element x using the hash function hi(0 ≤ i < β).
Set the Bloom filter cell with subscript gi to 1.

gi = hi(x) =⇒ bgi = 1

Entropy 2020, 22, 1339 6 of 15

Test(x) : Test whether the element x is in the Bloom filter b. Compute β hash values gi = hi(x) of the
element x; if the β cells with subscript gi are 1 (bgi = 1), then return 1 (true).

Test(x) =
β−1
∧

i=0
bhi(x) =

β−1
∧

i=0
bgi (2)

The Bloom filter has a negligible false positive probability; Test(x) will return 1, although x cannot be
added to the Bloom filter. Given ω elements to be added and the expected maximum false positive
probability 2−k, the Bloom filter size α needs to satisfy:

α ≥ ωk
ln22

.

A Bloom filter is widely used in cryptography. Bellovin and Cheswick [35] and Goh [36] implemented
a securely document search using a Bloom filter. Raykov and Bellovin [37] realized a secure database
query. Qiu L and Li Y [38] realized privacy data mining and BIP-0037 put forward the application of a
Bloom filter in Bitcoin. Reference [39–41] realized the set intersection computing based on Bloom filters.

3. Homomorphic Operations

In SGFHE scheme, let any two LWE ciphers be Es(x1) and Es(x2) with x1, x2 ∈ {0, 1};
one bootstrapping can compute three bit operations Es(x1 ∧ x2), Es(x1 ∨ x2) and Es(x1 ⊕ x2);
the scheme follows the approach in Ducas et al. [42] and Chillotti [43], but does not need to perform a
key switch.

3.1. Key Generations

Let n be a power of 2, n ≥ 64. Suppose that r can be divided by 8; m = r/2, B = 35r2n,

r ≥ 16n, q ≥ nr, 1220r4n2 ≤ Q < 1225r4n2 = B2. (3)

Dr = br/4c , Dq = bq/4c , D̃Q = bQ/8c , and G =

1 0
B 0
0 1
0 B

 .

Secret key Pick s← {0, 1}n uniformly and randomly; let s(x) = ∑n−1
i=0 sixi.

Public key pk = (k0(x), k1(x)), k0(x)← Rn,q,

k1(x) ≡ k0(x)s(x) + e(x) (mod xn + 1, q),

where e(x)← Rn, ||e(x)||∞ < Dq/(41n).
Bootstrapping key A bootstrapping key bk = (C0, C1, . . . , Cn−1) can be generated as follows:
For 1 ≤ i ≤ n− 1 do:

(1) Pick aji ← Rm,Q, 1 ≤ j ≤ 4;

(2) Pick eji(x) ∈ Rm, ||eji||∞ ≤ n, 1 ≤ j ≤ 4;

(3) Compute bji(x) := aji(x)s(x) + eji(x) (mod xm + 1, Q), 1 ≤ j ≤ 4;

(4) Set Ci :=

a1i(x) b1i(x)
a2i(x) b3i(x)
a3i(x) b2i(x)
a4i(x) b4i(x)

+ siG (mod Q).

Entropy 2020, 22, 1339 7 of 15

3.2. Bootstrapping Algorithm

Lemma 4. Suppose that a bootstrapping key bk has an error size at most τ1; r is divisible by 8 and
r ≥ 16n, Q ≥ n

n−3 16Br2`τ1. Then, for any two LWE ciphers Es(xi) = vi ∈ Zn
r × Z, with error size

≤ Dr/4 where xi ∈ {0, 1} for i = 1, 2, the bootstrapping algorithm in Algorithm 1 outputs random LWE
ciphers Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) ∈ Zn

r ×Zr all with error size < n ≤ Dr/4 [7].

Algorithm 1 Bootstrapping Algorithm: BTbk(v1, v2)→ c1, c2, c3.

Input: bk = (C0, C1, . . . , Cn−1) ∈ R2`×2
m,Q : bootstrapping key;

(v1, v2) ∈ Zn
r ×Zr:vi = Es(xi), x1, x2 ∈ {0, 1};

Output: Es(x1 ∧ x2), Es(x1 ∨ x2), Es(x1 ⊕ x2) ∈ Zn
r ×Zr;

1: Compute u := v1 + v2 = (u0, u1, . . . , un−1, un) ∈ Zn
r ×Zr;

2: T := {j ∈ Z : −Dr ≤ j ≤ Dr}, t(x) := ∑j∈T xj;
3: A := (0, t(x)x−un D̃Q) ∈ R2

m,Q;
4: for k from 0 to n− 1 do

5: A := A� (G + (xuk − 1)Ck);
6: end for
7: Let A = (∑m−1

i=0 aixi, ∑m−1
i=0 bixi). Set

a1 := (Extract(a(x), 3m/4), D̃Q + b3m/4) ∈ Zn
Q ×ZQ;

a2 := (Extract(a(x), m/4), D̃Q − bm/4) ∈ Zn
Q ×ZQ;

a3 := a2 − a1 ∈ Zn
Q ×ZQ ;

8: for i from 1 to 3 do

9: ci := bra/Qe ∈ Zn
r ×Zr;

10: end for
11: Return c1, c2, c3;

3.3. Encryption Scheme

Lemma 5. Suppose that r = 2t+1; (a(x), b(x)) ∈ R2
n,r can be computed from Algorithm 2. Then for some

ω3(x), ||ω3(x)||∞ ≤ Dr/4, so that

2t−4b(x)− s(x)a(x) ≡ ω3(x) + m(x)Dr (mod xn + 1, r).

Specifically, if r = 16n, then (u, v) returned in Algorithm 2 has 6n bits and represents an RLWE cipher
REs(m(x)), and the error size < n [7].

Algorithm 2 Encryption with private key:REs(m(x))→ (u, v).

Input: n-bit secret key s(x) = ∑n−1
i=0 sixi, si ∈ {0, 1};

n-bit messagem(x) = ∑n−1
i=0 mixi, mi ∈ {0, 1};

t := dlog2(r)e, hence 2t ≤ r ≤ 2t−1 ;

P : {0, 1} → {0, 1}n(t+1);
Output: (u, v) ∈ {0, 1}n × {{0, 1}5}n

1: u← {0, 1}n, a(x) := P(u, x) ∈ Rn,r;
2: ω(x)← Rn, ||ω(x)||∞ ≤ Dr/8, b1(x) := a(x)s(x) + ω(x) + m(x)Dr (mod xn + 1, r) ;
3: b(x) = ∑n−1

i=0 bixi :=
⌊
b1(x)/2t−4⌋;

4: v = (b1, b2, . . . , bn−1) ∈ ({0, 1}5)n;
5: return (u, v);

Lemma 6. Suppose that r = 2t+1, r ≥ 16n, q ≥ 4r and n ≥ 164. Suppose that REpk(m(x)) :=
(a(x), b(x)) ∈ R2

n,r be any ciphertext output by Algorithm 3. Then 2t−5b(x)− s(x)a(x) ≡ ω3(x) + m(x)Dr

(mod xn + 1, r) for some ω3(x) ∈ Rn with ||ω3(x)||∞ ≤ Dr/4.

Entropy 2020, 22, 1339 8 of 15

Specifically, if r = 16n, then any ciphertext (a(x), b(x)) has n(10 + log2(n)) bits and the error, that is,
each coefficient of ω3(x), is in (−n, n) randomly [7].

We can divide the data x into d blocks of length n. Let N = dn, x = (x1, x2, . . . , xd) ∈ {0, 1}N ,
xk = (xk,0, xk,1, . . . , xk,n−1), xk ∈ {0, 1}n. Each xk can be expressed as a polynomial ∑n−1

i=0 xk,ixi ∈ Rn.
Then—encrypted using the private-key scheme ck = REs(xk), 1 ≤ k ≤ d by Algorithm 2—note that the
cipher text size ck is about 6N bits and then encrypted using the public-key scheme c′k = REpk(xk), 1 ≤
k ≤ d by Algorithm 3; note that the cipher text size ck’ is about N(10 + log2(n)). Homomorphic
computing can be performed in three steps as follows:

Algorithm 3 Encryption under public key: REpk(m(x))→ (a(x), b(x)) ∈ R2
n,r.

Input: pk = (k0(x), k1(x)), k0(x)← Rn,q;

m(x) = ∑n−1
i=0 mixi:n-bit message where each

mi ∈ {0, 1};

t := dlog2(r)e;
Output: (a(x), b(x)) ∈ R2

n,ru(x)← Rn,
1: u(x)← Rn, each coefficient random from {−1, 0, 1};
2: ω1(x)← Rn, ||ω1(x)||∞ ≤ Dq/(41n) ;
3: ω2(x)← Rn, ||ω2(x)||∞ ≤ Dq/82 ;
4: a1(x) := k0(x)u(x) + ω1(x) (mod xn + 1, q);
5: b1(x) := k1(x)u(x) + ω2(x) + m(x)Dq (mod xn + 1, q);
6: a(x) :=

⌊
r
q a1(x)

⌉
, b(x) :=

⌊
r

2t−5q b1(x)
⌉

;
7: Return (a(x), b(x))

(1) Unpacking the RLWE ciphertexts RE(xk) to get LWE ciphers in Zn
r × Zr for the bits of x.

RE(xk)
unpack−→ Es(ck,i)

(2) Homomorphic computing of f (x) = y = {y0, y1, . . . , yM} ∈ {0, 1}M on LWE ciphers.

f (x)
BTbk−→ {Es(y0), Es(y1), . . . , Es(yM)}

(3) Packing the LWE ciphers {Es(y0), Es(y1), . . . , Es(yM)} of function f into RLWE ciphers in R2
n,r.

{Es(y0), Es(y1), . . . , Es(yM)} pack−→ REs(y)

4. Privacy-Preserving Set Intersection

We abstract the privacy set intersection computation model as follows. The client C owns a set
{c1, . . . , cv} of size v, and the server S holds a set {s1, . . . , sω} of size ω. After the end of the protocol,
the client C only obtains the intersection {c1, . . . , cv}

⋂{s1, . . . , sω}; however, the server cannot get any
information for the input and the set intersection of the client (including the size of the intersection).

4.1. The Basic Two-Party Computing Protocol

The summary of basic private two-party intersection protocol is shown in Figure 1. The specific
steps are as follows:

1. The client C encrypts the set with private key and sends ciphertexts to the server S.
2. The server S implements homomorphic computing with bootstrapping key and sends the result

to the client C.

Entropy 2020, 22, 1339 9 of 15

3. The client C decrypts and computes the intersection of the two sets; the server S cannot acquire
any information about the input and output.

Figure 1. Summary of the intersection protocol.

Our basic two-party computing protocol is shown in Figure 2. At step C → S, the client sends
pk, bk and REsk(ck) to the server. At step S, the server unpacks REsk(ck) to get Esk(ck,j), unpacks REpk
to get Esk(si,j), samples u ∈ {0, 1}n, calls bootstrapping operations to compute Esk(zk,i), computes
LWE ciphers Esk(wi,j), packs the resulted LWE ciphers Esk(wi,j) into RLWE ciphers REsk(wi) and sends
them to the client. At step C, the client decrypts REsk(wi) to get wi and computes the intersection.

Figure 2. The basic two-party computing protocol.

4.2. Correctness of the Basic Two-Party Computing Protocol

First, the correctness of SGFHE scheme has been proven.
Let ck, si be the set elements’ binary representation of the client and server respectively.

The insufficient bits are filled with 0s and we extend the length to n.

ck = {ck,1, . . . , ck,n} = {0, 1}n, 1 ≤ k ≤ v

si = {si,1, . . . , si,n} = {0, 1}n, 1 ≤ i ≤ ω

u
sample←− {0, 1}n

Entropy 2020, 22, 1339 10 of 15

zk,i =
n∨

j=1

(ck,j ⊕ si,j) (4)

If zk,i = 1, then ck 6= si; if zk,i = 0, then ck = si.

The server can acquire Esk(zk,i) by REsk(ck)
unpack−→ Esk(ck,j), REpk(si)

unpack−→ Esk(si,j) and call

(2n− 1) bootstrapping operations, denoted by zk,i =
n∨

j=1
(ck,j ⊕ si,j)

BTbk−→ Esk(zk,i).

Remark: RE represents RLWE cipher; E represents LWE cipher.
Let

zi =
v∧

k=1

zk,i; (5)

Esk(zi) ∈ Zn
r ×Zr can be computed from Esk(zk,i) by implementing (v− 1) bootstrapping operations.

Hence, implementing (2n + v− 2) bootstrapping operations by (6) can compute Esk(zi).

zi =
v∧

k=1

zk,i =
v∧

k=1

n∨
j=1

(ck,j ⊕ si,j)
BTbk−→ Esk(zi) (6)

If zi = 1, then wi = u is a random value with ∀k, ck 6= si; if zi = 0, then there ∃k so that
ck = si, wi = ck = si is in the intersection. For si and u, each bit

wi,j = zk ∧ uj ⊕ (1− zk) ∧ si,j

can be computed by
wi = {wi,1, . . . , wk,n} = ziu⊕ (1− zi)si (7)

For plaintexts uj and si,j, an LWE cipher of any bit zk ∧ uj ⊕ (1− zk) ∧ si,j can be computed as

ujEsk(zi) + si,j(Esk(1)− Esk(zk)),

which still has error size < Dr/4.
The LWE cipher is

Esk(wi,j) = ujEsk(zi) + si,j(Esk(1)− Esk(zk)). (8)

The server can pack the resulted LWE ciphers Esk(wi,j) into RLWE ciphers REsk(wi) and send
them to the client.

In the end, the client decrypts Dec(REsk(wi)) =⇒ wi and computes the intersection
{c1, . . . , cv}

⋂{w1, . . . , wω} =⇒ {c1, . . . , cv}
⋂{s1, . . . , sω}.

4.3. Security Analysis of the Basic Two-Party Computing Protocol

We analyze the security of the protocol by comparing the real model and the ideal model. The real
model is the actual implementation of the basic private intersection protocol and it is a trusted server
for computing the intersection. The trusted server receives the input {c1, . . . , cv} of the client and the
input {s1, . . . , sω} of the server, and will return the intersection with the client; however, the server
cannot get any information about the output. The ideal model maintains all security evidence. In the
semi-honest model, the participant’s view includes its own input and the information received from
other participants during the progression of the protocol. The simulator can use the participant’s input
and output to build a simulation that is computationally indistinguishable from the views. That proves
that the participants cannot obtain any other information besides the inputs and outputs.

Theorem 1. If SGFHE is held, then the basic two-party computing protocol can realize the private set
intersection computing under the semi-honest model.

Entropy 2020, 22, 1339 11 of 15

Proof. In the protocol, the server cannot obtain any other information besides receiving the RLWE
ciphers. Its view can only be simulated with ciphertexts and its security is based on IND-CPA security
of RLWE scheme.

The client only receives the RLWE ciphers of the intersections and the random RLWE ciphers.
Therefore, it just includes the output information of the set intersection and the view of simulator is
only the output information of the set intersection.

4.4. The Improvement of the Basic Two-Party Computing Protocol

In the basic two-party computing protocol, the server will return the ciphertexts of the intersection
elements or the random ciphertexts, and computes the intersection by decrypting the ciphertexts. In
our improvement protocol shown in Figure 3, we just need to determine whether ck is in {s1, . . . , sω}
without computing the ciphertexts of the intersection elements by the server. On the one hand, it can
reduce the computational complexity; on the other hand, it will not reveal the size of the server set.

Figure 3. Improvement.

Let ck, si be the set elements’ binary representations of the client and the server respectively.
The insufficient bits are filled with 0s and we extend the length to n.

ck = {ck,1, . . . , ck,n} = {0, 1}n, 1 ≤ k ≤ v

si = {si,1, . . . , si,n} = {0, 1}n, 1 ≤ i ≤ ω

zk,i =
n∨

j=1

(ck,j ⊕ si,j) (9)

If zk,i = 1, then ck 6= si; if zk,i = 0, then ck = si.

The server can acquire Esk(zk,i) by REsk(ck)
unpack−→ Esk(ck,j), REpk(si)

unpack−→ Esk(si,j) and call

(2n− 1) bootstrapping operations, denoted by zk,i =
n∨

j=1
(ck,j ⊕ si,j)

BTbk−→ Esk(zk,i). The server packs

LWE ciphers Esk(zk,i) to RLWE ciphers REsk(zk) and sends them to the client.

{Esk(zk,1), Esk(zk,2), . . . , Esk(zk,ω)}
pack−→ REsk(zk),

the client decrypts REsk(zk), if all zk is 1, then

ck /∈ { c1, . . . , cv}
⋂
{s1, . . . , sω};

else ck ∈ { c1, . . . , cv}
⋂{s1, . . . , sω}.

Entropy 2020, 22, 1339 12 of 15

In the protocol, the server cannot obtain any other information besides RLWE ciphers and the
view can only be simulated by the ciphertexts. Its security is based on IND-CPA security of RLWE
scheme.

The client acquires zk,i by (9), however, the probability of obtaining si,j from zk,i and ck,j is 2−n,
and it is negligible. The client only receives the output of the intersection; therefore, the view of
simulator is just the output of the set intersection.

4.5. Two-Party Computing Protocol Based on a Bloom Filter

In this section, we construct a two-party protocol based on Bloom filter shown in Figure 4, in
which the client C encrypts each bit of the Bloom filter with private key and sends it to the server S.
The server S homomorphic computes Test(sj) with the bootstrapping key of client C and sends it to
the client. C will obtain the intersection of the two sets by decrypting, but the server cannot get any
information about the input and output (including the size of the intersection).

Figure 4. Protocol based on a Bloom filter.

Let ck, si be the set elements’ binary representations of the client and the server respectively.
The insufficient bits are filled with 0s and we extend the length to n.

ck = {ck,1, . . . , ck,n} = {0, 1}n, 1 ≤ k ≤ v.

sj = {sj,1, . . . , sj,n} = {0, 1}n, 1 ≤ j ≤ ω.

The client C constructs a Bloom filter b = create(α) and sends pk, bk, REsk(b) to the server S.

zj = Test(sj) =
β−1
∧

i=0
bhi(sj)

(10)

According to (10), input Esk(b1), . . . , Esk(bα),

Esk(zj) =
β−1
∧

i=0
Esk(bhi(sj)

).

Call (β− 1) bootstrapping operations to obtain Esk(zj), denoted by

zj = Test(sj) =
β−1
∧

i=0
bhi(sj)

BTbk−→ Esk(zj).

wj = {wj,1, . . . , wj,n} = zjsj ⊕ (1− zj)u (11)

Entropy 2020, 22, 1339 13 of 15

If zj = 1, then there ∃k such that ck = sj, and computing wj = sj by (11); similarly, if zj = 0, then ∀k
such that ck 6= sj, and computing wj = u by (11). For plaintexts sj and u, each bit can be computed
by (11),

wj,t = zj ∧ sj,t ⊕ (1− zj) ∧ ut, 1 ≤ t ≤ n.

The corresponding LWE cipher is

Esk(wj,t) = sj,tEsk(zj) + ut(Esk(1)− Esk(zj)). (12)

The correctness and security of the two-party computing protocol based on Bloom filter is similar
to the basic two-party computing protocol. Please refer to Sections 4.2 and 4.3.

5. Conclusions

We constructed the set intersection two-party computing protocols based on a fully homomorphic
encryption scheme. The protocols are simple and only need two rounds of communication, and the
security is based on RLWE and LWE problems in the semi-honest model. The ciphertext extension of
the protocols is small so that the protocols have strong practicability. Furthermore, we can extended
the set intersection protocol by outsourcing computing under the malicious model. The limitation
of our schemes is they are two-party protocols. In future work, we shall extend them to multi-party
protocols. The disadvantage of the private set intersection protocols is they are not efficient enough
due to bottleneck the bootstrapping operation. On the theoretical side, with the development of fully
homomorphic encryption technology, its performance has been greatly improved, but the efficiency of
it is still worthy of in-depth study. The bottleneck of the SGFHE scheme is its bootstrapping operation;
therefore, its parallelization and hardware implementation will be further studied to improve the
overall efficiency of the protocol.

Author Contributions: Conceptualization, Y.C., C.T. and Q.X.; methodology, Y.C. and C.T.; validation Y.C., C.T.
and Q.X.; writing-original draft preparation, Y.C., Q.X. and C.T.; writing-review and editing, Y.C. and Q.X.
All authors have read and agreed to the published version of the manuscript.

Funding: This work was supported in part by the Foundation of National Natural Science of China under grant
61772147, in part by Guangdong Province Natural Science Foundation of major basic research and Cultivation
project under grant 2015A030308016, in part by Project of Ordinary University Innovation Team Construction
of Guangdong Province under grant 2015KCXTD014, in part by Basic Research Major Projects of Department
of education of Guangdong Province under grant 2014KZDXM044, in part by Collaborative Innovation Major
Projects of Bureau of Education of Guangzhou City under grant 1201610005 and in part by the Key-Area Research
and Development Plan of Guangdong province under grant 2019B020215004.

Conflicts of Interest: The authors declare no conflict of interest.

References

1. Rvest, R.L.; Adieman, L.; DERtouzos, M.L. On data banks and privacy homomorphisms.
Found. Secur. Comput. 1978, 4, 169–180.

2. Craig, G. Fully Homomorphic Encryption Using Ideal Lattices. In Proceedings of the Annual ACM
Symposium on Theory of Computing, Bethesda, MD, USA, 31 May–2 June 2009; pp. 169–178. [CrossRef]

3. Van Dijk, M.; Gentry, C.; Halevi, S.; Vaikuntanathan, V. Fully homomorphic encryp-tion over the integers.
IACR Cryptol. Eprint Arch. 2009, 616. [CrossRef]

4. Brakerski, Z.; Vaikuntanathan, V. Efficient fully homomorphic encryption from (standard) LWE.
SIAM J. Comput. 2014, 43, 831–871. [CrossRef]

5. Brakerski, Z.; Vaikuntanathan, V. Fully homomorphic encryption from ring-LWE and security for key
dependent messages. In Proceedings of the Advances in Cryptology-CRYPTO 2011, Santa Barbara, CA,
USA, 14–18 August 2011; Springer: Berlin/Heidelberg, Germany, 2011; pp. 505–524. [CrossRef]

6. Gentry, C.; Sahai, A.; Waters, B. Homomorphic encryption from learning with errors: Conceptually-simpler,
asymptotically-faster, attribute-based. In Advances in Cryptology-CRYPTO 2013; Springer: Berlin/Heidelberg,
Germany, 2013; pp. 75–92. [CrossRef]

http://dx.doi.org/10.1145/1536414.1536440
http://dx.doi.org/10.1007/978-3-642-13190-5_2
http://dx.doi.org/10.1137/120868669
http://dx.doi.org/10.1007/978-3-642-22792-9_29
http://dx.doi.org/10.1007/978-3-642-40041-4_5

Entropy 2020, 22, 1339 14 of 15

7. Gao, S. Efficient Fully Homomorphic Encryption Scheme. Cryptology ePrint Archive: Report 2018/637.
2018. Available online: https://eprint.iacr.org/2018/637 (accessed on 28 October 2020).

8. Chillotti, I.; Gama, N.; Georgieva, M. Improving TFHE: Faster Packed Homomorphic Operations and
Effcient Circuit Bootstrapping. Cryptology ePrint Archive: Report 2017/ 430. 2017. Available online:
https://eprint.iacr.org/2017/430 (accessed on 28 October 2020).

9. Oded, G.; Micali, S.; Avi, W. How to play ANY mental game. In Proceedings of the 19th Annual ACM
Symposium on Theory of Computing, New York, NY, USA, 25–27 May 1987; pp. 218–229. [CrossRef]

10. Ion, M.; Kreuter, B.; Nergiz, E. Private Intersection-Sum Protocol with Applications to Attributing Aggregate
Ad Conversions. Cryptology ePrint Archive: Report 2017/738. 2017. Available online: https://eprint.iacr.
org/2017/738 (accessed on 28 October 2020).

11. Ion, M.; Kreuter, B.; Erhan, A. On Deploying Secure Computing Commercially: Private Intersection-Sum
Protocols and their Business Applications. Cryptology ePrint Archive: Report 2019/723. 2019. Available
online: https://eprint.iacr.org/2019/723. (accessed on 28 October 2020).

12. Prasetyo, H.; Guo, J.M. A Note on Multiple Secret Sharing Using Chinese Remainder Theorem and
Exclusive-OR. IEEE Access 2019, 7, 37473–37497. [CrossRef]

13. Yang, Q.; Peng, G.; Gasti, P. MEG: Memory and Energy Efficient Garbled Circuit Evaluation on Smartphones.
IEEE Trans. Inf. Forensics Secur. 2019, 14, 913–922. [CrossRef]

14. Zhang, Z.; Zhang, F.G. Garbled Circuits and Indistinguishability Obfuscation. J. Cryptologic Res. 2019, 6,
541–560. [CrossRef]

15. Qin, H.; Wang, H.; Wei, X. Privacy-Preserving Wildcards Pattern Matching Protocol for IoT Applications.
IEEE Access 2019, 1. [CrossRef]

16. Gama, M.; Mateus, P.; Souto, A. A Private Quantum Bit String Commitment. Entropy 2020, 22, 272. [CrossRef]
17. Zhao, C.; Zhao, S.N.; Jia, Z.T. Advances in Practical Secure Two-party Computation and Its Application in

Genomic Sequence Comparison. J. Cryptol. Res. 2019, 6, 194–204.
18. Hazay, C.; Lindell, Y. Efficient Protocols for Set Intersection and Pattern Matching with Security against

Malicious and Covert Adversaries. J. Cryptol. 2010, 23, 422–456. [CrossRef]
19. Cristofaro, E.D.; Lu, E.; Tsudik, Y.A. Gene Efficient Techniques for Privacy-Preserving Sharing of Sensitive

Information. Cryptology ePrint Archive: Report 2011/113. 2011. Available online: https://eprint.iacr.org/
2011/113 (accessed on 28 October 2020).

20. Saracevic, M.; Adamovic, S.; Miskovic, V.; Macek, N.; Sarac, M. A novel approach to steganography based
on the properties of Catalan numbers and Dyck words. Future Gener. Comput. Syst. 2019, 100, 186–197.
[CrossRef]

21. Saracevic, M.; Adamovic, S.; Bisevac, E. Applications of Catalan numbers and Lattice Path combinatorial
problem in cryptography. Acta Polytech. Hung. 2018, 15, 91–110.

22. Coppolino, L.; D’Antonio, S.; Formicola, V.; Mazzeo, G.; Romano, L. VISE: Combining Intel SGX and
Homomorphic Encryption for Cloud Industrial Control Systems. IEEE Trans. Comput. 2020, 99. [CrossRef]

23. Lindell, Y.; Pinkas, B. Secure Multiparty Computation for Privacy-Preserving Data Mining.
J. Priv. Confidentiality 2009. [CrossRef]

24. Michael, L.; Nejdl, W.; Papapetrou, O.; Siberski, W. Improving Distributed Join Efficiency with Extended
Bloom Filter Operations. In Proceedings of the 21st International Conference on Advanced Networking and
Applications, Niagara Falls, ON, Canada, 21–23 May 2007.

25. Naor, M.; Pinkas, B. Oblivious Transfer and Polynomial Evaluation. In Proceedings of the Thirty-First
Annual ACM Symposium on Theory of Computing, Atlanta, GA, USA, 1–4 May 1999.

26. Freedman, M.J.; Ishai, Y.; Pinkas, B. Keyword Search and Oblivious Pseudorandom Functions. In Second
International Conference on Theory of Cryptography; Springer: Berlin/Heidelberg, Germany, 2005. [CrossRef]

27. Chaum, D.; Rivest, R.L.; Sherman, A.T. Blind Signatures for Untraceable Payments. Adv. Cryptol. 1983.
[CrossRef]

28. Florian, K. Outsourced private set intersection using homomorphic encryption. ACM Symp. Inf. 2012, 85–86.
[CrossRef]

29. Nojima, R.; Kadobayashi, Y. Cryptographically Secure Bloom-Filters. Trans. Data Priv. 2009, 2, 131–139.
30. Shen, L.; Chen, X.; Shi, J.; Hu, L. Survey on Private Preserving Set Intersection Technology. J. Comput.

Res. Dev. 2017, 54, 2153–2169. [CrossRef]

https://eprint.iacr.org/2018/637
https://eprint.iacr.org/2017/430
http://dx.doi.org/10.1145/28395.28420
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2017/738
https://eprint.iacr.org/2019/723
http://dx.doi.org/10.1109/ACCESS.2019.2902853
http://dx.doi.org/10.1109/TIFS.2018.2868221
http://dx.doi.org/10.13868/j.cnki.jcr.000321
http://dx.doi.org/10.1109/ACCESS.2019.2902353
http://dx.doi.org/10.3390/e22030272
http://dx.doi.org/10.1007/s00145-008-9034-x
https://eprint.iacr.org/2011/113
https://eprint.iacr.org/2011/113
http://dx.doi.org/10.1016/j.future.2019.05.010
http://dx.doi.org/10.1109/TC.2020.2995638
http://dx.doi.org/10.29012/jpc.v1i1.566
http://dx.doi.org/10.1007/978-3-540-30576-7_17
http://dx.doi.org/10.1007/978-1-4757-0602-4_18
http://dx.doi.org/10.1145/2414456.2414506
http://dx.doi.org/10.7544/issn1000-1239.2017.20170461

Entropy 2020, 22, 1339 15 of 15

31. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. In Proceedings of the
37th Annual ACM Symposium on Theory of Computing, Baltimore, MD, USA, 22–24 May 2005. [CrossRef]

32. Regev, O. On lattices, learning with errors, random linear codes, and cryptography. J. ACM 2009, 34.
[CrossRef]

33. Lyubashevsky, V.; Peikert, C.; Regev, O. On ideal lattices and learning with errors over rings.
In Cryptology-EUROCRYPT 2010; Springer: Berlin/Heidelberg, Germany, 2010; p. 6110.

34. Bloom, B.H. Space/time trade-offs in hash coding with allowable errors. Commun. ACM 1970, 13, 422–426.
[CrossRef]

35. Bellovin, S.; Cheswick, W. Privacy-Enhanced Searches Using Encrypted Bloom Filters. Cryptology
ePrint Archive: Report 2004/022. 2004. Available online: https://eprint.iacr.org/2004/022 (accessed
on 28 October 2020).

36. Goh, E. Secure Indexes. Cryptology ePrint Archive: Report 2003/216. 2003. Available online: https:
//eprint.iacr.org/2003/216 (accessed on 28 October 2020).

37. Raykova, M.; Vo, B.; Bellovin, S.; Malkin, T. Secure Anonymous Database Search. In Proceedings of the ACM
Cloud Computing Security Workshop, Chicago, IL, USA, 13 November 2009; pp. 115–126. [CrossRef]

38. Qiu, L.; Li, Y.; Wu, X. Preserving privacy in association rule mining with bloom filters. J. Intell. Inf. Syst. 2007,
29, 253–278. [CrossRef]

39. Debnath, S.K.; Dutta, R. Secure and Efficient Private Set Intersection Cardinality Using Bloom Filter. Int. Inf.
Secur. Conf. 2015, 9290, 209–226. [CrossRef]

40. Changyu, D.; Liqun, C.; Zikai, W. When private set intersection meets big data: An efficient and scalable
protocol. In Proceedings of the ACM Conference on Computer and Communications Security, Berlin,
Germany, 4–8 November 2013; ACM: New York, NY, USA, 2013; pp. 789–800. [CrossRef]

41. Egert, R.; Fischlin, M.; Gens, D. Privately Computing Set-Union and Set-Intersection Cardinality via Bloom
Filters. Eur. J. Oper. Res. 2015, 139, 371–389. [CrossRef]

42. Ducas, L.; Micciancio, D. FHEW: Bootstrapping homomorphic encryption in less than a second.
In Proceedings of the Advances in Cryptology-EUROCRYPT 2015, Sofia, Bulgaria, 26–30 April 2015; Springer:
Berlin/Heidelberg, Germany, 2015; Part I, Volume 9056, pp. 617–640. [CrossRef]

43. Chillotti, I.; Gama, N.; Georgieva, M.; Izabachéne, M. Faster fully homomorphic encryption: Bootstrapping
in less than 0.1 seconds. In Proceedings of the Advances in Cryptology-ASIACRYPT 2016: 22nd International
Conference on the Theory and Application of Cryptology and Information Security, Hanoi, Vietnam, 4–8
December 2016; Springer: Berlin/Heidelberg, Germany, 2016; Part I, Volume 10031, pp. 3–33. [CrossRef]

Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional
affiliations.

© 2020 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access
article distributed under the terms and conditions of the Creative Commons Attribution
(CC BY) license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1145/1060590.1060603
http://dx.doi.org/10.1145/1568318.1568324
http://dx.doi.org/10.1145/362686.362692
https://eprint.iacr.org/2004/022
https://eprint.iacr.org/2003/216
https://eprint.iacr.org/2003/216
http://dx.doi.org/10.1145/1655008.1655025
http://dx.doi.org/10.1007/s10844-006-0018-8
http://dx.doi.org/10.1007/978-3-319-23318-5-12
http://dx.doi.org/10.1145/2508859.2516701
http://dx.doi.org/10.1007/978-3-319-19962-7-24
http://dx.doi.org/10.1007/978-3-662-46800-5_24
http://dx.doi.org/10.1007/978-3-662-53887-6_1
http://creativecommons.org/
http://creativecommons.org/licenses/by/4.0/.

	Introduction
	Related Work
	Contributions

	Basic Concepts and Techniques
	Notation
	LWE Ciphers and Modulus Reduction
	RLWE Ciphers
	GSW Ciphers and External Product
	Gadget Matrix
	External Product
	GSW Ciphers

	Bloom Filter

	Homomorphic Operations
	Key Generations
	Bootstrapping Algorithm
	Encryption Scheme

	Privacy-Preserving Set Intersection
	The Basic Two-Party Computing Protocol
	Correctness of the Basic Two-Party Computing Protocol
	Security Analysis of the Basic Two-Party Computing Protocol
	The Improvement of the Basic Two-Party Computing Protocol
	Two-Party Computing Protocol Based on a Bloom Filter

	Conclusions
	References

