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Abstract

Global brain states are frequently placed within a unidimensional continuum by correlational 

studies, ranging from states of deep unconsciousness to ordinary wakefulness. An alternative is 

their multidimensional and mechanistic characterization in terms of different cognitive capacities, 

using computational models to reproduce the underlying neural dynamics. We explore this 

alternative by introducing a semi-empirical model linking regional activation and long-range 

functional connectivity in the different brain states visited during the natural wake-sleep cycle. Our 

model combines functional magnetic resonance imaging (fMRI) data, in vivo estimates of 

structural connectivity, and anatomically-informed priors to constrain the independent variation of 

regional activation. The best fit to empirical data was achieved using priors based on functionally 

coherent networks, with the resulting model parameters dividing the cortex into regions presenting 

opposite dynamical behavior. Frontoparietal regions approached a bifurcation from dynamics at a 

fixed point governed by noise, while sensorimotor regions approached a bifurcation from 

oscillatory dynamics. In agreement with human electrophysiological experiments, sleep onset 

induced subcortical deactivation with low correlation, which was subsequently reversed for deeper 

stages. Finally, we introduced periodic forcing of variable intensity to simulate external 

perturbations, and identified the key regions relevant for the recovery of wakefulness from deep 

sleep. Our model represents sleep as a state with diminished perceptual gating and the latent 

capacity for global accessibility that is required for rapid arousals. To the extent that the qualitative 

characterization of local dynamics is exhausted by the dichotomy between unstable and stable 

behavior, our work highlights how expanding the model parameter space can describe states of 

consciousness in terms of multiple dimensions with interpretations given by the choice of 

anatomically-informed priors.

1. Introduction

The human brain is a complex system comprised by 1010 nonlinear units (neurons) 

interacting in 1015 sites (synapses) (Sporns et al., 2005). Considering such an astonishing 

level of complexity and heterogeneity, it is surprising that the global dynamics of the brain 

self-organize into a discrete set of well-defined states (Tart, 1971; Tassi and Muzet, 2001), 

and that these states are frequently placed along a unidimensional continuum (Bayne et al., 

2016).1 This continuum corresponds to the level of consciousness, which is reduced in states 

such as sleep, general anesthesia or post-comatose disorders. The intuition behind the 

concept of “level of consciousness” is that consciousness is graded and uniform, and that 

one can be more or less conscious relative to the baseline given by conscious wakefulness. 

Behavioral and neurobiological characterizations of global states are aligned with this 

intuition; for instance, clinicians use unidimensional scales to assess the level of 

consciousness in brain injured patients (Sternbach, 2000), and apply algorithms to 

electroencephalography (EEG) data to monitor the depth of anesthesia (Rosow and 

Manberg, 2001).
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This view has been recently challenged by the proposal that multiple independent levels of 

analysis are required to describe states of consciousness (Bayne et al., 2016, 2017), with 

similar proposals put forward for the specific case of human sleep (Hobson and Pace-Schott, 

2002; Windt et al., 2016; Song and Tagliazucchi, 2019). The levels proposed by Bayne and 

colleagues distinguish between functional and sensory dimensions. The first include the 

availability of information for modules associated with specific cognitive functions, which is 

generally widespread during conscious wakefulness (Dehaene and Naccache, 2001), but can 

be compromised during other states of consciousness (Bartolomei and Naccache, 2001; 

Berkovitch et al., 2017). Examples of the second include the gating of sensory content and 

the binding of low-level features into objects belonging to well-defined categories 

(Treisman, 1998). It is expected that deficits in different dimensions relate to specific regions 

or networks of regions, for instance, global information availability is linked to the activation 

of fronto-parietal regions (Sergent and Dehaene, 2004), while perceptual deficits could 

implicate multiple regions along the hierarchy of sensory processing. Even in the absence of 

sensory stimulation and overt behavior, functional magnetic resonance imaging (fMRI) 

reveals that the brain is organized into independent functional patterns, known as resting 

state networks (RSNs) (Damoiseaux et al., 2006). RSNs approximately match different task-

elicited activity patterns, including patterns associated with the independent levels of 

analysis proposed by Bayne and colleagues. Thus, states of consciousness could be 

characterized by their profile of RSN-specific changes, as opposed to single metrics related 

to functional integration and complexity (Tononi and Edelman, 1998). In particular, changes 

in the gating of sensory content and in global information availability can be interpreted in 

terms of parameters associated with sensory (e.g. visual) and fronto-parietal RSN, 

respectively.

Functional connectivity (FC) within RSNs is constrained by the structural connectivity (SC) 

of the brain (Greicius et al., 2009; Van Den Heuvel et al., 2009; Haimovici et al., 2013), 

which is preserved in reversible states such as sleep and anesthesia. The interplay between 

local dynamics and long-range SC must be disentangled to describe states of consciousness 

in terms of the functional and sensory domains associated with different RSNs. Network 

models of whole-brain activity can be implemented to disentangle these contributions and 

investigate the effect of external perturbations (Honey et al., 2007, 2009; Ghosh et al., 2008; 

Haimovici et al., 2013; Taylor et al., 2014; Sanz-Leon et al., 2015; Spiegler et al., 2016; 

Breakspear, 2017; Fukushima and Sporns, 2018). These models can be used to compute 

simulated FC patterns from brain activity time series generated by the differential equations 

governing local dynamics, coupled by in vivo diffusion tensor imaging (DTI) estimates of 

SC. A set of interpretable parameters can then be adjusted to optimize the similarity between 

the simulated and empirical FC patterns obtained during different states of consciousness. 

For instance, when applied to the stages of human sleep, these models show promise to 

contrast hypotheses concerning the origin of spontaneous brain activity across the wake-

sleep cycle (Jobst et al., 2017), as well as to predict the behavior of brain activity in response 

to external and internal driving events (Deco et al., 2017, 2018a).

The use of homogeneous parameters helps to reduce model complexity, allowing the fast 

and straightforward optimization of simulated FC. While low complexity models are useful 

to provide conceptual insights, they are limited to investigate regional dynamics that can be 
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traced back to known neurophysiological systems embedded within different RSNs, and 

their associated cognitive functions. In particular, their usefulness is limited to provide a 

multidimensional characterization of states of consciousness, understood as a description 

capable of taking multiple and seemingly independent factors into account, such as the 

representation of sensory content from different modalities, or alterations in the different 

functions comprised by human cognition. Homogeneous model parameters are also limiting 

for the purpose of rehearsing anatomically localized in silico stimulation protocols to restore 

the dynamics seen during conscious wakefulness (Deco et al., 2019), since expecting an 

uniform interaction between baseline activity and external stimulation is likely an 

oversimplification (Opitz et al., 2018). To overcome these limitations, we developed whole-

brain models of fMRI activity recorded during the human wake-sleep cycle incorporating 

regional parameters constrained by anatomical priors, i.e. priors constraining the spatial 

heterogeneity of the parameters. These parameters govern supercritical Hopf bifurcations 

between activated synchronous states and quiescent stable states with noisy fluctuations.

This paper is structured as follows. First, we introduce the computational model and the 

sources of empirical data, including SC, FC and the anatomical priors to constrain regional 

parameter variation. Next, we apply genetic algorithms for the optimization of simulated FC 

in terms of its similarity to the empirical FC obtained during wakefulness, and determine the 

anatomical prior giving the maximal similarity. We estimate the optimal regional parameters 

for wakefulness and the different stages of human sleep. Finally, we investigate the capacity 

of local periodic forcing to transition the model dynamics towards conscious wakefulness, 

with the purpose of determining whether heterogeneous local bifurcation parameters result 

in qualitatively different responses upon stimulation delivered at multiple brain regions.

2. Materials and methods

2.1. Participants and experimental protocol

A cohort of 63 healthy subjects participated in the original experiments (36 females, mean ± 

SD age of 23.4 ± 3.3 years). Written informed consent was obtained from all subjects. The 

experimental protocol was approved by the local ethics committee (Goethe-Universität 

Frankfurt, Germany, protocol number: 305/07). The subjects were reimbursed for their 

participation. All experiments were conducted in accordance with the relevant guidelines 

and regulations, and the Declaration of Helsinki.

The participants entered the scanner in the evening (within half an hour of 7 p.m.) and 

underwent a resting state fMRI session with simultaneous EEG acquisition lasting for 52 

min. Participants were not instructed to fall asleep, but were asked to relax, close their eyes 

and not actively fight the onset of sleep. Lights were dimmed in the scanner room and 

subjects were shielded from scanner noise using earplugs. The day of the study all 

participants reported a wake-up time between 5:00 a.m. and 11:00 a.m., and a sleep onset 

time between 10:00 p.m. and 2:00 a.m. for the night prior to the experiment. Sleep diaries 

confirmed that these values were representative of the 6 days prior to the experiment.

Sleep staging was based on simultaneously acquired polysomnography data and performed 

according to the standard rules of the American Academy of Sleep Medicine (Berry et al., 
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2012). For the included participants the mean (±SD) durations of contiguous sleep epochs 

were 12.37 ± 6.61 min for wakefulness, 8.52 ± 2.83 min for N1, 14.69 ± 5.72 min for N2 

and 16.56 ± 8.39 min for N3.

2.2. Simultaneous fMRI and EEG data collection

EEG via a cap (modified BrainCapMR, Easycap, Herrsching, Germany) was recorded 

continuously during fMRI acquisition (1505 vol of T2*-weighted echo planar images, 

TR/TE = 2080 ms/30 ms, matrix 64 × 64, voxel size 3 × 3 × 2 mm3, distance factor 50%; 

FOV 192 mm2) with a 3 T S Trio (Erlangen, Germany). An optimized polysomnographic 

setting was employed (chin and tibial EMG, ECG, EOG recorded bipolarly [sampling rate 5 

kHz, low pass filter 1 kHz] with 30 EEG channels recorded with FCz as the reference 

[sampling rate 5 kHz, low pass filter 250 Hz]. Pulse oxymetry and respiration were recorded 

via sensors from the Trio [sampling rate 50 Hz]) and MR scanner compatible devices 

(BrainAmp MR+, BrainAmpExG; Brain Products, Gilching, Germany), facilitating sleep 

scoring during fMRI acquisition.

MRI and pulse artifact correction were performed based on the average artifact subtraction 

(AAS) method (Allen et al., 1998) as implemented in Vision Analyzer 2 (Brain Products, 

Germany) followed by objective (CBC parameters, Vision Analyzer) ICA-based rejection of 

residual artifact-laden components after AAS resulting in EEG with a sampling rate of 250 

Hz. EEG artifacts due to motion were detected and eliminated using an ICA procedure 

implemented in Vision Analyzer 2. Previous publications based on this dataset can be 

consulted for further details (e.g. Tagliazucchi et al., 2012).

2.3. fMRI data preprocessing

Using Statistical Parametric Mapping (SPM8, www.fil.ion.ucl.ac.uk/spm), Echo Planar 

Imaging (EPI) data were realigned, normalized (MNI space) and spatially smoothed 

(Gaussian kernel, 8 mm3 full width at half maximum). Data was then re-sampled to 4 × 4 × 

4 mm resolution. Note that re-sampling introduces local averaging of Blood Oxygen Level 

Dependent (BOLD) signals, which were eventually averaged over larger cortical and sub-

cortical regions of interest, determined by the automatic anatomic labeling (AAL) atlas 

(Tzourio-Mazoyer et al., 2002). Cardiac, respiratory (both estimated using the RETROICOR 

method [Glover et al., 2000]) and motion-induced noise (three rigid body rotations and 

translations, as well as their first 3 temporal derivatives, resulting in 24 motion regressors) 

(Friston et al., 1996) were regressed out by retaining the residuals of the best linear least 

square fit. Data was band-pass filtered in the range 0.01–0.1 Hz (Cordes et al., 2001) using a 

sixth order Butter-worth filter.

2.4. DWI data collection and processing

The structural connectome was obtained applying diffusion tensor imaging (DTI) to 

diffusion weighted imaging (DWI) recordings from 16 healthy right-handed participants (11 

men and 5 women, mean age: 24.75 ± 2.54 years) recruited online at Aarhus University, 

Denmark. Subjects with psychiatric or neurological disorders (or a history thereof) were 

excluded from participation. The MRI data (structural MRI, DTI) were recorded in a single 

session on a 3 T S Skyra scanner. The following parameters were used for the structural 
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MRI T1 scan: voxel size of 1mm3; reconstructed matrix size 256 × 256; echo time (TE) of 

3.8 ms and repetition time (TR) of 2300 ms. DWI data were collected using the following 

parameters: TR = 9000 ms, TE = 84 ms, flip angle = 90°, reconstructed matrix size of 106 × 

106, voxel size of 1.98 × 1.98 mm with slice thickness of 2 mm and a bandwidth of 1745 

Hz/Px.

Furthermore, the data were recorded with 62 optimal nonlinear diffusion gradient directions 

at b = 1500 s/mm2. Approximately one non-diffusion weighted image (b = 0) per 10 

diffusion-weighted images was acquired. Additionally, the DTI images were recorded with 

different phase encoding directions. One set was collected applying anterior to posterior 

phase encoding direction and the second one was acquired in the opposite direction. The 

AAL template was used to parcellate the entire brain into 90 regions (76 cortical regions and 

14 subcortical regions). The parcellation contained 45 regions in each hemisphere. To co-

register the EPI image to the T1-weighted structural image, the linear registration tool from 

the FSL toolbox (www.fmrib.ox.ac.uk/fsl, FMRIB, Oxford) (Jenkinson et al., 2002) was 

employed. The T1-weighted images were co-registered to the T1 template of ICBM152 in 

MNI space. The resulting transformations were concatenated, inverted and further applied to 

warp the AAL template from MNI space to the EPI native space, where the discrete labeling 

values were preserved by applying nearest-neighbor interpolation. SC networks were 

constructed following a three-step process. First, the regions of the whole-brain network 

were defined using the AAL template. Second, the connections between nodes in the whole-

brain network (i.e., edges) were estimated using probabilistic tractography for each 

participant. Third, results were averaged across participants.

Data preprocessing was performed using FSL diffusion toolbox (Fdt) with default 

parameters. Following this preprocessing, the local probability distributions of fiber 

directions were estimated at each voxel (Behrens et al., 2003). The probtrackx tool in Fdt 

was used to provide automatic estimation of crossing fibers within each voxel, which has 

been shown to significantly improve the tracking sensitivity of non-dominant fiber 

populations in the human brain (Behrens et al., 2007). The connectivity probability from a 

seed voxel i to another voxel j was defined by the proportion of fibers passing through voxel 

i that reached voxel j (sampling of 5000 streamlines per voxel [Behrens et al., 2007]). All the 

voxels in each AAL parcel were seeded (i.e. gray and white matter voxels were considered). 

This was extended from the voxel level to the region level, i.e. in a parcel consisting of n 

voxels, 5000 × n fibers were sampled. The connectivity probability Pij from region i to 

region j was calculated as the number of sampled fibers in region i that connected the two 

regions, divided by 5000 × n, where n represents the number of voxels in region i. The 

resulting SC matrices were thresholded at 0.1% (i.e. a minimum of five streamlines).

Due to the dependence of tractography on the seeding location, the probability from i to j 
was not necessarily equivalent to that from j to i. However, these two probabilities were 

highly correlated across the brain for all participants (r > 0.70, p < 10−50). As the 

directionality of connections cannot be determined using diffusion MRI, the unidirectional 

connectivity probability Pij between regions i and j was defined by averaging these two 

connectivity probabilities. This unidirectional connectivity was considered a measure of SC 

between the two areas, with Cij = Cji. The regional connectivity probability was calculated 
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using inhouse Perl scripts. For both phase encoding directions, 90 × 90 symmetric weighted 

networks were constructed based on the AAL parcellation, and normalized by the number of 

voxels in each AAL region, thus representing the SC network organization of the brain of 

each participant. Finally, the data was averaged across participants.

2.5. Group averaged FC matrices

fMRI signals were detrended and demeaned before band-pass filtering in the 0.04–0.07 Hz 

range (Glerean et al., 2012). The frequency range of 0.04–0.07 Hz was chosen because when 

mapped to the gray matter this frequency band was shown to contain more reliable and 

functionally relevant information compared to other frequency bands, and to be less affected 

by noise (Biswal et al., 1995; Glerean et al., 2012; Achard et al., 2006; Buckner et al., 2009). 

Subsequently, the filtered time series were transformed to z-scores. For each sleep stage, 15 

participants were selected based on the presence of uninterrupted epochs of that sleep stage 

lasting more than 200 samples. Afterwards, the FC matrix was defined as the matrix of 

Pearson correlations between the fMRI signals of all pairs of regions of interest (ROIs) in 

the AAL template. To avoid confounds related to the length of the time series, the 

correlations were computed using only the first 200 vol of each sleep stage. Fixed-effect 

analysis was used to obtain group-level FC matrices, meaning that the Fisher’s R-to-z 

transform (z = atanh(R)) was applied to the correlation values before averaging over 

participants within each sleep stage.

2.6. Computational whole-brain model

The general approach followed to construct the semi-empirical model is presented in the left 

panel of Fig. 1. Two different sources of empirical data were combined in a model where 

local dynamics are given by weakly interacting nonlinear oscillators. DTI data provided an 

estimate of SC between the oscillators, fMRI was used to estimate the intrinsic oscillation 

frequency of the local dynamics, and also provided empirical FC matrices that were used to 

fit the simulations, and RNSs determined a natural prior to group the nodes that contributed 

independently to the final local bifurcation parameters.

The implemented whole-brain model consisted of a network of nonlinear oscillators coupled 

by SC. Each oscillator represents the dynamics at one of the 90 brain regions in the AAL 

template. The key neurobiological assumption is that dynamics of macroscopic neural 

masses can range from fully synchronous (i.e. activated state) to a stable asynchronous state 

governed by random fluctuations. A secondary assumption is that fMRI can capture the 

dynamics from both regimes (mediated by hemodynamic changes at a slower temporal 

scale, allowing to neglect the effect of signal transmission delays) with sufficient fidelity to 

be modeled by the equations.

Based on previous work (Jobst et al., 2017; Deco et al., 2017, 2018), the nonlinear 

oscillators were modeled by the normal form of a super-critical Hopf bifurcation. This type 

of bifurcation can change the qualitative nature of the solutions from a stable fixed point in 

phase space towards a limit cycle allowing the model to present self-sustained oscillations. 

While models of higher complexity could display analogous behavior, the normal form of a 

Ipiña et al. Page 7

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Hopf bifurcation was chosen for reasons of simplicity and generality, since it includes the 

minimal number of non-linearities representing this range of dynamics.

Without coupling, the local dynamics of brain region j was modeled by the complex 

equation:

dzj
dt = a+iωj zj − zj zj|

2
(1)

In this equation z is a complex-valued variable (zj = xj + iyj), and ωj is the intrinsic 

oscillation frequency of node j. The intrinsic frequencies ranged from 0.04 to 0.07 Hz and 

were determined by the averaged peak frequency of the bandpass-filtered fMRI signals of 

each individual brain region.

The parameter a is known as the bifurcation parameter and controls the dynamical behavior 

of the system. Fora < 0 the phase space presents a unique stable fixed point at zj = 0, thus the 

system asymptotically decays towards this point. For a > 0 the stable fixed point changes its 

stability, giving rise to a limit cycle and to self-sustained oscillations with frequency fj = 

ωj/2π and amplitude proportional to the square root of a. (Deco et al., 2017).

The coordinated dynamics of the resting state activity are modeled by introducing coupling 

determined by the SC. Nodes i and j are coupled by Cij (the i,j entry of the SC matrix). To 

ensure oscillatory dynamics for a > 0, the SC matrix was scaled to a maximum of 0.2 (weak 

coupling condition) (Deco et al., 2017). In full form, the coupled differential equations of the 

model are the following:

dxj
dt = dRe zj

dt = a − xj
2 − yj2 xj − ωjyj + G Σi Cij xi − xj + βηj t

dyj
dt = dIm zj

dt = a − xj
2 − yj2 yj + ωjxj + G Σi Cij yi − yj + βηj t

(2)

The parameter G represents a global coupling factor that scales SC equally for all the nodes. 

These equations were integrated to simulate empirical fMRI signals using the Euler-

Maruyama algorithm with a time step of 0.1 s ηj(t) represents additive Gaussian noise. 

When a is close to the bifurcation (a~0) the additive gaussian noise gives rise to complex 

dynamics as the system continuously switches between both sides of the bifurcation.

To illustrate the dynamical behavior of coupled nonlinear oscillators, we show the results 

obtained from two nodes in Fig. 1B and C. We present two representative cases: 1) one node 

(node 1) is in the dynamical regime of self-sustained oscillations (a = 0.4), and the other 

node (node 2) is close to the bifurcation (a~0); and 2) node 1 as before (a > 0) while node 2 

is at the stable fixed point regime (a = −0.4). For both examples, the value of the coupling 

coefficient C12 was set to 0.01. In the first case it is apparent that the coupling with 

synchronous dynamics at node 1 induces oscillations in node 2, while this does not happen 

when node 2 is at the fixed-point regime. This example illustrates how the bifurcation 

parameter, which is interpreted as determining the level of regional activation, relates to the 
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FC between the nodes, i.e. FC increases for coupled nodes when at least one of them is in 

the oscillatory regime and the other close to the bifurcation.

Priors for regional variations in the bifurcation parameters.

We extended previous modeling efforts by introducing additional parameters accounting for 

regional variations in the dynamical regime of the nodes. Introducing an independent 

bifurcation parameter for each individual node could result in a costly optimization 

procedure prone to overfitting. Thus, we considered priors to reduce the dimensionality by 

grouping the AAL nodes into possibly overlapping sets. We consider n of such groups, g1, 

……, gn, each contributing an independent coefficient Δa1, ……, Δan to the final bifurcation 

parameter of the node, which is computed as the linear combination:

ai = Σj = 1
n

Δajlgj i (3)

where 1gj is the indicator function of set gj (i.e. 1 if the node belongs to gj and 0 otherwise).

By introducing priors, we constrain how different groups of nodes can contribute 

independently to the final bifurcation parameters, while allowing for regional variation 

depending on the precise definition of the sets gj. We explored five different priors: the 

heuristic prior, based on identifying the blocks of regions with high correlation in the 

empirical FC matrix (determined from the crossings of a threshold given by the mean 

correlation, see Fig. S1 in the supplementary information), the ad-hoc equipartition prior 

(grouping the nodes in six regular partitions), the RSN prior (grouping the nodes by RSN 

membership), the random prior (randomly assigning the nodes to the groups) and the 

homogeneous prior (only one group containing all the nodes). The different priors are 

compared in the supplementary information (Figs. S2 and S3). All codes for the 

computational model and parameter optimisation are available at https://github.com/

iperezipina/Opt_HopfGenetic

2.7. Group simulated FC matrices

Once the coupling scaling factor G and the coefficientsΔai of the n groups of nodes are 

determined, our model simulates 10 Hz sampled time series that can be used to compute FC 

matrices of each state. To be compared with the empirical group averaged FC matrices 

described above, we processed the simulated signals as the empirical data to obtain the 

group simulated FC. First, we subsampled simulated time series to 0.5 Hz (2 samples per 

second, as in the empirical data), keeping the final time series 3000 samples long, since the 

empirical data was obtained from 15 subjects with 200 samples each and then bandpass 

filtered in the 0.04–0.07 Hz range. Finally, we computed the simulated FC as the Pearson’s 

correlation coefficient between the time series of each node.

2.8. Goodness of fit: structure similarity index (SSIM)

Our goal was to fit the model to the data recorded during different sleep stages by inferring 

the optimal coefficients Δaj. Different metrics can be used to determine the goodness of fit 

(GoF), such as the euclidean or correlation distance between the FC matrices, or the mean 
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and standard deviation of the Kuramoto order parameter computed from the Hilbert 

transform of the time series (Jobst et al., 2017). We opted to use a metric that balances 

sensitivity to absolute (e.g. euclidean distance) and relative (e.g. correlation distance) 

differences between the FC matrices, termed the structure similarity index (SSIM) (Zhou et 

al., 2004). This metric is based on three observables computed from a 2D array of values: 

the luminance, the contrast and the structure. The final distance between two arrays x and y 

is obtained from the product of the three terms l(x,y), c(x, y) and s(x, y) related to each of 

the observables:

SSIM x, y = l x, y α . c x, y β . s x, y γ

l x,y = 2μxμy + C1
μx2 + μy2 + C1

c x, y = σxσy + C2
σx2 + σy2 + C2

s x, y = σxy + C3
σxσy + C3

(4)

The exponents of each term are commonly set to α = β = γ = 1 , C1 = (0.01 L)2, C2 = (0.03 

L)2 and C3 = C2/2, with L depending on the dynamic range of the matrix. For correlation 

matrices between −1 and 1, L is set to 1 (Wang et al., 2004). The SSIM ranges between 0 

(lowest similarity) and 1 (highest similarity). The variables μx,μy, σx,σy and σxy are the local 

means, standard deviations, and cross-covariances of images x, y, respectively. We define 

goodness of fit between two FC matrices as GoF = SSIM.

2.9. Scaling of the structural coupling

The parameter G was selected by exhaustively exploring the model using a homogeneous 

bifurcation parameter (i.e. the same bifurcation parameter for all nodes). The GoF between 

empirical and simulated FC for wakefulness was computed over a 100 × 100 grid in 

parameter space, with the bifurcation parameter a in the [−0.2, 0.2] interval and G in the [0, 

3] interval. Before computing the simulated FC, the time series from the model were 

resampled to one sample per 2 s (final simulated time series are 3000 samples long, since 

empirical data was obtained from 15 subjects with 200 samples each) and bandpass filtered 

in the 0.04–0.07 Hz range. After averaging 50 independent repetitions we found the absolute 

maximum of GoF in a = 0 and G = 0.5, with a mean GoF of 0.3 (i.e. 30% similarity 

according to the SSIM). These results were used as initial conditions in the following model 

that incorporated regional variation in the bifurcation parameters, fixing G = 0.5 in further 

analyses.

2.10. Genetic algorithm for parameter optimization

After determining G, the n coefficients Δa1 ……, Δan remain to be optimized. The 

exhaustive exploration of the parameter space is computationally prohibitive, thus we 

resorted to the application of a genetic algorithm from Matlab Global Optimization Toolbox 

(https://www.mathworks.com/help/gads/ga.html) to optimize the co-efficients. This 

stochastic optimization procedure is inspired in biological evolution, and is based on an 

algorithmic representation of natural selection consisting of letting the most adapted 
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individuals prevail in the next generation, spreading the genes responsible for their better 

adaptation. In terms of this algorithmic representation, the most adapted individuals are 

those that minimize a target fitness function (TFF) that in our work is defined as TFF = 1-

GoF. The algorithm starts with a generation of 10 sets of parameters (“individuals”) chosen 

randomly close to zero, and generates a population of outputs with their corresponding TFF. 

A score proportional to the TFF is assigned to each individual. Afterwards, a group of 

individuals is chosen based on their score (“parents”), and the operations of crossover, 

mutation and elite selection are applied to them to create the next generation. These three 

mechanisms can be briefly described as follows: 1) elite selection occurs when an individual 

of a generation shows an extraordinarily low TFF in comparison with the other individuals, 

thus this solution is replicated without changes in the next generation; 2) the crossover 

operator consists of combining two selected parents to obtain a new individual that carries 

information from each parent to the next generation; 3) the mutation operator changes one 

selected parent to induce a random alteration in an individual of the next generation. In our 

implementation, 20% of the new generation was created by elite selection, 60% by crossover 

of the parents and 20% by mutation. A new population is thus generated (“offspring”) that is 

used iteratively as the next generation until at least one of the following halting criteria is 

met: 1) 200 generations are reached (i.e. limit of iterations), 2) the best solution of the 

population remains constant for 50 generations, 3) the average TFF across the last 50 

generation is less than 1e−6. We restricted the size of the population to N = 10 in order to 

obtain 100 runs of the optimization procedure for each case, resulting in affordable 

simulation time. In Fig.S7 the relationship between N and the mean/distribution of solutions 

generated with the genetic algorithm are displayed.

The output of the genetic algorithm contains the simulated FC with the highest FC, and the n 

optimal coefficients Δa1 ……, Δan, representing the independent contributions of the groups 

of nodes to the local bifurcation parameters. A schematic representation of the implemented 

genetic algorithm is shown in Fig. 2.

2.11. Modeling transitions between brain states

The optimization procedure was performed for the four brain states, ranging from 

wakefulness to deep sleep. In each case six parameters were obtained, corresponding to the 

coefficients in Eq. (3). After obtaining the optimal parameters, we modeled an external 

oscillatory perturbation and investigated whether it could induce a transition between deep 

sleep (N3) and wakefulness. The stimulus was represented as an external additive periodic 

forcing term incorporated to the equation of the j node, given by Fj = F0jcos ωjt , where F0j is 

the coefficient of the forcing and ωj is the natural frequency of the node j. The effects of the 

forcing were investigated systematically for all 45 pairs of homotopic regions in the AAL 

atlas. The purpose of this perturbation was to model the effects of transcranial alternating 

current stimulation (tACS).

This forcing was initially applied for the parameters chosen to reproduce deep sleep FC, 

with the forcing amplitude (F0j ) of node j and its homotopic pair being parametrically 

increased from 0 to 2 in steps of 0.05 (averaging 100 independent simulations for each node 
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pair and F0j value). For each value of F0j the FC matrix was computed and its similarity to 

the wakefulness FC was determined as follows,

ΔGoFnorm =
GoF FCsimW, FCempW − GoF FCsimf, FCempW

GoF FCsimW, FCempW − GoF FCsimN3, FCempW
(5)

In this equation, FCsimf is the FC matrix with forcing,FCempW the empirical FC matrix 

during wakefulness, FCsimW the simulated FC matrix for wakefulness, and FCsimN3 the 

simulated matrix for N3 sleep (i.e. the initial condition before the forcing is introduced). 

According to this normalization, as ΔGoFnorm approaches 0, the simulation starting from the 

optimal N3 bifurcation parameters plus the external forcing approaches the best empirical fit 

of the model to the wakefulness FC. Conversely, as ΔGoFnorm approaches 1, the forcing 

does not change the FC in the direction of the optimal FC for wakefulness.

3. Results

We first explored four different priors to determine the brain regions that contributed 

independently to the final local bifurcation parameters of the model: random, equipartition, 

heuristic and RSNs priors. In the random prior we randomly assigned nodes to six groups 

for each optimization procedure. In the equipartition prior the nodes were grouped 

considering a regular partition into six groups (i.e. node 1 to 15 belonged to the first group, 

node 16 to 30 belonged to the second group, and so on). In the heuristic prior the grouping 

was driven by the empirical awake FC matrix (see Fig. S1 in the supplementary 

information). In the RSN prior we assigned the nodes to groups based on membership to six 

different RSNs obtained from Beckmann et al. (2005) (Vis: primary visual cortex, ES: 

extrastriate cortex, Aud: regions associated with auditory processing, SM: sensorimotor 

regions, DM: default mode network, EC: executive control network). Note that a node can 

belong to more than one RSN; in that case, each of the overlapping RSNs contributes 

independently to the linear combination that yields the local bifurcation parameter. These 

four priors result in models with six independent free parameters. Finally, in the 

homogeneous prior all the nodes were assigned to the same group, therefore only one 

bifurcation parameter was used, as in Jobst et al. (2017). In the following we show and 

compare results obtained using different priors, and subsequently apply the model with the 

best prior to obtain insights on the possible mechanisms underlying the progressive 

transition from wakefulness to deep sleep.

3.1. Results of whole-brain modeling of wakefulness FC for the different priors

Results obtained using the equipartition, heuristic and RSN priors are compared in Fig. 3A, 

B and 3C, respectively. In the three cases the simulated FC approximated the empirical FC 

(the distance between simulated and empirical FC can be observed in Fig. 3E). The grouping 

of the nodes for the three priors is shown in the bottom part of panels A, B and C. Nodes 

from 1 to 45 are regions in the left hemisphere while the corresponding homotopic regions 

are ordered from node 90 to 46, thus the bottom-left and upper-right sub-matrices (along 

diagonal) stands for intra-hemispheric connections and upper-left and lower-right 

submatrices are the inter-hemispheric connections (along contradiagonal) In particular, the 
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four sub-matrices corresponding to groups of nodes with high FC that appear on the 

diagonal and contradiagonal of all matrices are reproduced by the three priors. . The main 

divergence from empirical FC is manifested in the relatively small values on the 

contradiagonals, indicating that the models underestimated homotopic FC. This result was 

expected from the known underestimation of inter-hemispheric SC by DTI-based 

tractography (Deco et al., 2014; Messé et al., 2014; Reveley et al., 2015).

In spite of the ad-hoc selection of groups in the equipartition prior and in the empirically-

driven selection of groups (heuristic prior), grouping the nodes based on RSN membership 

resulted in the best GoF, as shown in Fig. 3E. It is important to note that allowing 

independent regional contributions to the bifurcation parameters improved the GoF beyond 

what would be expected from simply increasing the number of free parameters in the model. 

This is because, as shown in Fig. 3E, random and equipartition assignment of the 

coefficients to six groups yielded a GoF comparable to that of the model using the same 

bifurcation parameter for all nodes (homogeneous prior). The statistical comparison of the 

GoF for all pairs of priors is shown in Fig. S4 of the supplementary information.

The optimal parameters for wakefulness FC are shown in Fig. 4 for the heuristic (upper 

panel) and RSN (bottom panel) priors. The violin plots show the distribution of optimal 

coefficients across 100 independent optimizations, highlighting the convergence of the 

genetic algorithm. The parameters shown in Fig. 4 correspond to the coefficients that the 

nodes within each group contribute to the linear combination in Eq. (3). Thus, positive 

values (Vis and SM networks) indicate a contribution towards oscillatory dynamics at the 

limit cycle, while negative values (ES, Aud, DM, and EC networks) indicate a contribution 

towards noise-dominated dynamics at the fixed point. A replication with a larger number of 

independent optimization is shown in Fig. S5 for the RSN prior.

3.2. Changes in regional dynamics from wakefulness to deep sleep

Based on the results shown in Fig. 3E, we selected the RSNs as a canonical basis to 

constrain the independent parameters in our model. Next, we fitted the whole-brain model to 

the empirical FC obtained during wakefulness, N1, N2 and N3 sleep. The estimated 

parameters correspond to the coefficients that each node contributes to the linear 

combination yielding the final local bifurcation parameter.

The comparison of the optimal simulated FC matrices (average of 100 independent runs of 

the optimization procedure using the RSN prior) vs. the empirical FC is shown in Fig. 5. 

While for all stages the simulated intra-hemispheric FC resembled the empirical matrix, the 

issue of missing homotopic FC persisted during sleep and, for N3 sleep, the underestimation 

of inter-hemispheric FC extended to pairs of nonhomotopic regions. Fig. 5B shows 

simulated FC obtained after setting all homotopic weights (i.e. the contradiagonal) in SC to 

the maximum value of 0.2, following previous work by Deco and colleagues (Deco et al., 

2014) and Messé and colleagues (Messé et al., 2014). As expected from these studies, this 

modification did not only improve the simulated homotopic FC, but also the overall GoF by 

inducing a higher similarity between simulated and empirical non-homotopic inter-

hemispheric FC. This ad-hoc modification was performed to show how the limitations in SC 
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computation affect the optimal GoF. In Fig. S6 of the supplementary information we show 

the optimal coefficients with and without the ad-hoc inclusion of contradiagonal SC weights.

Fig. 6 shows the parameters corresponding to the optimal simulated FC matrices presented 

in Fig. 5A. The upper panels show violin plots for the distribution of the coefficients per 

RSN and sleep stage across 100 independent optimizations. The bottom panels present a 

comparison of these distributions for all pairs of stages in terms of Cohen’s d (dCohen). The 

Cohen’s d measures the effect size in terms of the difference between the means of two 

populations (μ1,2) and the pooled standard deviations (s) as follows: d =
μ1 − μ1

s . We related 

Cohen’s d values to the effect size using a standard criterion (Sawilowsky, 2019): dCohen<0.2 

is considered very low effect size, while dCohen>0.8 is considered very high effect size. 

Primary visual nodes (Vis network) contributed towards oscillatory dynamics during 

wakefulness, but this contribution progressively approached zero as the subjects transitioned 

towards N3 sleep. This appears reflected in the matrix containing the dCohen values, since the 

effect size is in the “very large” range (dCohen> 0.8) for the comparison of N3 vs. all stages. 

Results were similar for sensorimotor regions (SM network). Conversely, default mode 

regions (DM network) approached zero during sleep from negative coefficient values, i.e. 

local dynamics unfolded around a stable fixed-point during wakefulness, and approached the 

bifurcation progressively as the subjects transitioned towards N3 sleep. The remaining RSNs 

did not present clear trends, as their coefficients remained relatively stable around negative 

values (ES and Aud networks), or values very close to the bifurcation point (EC network).

Since the final regional bifurcation parameter of each node is obtained through linear 

combination of the coefficients of each group that node belongs to (Eq. (3)), for the nodes 

belonging to a single RSN their coefficients are equal to their final bifurcation parameters. 

However, this does not need to be the case for multiple RSN memberships. The differences 

in the final bifurcation parameters (wakefulness vs. N1, N2 and N3 sleep) are shown 

rendered into brain anatomy in Fig. 7. Sleep was modeled by a reduction in bifurcation 

parameter in nodes belonging to sensory and motor networks. The opposite result was 

observed for nodes belonging to parietal and frontal regions that can be included in the 

DMN. This result was also present for N2 and N3 sleep vs. wakefulness, with the addition of 

frontoparietal and temporal nodes becoming shifted from fixed point towards oscillatory 

dynamics.

3.3. Modeling the qualitative behavior of subcortical nodes during the wake-sleep 
transition

The onset of sleep is known to bring about changes in the activity and FC of subcortical 

nuclei, especially those located within the thalamus and hypothalamus (Magnin et al., 2010; 

Picchioni et al., 2014; Tagliazucchi and Laufs, 2014). The thalamus consists of a multitude 

of nuclei of neurons densely connected by reciprocal pathways with the cerebral cortex, 

which have multiple functions, including acting as a relay station between sensory systems 

and cortex (Sherman and Guillery, 1996). It has been speculated that changes in thalamic 

activity during sleep onset could be related to the need of isolating the brain from external 

arousing stimuli (Magnin et al., 2010). Thalamic deactivation precedes cortical deactivation, 
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leading us to expect changes in the bifurcation parameters of subcortical nuclei during N1 

sleep.

We extended the RSN prior to include an additional set of nodes corresponding to 

subcortical structures within the AAL atlas (thalamus, globus pallidus, putamen and caudate, 

all bilateral). It is interesting to note that since these structures are included in several RSNs, 

their co-efficients and the final bifurcation parameters need not necessarily be equal. Thus, 

adding these nodes as an independent group allowed us to test whether we could reproduce 

known neurophysiological changes that occur at the onset of sleep, and to evaluate whether 

parameters that are “hidden” within the model as part of the combination of variables 

determining the observable local dynamics can contain meaningful information.

The results of this analysis are presented in Fig. 8. The left panel shows the coefficients of 

the subcortical nodes as a function of sleep stage. It can be seen that the contribution of these 

nodes to the bifurcation parameter is consistently negative, with the largest negative value 

during N1 sleep. dCohen values for the comparison between all sleep stages confirm that N1 

sleep presents subcortical coefficients different to those of wakefulness, N2 and N3 sleep. 

Since moving away from synchronized oscillatory dynamics is associated with decreased 

FC, this result is consistent with previous work showing that subcortical regions become 

deactivated and decoupled from the cortex during early sleep (Magnin et al., 2010; Picchioni 

et al., 2014; Tagliazucchi and Laufs, 2014). The right panel shows that this result is less 

evident in the bifurcation parameters, with the effect sizes becoming smaller and reaching 

>0.8 only for the comparison against N3 sleep. This suggests that information concerning 

the subcortical decoupling is more readily retrieved from hidden variables (coefficients) than 

from the bifurcation parameters, which are directly related to the observables produced by 

the model.

3.4. Modeling externally induced transitions from deep sleep to wakefulness

An important justification for the development of computational models of whole-brain 

activity is the in silico rehearsal of invasive and non-invasive brain interventions (e.g. tACS). 

Exploratory computational analyses could help identify optimal external perturbations to 

induce transitions between brain states.

We modified our model to simulate external perturbations with the aim of inducing an 

arousal from the deepest sleep stage (N3) to wakefulness. Our simulated stimulation 

protocol was based on an additive oscillatory forcing applied to pairs of homotopic nodes 

using the natural frequency of those nodes to maximize the effect of the perturbation. We 

exhaustively explored the values of the forcing amplitude F0 from 0 to 2 in steps of 0.05, 

applied to all 45 pairs of homotopic nodes. The capacity of the stimulation to induce 

transitions between states was assessed using the metric ΔGoFnorm (see Eq. (5)).

The qualitative behavior of ΔGoFnorm as a function of F0 was heterogeneous and depended 

on the stimulated pair of nodes. We identified 10 pairs of nodes presenting ΔGoFnormvalues 

below 0.5 for at least one value of F0; in other words, by stimulating each of these 10 pairs 

of nodes, the simulated FC was closer to that of wakefulness than to deep sleep.
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Fig. 9 shows the behavior of these pairs of nodes against F0. Nodes presented three different 

qualitative behaviors; these are indicated using different colors in the plot of ΔGoFnorm vs. 

F0. In red, stimulation of the posterior cingulate cortex (PCC) monotonously decreased 

ΔGoFnorm up to 0.24. In green, the inferior occipital gyrus (IOG) reached a minimum 

ΔGoFnorm (0.31) for an intermediate F0 value, and then remained approximately constant. 

Finally, the middle temporal gyrus (MTG, shown in blue) presented a clear global minimum 

of ΔGoFnorm (0.25) which then increased as a function of F0.

4. Discussion

The usefulness of both descriptive and computational models in neuroscience comes from a 

balance between complexity and interpretability. Models strive to reduce the intrinsic 

complexity of the human brain, producing interpretable explanations linking behavior, 

cognition and neurobiology. Computational models based on interpretable parameters can be 

used to study how empirical observables depend on these parameters in isolation of others of 

less interest, by means of the freedom granted by in silico exploration. Global brain states 

are frequently described and modeled in terms of their level of consciousness, thus 

increasing the ease of description at the expense of a very simplified unidimensional 

characterization. We developed and evaluated models of whole-brain activity with 

anatomically heterogeneous parameters, in line with the proposal for the multidimensional 

characterization of states of consciousness (Bayne et al., 2016, 2017), i.e. the proposal that 

independent factors must be considered for a full characterization of conscious states.

These models are built upon previous work using supercritical Hopf bifurcations to represent 

different regimes of local dynamics in fMRI data (Deco et al., 2017a, 2017b; Jobst et al., 

2017, Donnelly-Kehoe et al., 2019). We expanded the parameter space to account for 

regional variations in the level of activation, interpreted as the capacity of a node to engage 

in sustained large amplitude synchronous activity. The functional segregation of the human 

brain into systems that are differentially activated during cognition is known since the 

earliest days of neurology, and this knowledge was greatly advanced by the introduction of 

non-invasive neuroimaging tools (Frackowiak, 2017). Due to this specialization, even if 

different brain states bring about global changes in brain metabolism, the functional 

consequences of these changes are likely to manifest regional dependence. Thus, we 

simulated FC for the different levels of arousal in the wake-deep sleep progression by 

introducing parameters representing the capacity of each chosen group of nodes to drive the 

local dynamics towards or away from the Hopf bifurcation.

Our approach was initially agnostic with regard to the grouping of the nodes within a six-

dimensional parameter space. We determined that the RSN prior overperformed a grouping 

that heuristically captured the behavior of correlations in the empirical FC matrix, as well as 

an ad hoc grouping based on node equipartition. The relevance of the anatomical priors is 

evident from the observation that, regardless of incorporating five new independent 

parameters, the random assignment of nodes to the groups led to GoF similar to that 

obtained using the same parameter for all nodes (i.e. the homogeneous prior). This result 

represents a useful development in terms of model building, allowing multidimensional and 

mechanistic characterizations of global brain states beyond the intuition of “level of 
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consciousness”. The dimensions of analysis are given by the choice of anatomical priors, 

and the mechanisms (in our case, differences in dynamical stability associated with changes 

in bifurcation parameters) can be explored by selecting different models for the local 

dynamics. The choices are not limited to RSNs and non-linear oscillators; for instance, an 

alternative can be found in recent work using serotonin receptor density maps to constrain 

the local gain in mean field models, and to investigate the mechanisms underlying the acute 

effects of a psychedelic compound (Deco et al., 2018b).

The simplifications of our computational model are justified by assumptions whose validity 

should be discussed before engaging in the interpretation of our findings. Oscillatory 

dynamics are ubiquitous in electrophysiological data, and reconfigurations of the power 

spectrum of collective neural oscillations are a landmark feature of transitions between 

different brain states (Steriade et al., 1993; Buzsaki, 2006). While fMRI is limited with 

respect to the identification of synchronous dynamics due to its comparatively low sampling 

rate, reliable reports of hemodynamic oscillations exist (obtained using ultrafast fMRI 

sequences [McAvoy et al., 2008; Baria et al., 2011]). These oscillations are likely of neural 

origin, since multimodal EEG-fMRI studies demonstrated their positive correlation with 

infra-slow (0.01–0.1 Hz) fluctuations in scalp potentials (Keinänen et al., 2018). More 

sophisticated models of mesoscopic brain activity, such as neural mass models, present 

several bifurcations including a supercritical Hopf from noisy to oscillatory dynamics 

(Grimbert and Faugeras, 2006; Coombes, 2010). By adopting the normal form of the 

bifurcation as a model, we made the further simplification of each node having a single 

dominant intrinsic oscillation frequency. Finally, our model neglects conduction delays since 

the temporal scale of fMRI oscillations is much slower than signal propagation times 

(Cabral et al., 2011). The validity of this simplification also depends on the temporal 

averaging of FC, since conduction delays could have an effect on the intermittency and 

lifespan of transient global synchronization patterns observed using fMRI.

The synergy between different empirical sources of data and our model for regional 

dynamics allows interpretation of the parameters beyond what could be inferred from fMRI 

data alone. For instance, while oscillatory dynamics in the fMRI signals could be assessed 

by directly computing the power spectrum from the data (Baria et al., 2011), our model 

allows to disentangle the intrinsic oscillatory dynamics of each region from synchronization 

arising due to collective effects (i.e. coupling between nodes with different degree of 

proximity to the bifurcation; see the example provided in Fig. 1). Furthermore, our proposed 

model includes hidden variables, the coefficientΔai, whose linear combination yields the 

bifurcation parameter, which is directly related to an empirical observable (the proximity to 

synchronous dynamics). However, as shown in Fig. 8 (left panel), these parameters can 

represent neurobiologically relevant results such as the known subcortical uncoupling and 

deactivation at sleep onset (Magnin et al., 2010), which can be obscured in terms of the 

bifurcation parameters (Fig. 8, right panel). This suggests that model fitting using individual 

fMRI and DTI data could yield new parameters with valuable contributions towards brain 

state discrimination, with potential applications in the training of machine learning models 

for neurological disease diagnosis and prognosis.
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The regional distribution of the estimated bifurcation parameters pictures the division of the 

cortex into two different dynamical regimes along the progression from wakefulness to deep 

sleep. Sensory areas approached the bifurcation from oscillatory dynamics, while higher-

level regions such as those in the DMN presented the opposite behavior. In terms of FC, 

these changes translated into decreased long-range correlations between the simulated time 

series, consistent with multiple reports of regionally decreased FC during sleep (Horovitz et 

al., 2009; Sämann et al., 2011; Tagliazucchi and Laufs, 2014; Tagliazucchi and Van 

Someren, 2017). Recent work by Song and colleagues showed that the onset of sleep 

increased the power of BOLD oscillations throughout widespread cortical and subcortical 

regions (Song et al., 2019). An interesting observation arising from our work is that sleep 

gives rise to a state of diminished FC and decreased activation in several regions. However, 

by virtue of increased proximity to the Hopf bifurcation, these changes also endow sleep 

with higher synchronizability, i.e. the latent capacity to react upon external perturbations. In 

this sense, our model captures the difference between an on-line activated state with ongoing 

stable frontoparietal dynamics (wakefulness), and an off-line deactivated state with reduced 

and noisy intrinsic dynamics in sensory regions, but frontoparietal dynamics highly reactive 

to environmental perturbations (sleep). Note that stability refers to proximity to the Hopf 

bifurcation. In terms of the dimensions of analysis suggested by Bayne and colleagues, this 

can be interpreted as increased global accessibility coexisting with reduced sensory gating.

We note that the interpretation of the model also depends on the metric chosen to determine 

the GoF. Previous studies used metrics related to FC dynamics and metastability (Hansen et 

al., 2015; Deco et al., 2017; Orio et al., 2018), capturing the statistical distribution of FC 

temporal fluctuations. However, the optimal fit in this sense is not necessarily the optimal fit 

in the sense of reproducing the temporally averaged FC. A similar argument applies to GoF 

metrics based on the mean and variance of the Kuramoto order parameter. Since our aim was 

to investigate how regional dynamics related to inter-areal coordination during different 

brain states, the use of a GoF metric based on the static FC matrices emerged as a natural 

choice. However, future studies could optimize local parameters in terms of observables 

related to the level of metastability. Also, future models based on non-equilibrium dynamics 

(e.g. chaotic oscillators) (Li and Chen, 2004; Orio et al., 2018) could be explored as means 

to simultaneously describe static FC and its temporal fluctuations.

We addressed the effect of external oscillatory perturbations, complementing previous 

modeling work using other perturbation protocols (Roberts and Robinson, 2012; Deco et al., 

2017, 2018, 2019; Saenger et al., 2017). The choice of periodic forcing aims to capture the 

effects of tACS, one of the most currently used and researched protocols for non-invasive 

electrical stimulation. The use of nodal natural oscillatory frequency (inferred from fMRI 

data) in the additive forcing term can be justified by reports of electrophysiological 

oscillations being entrained by in-phase tACS stimulation (Helfrich et al., 2014), even 

though this mechanism has been recently disputed (Lafon et al., 2017). Simulated periodic 

forcing at pairs of homotopic regions informed potential mechanisms underlying arousal 

from deep sleep. Regions within sensory systems (i.e. temporal and occipital lobes) and the 

SC hub located at the posterior cingulate gyrus (Hagmann et al., 2018) presented the highest 

capacity to transition towards wakefulness. The relationship between forcing amplitude (F0) 

and similarity to wakefulness (ΔGoFnorm) was complex and region-specific. Sensory regions 
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showed an optimal ΔGoFnorm at an intermediate value, with saturation or even diminishing 

ΔGoFnorm for increasing F0, consistent with results obtained using more biophysically 

realistic models by Ali and colleagues (Ali et al., 2013). In contrast, forcing at the posterior 

cingulate gyrus yielded a monotonously decreasing relationship between ΔGoFnorm and F0. 

The rich connectivity of this node suggests that the effects of the forcing may depend on 

indirect connections reaching other critical regions through one or more intermediate steps. 

Considering this, it is critical that the development of non-invasive stimulation protocols to 

induce transitions between brain states is informed by computational models that explore the 

effects of combined stimulation at multiple brain regions. In the same way we used a genetic 

algorithm combined with anatomical priors for dimensionality reduction to optimize the TFF 

defined as 1-GoF, future studies could follow this method for the optimization of stimulation 

protocols to induce transitions. An important caveat is that the source current density 

resulting from tACS stimulation bears a complex relationship with the scalp position of the 

electrodes, since intermediate tissues can distort the currents and a considerable fraction of 

the current leaks through conductive non-neural tissue (Kasinadhuni et al., 2017). Thus, the 

in silico rehearsal of stimulation protocols cannot prescind of personalized models of current 

propagation (Huang et al., 2017).

In conclusion, we implemented a computational model synthesizing different sources of 

empirical data to achieve a mechanistic and multidimensional description of intermediate 

complexity of the different brain states visited during the progression from wakefulness to 

deep sleep. This model led us to a number of insights narrowing the space of possible 

dynamical mechanisms allowing the transition between self-organized brain states and their 

stabilization. We addressed the conceptual validation of our model by contrasting its 

predictions with known neurobiological results. As a relatively simple and interpretable 

model whose flexibility and specificity emerges from the incorporation of empirical 

information, we expect our developments will find applications in the multidimensional 

characterization of other brain states, and in the rehearsal of protocols to induce transitions 

between them.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.

References

Donnelly-Kehoe P, Saenger VM, Lisofsky N, Kühn S, Kringelbach ML, Schwarzbach J, et al., 2019 
Reliable local dynamics in the brain across sessions are revealed by whole-brain modeling of resting 
state activity. Hum. Brain Mapp 10.1002/hbm.24572.

Achard S, Salvador R, Whitcher B, Suckling J, Bullmore ED, 2006 Aresilient, low-frequency, small-
world human brain functional network with highly connected association cortical hubs. J. Neurosci 
26 (1), 63–72. [PubMed: 16399673] 

Ali MM, Sellers KK, Fröhlich F, 2013 Transcranial alternating current stimulation modulates large-
scale cortical network activity by network resonance. J. Neurosci 33 (27), 11262–11275. [PubMed: 
23825429] 

Allen PJ, Polizzi G, Krakow K, Fish DR, Lemieux L, 1998 Identification of EEG events in the MR 
scanner: the problem of pulse artifact and a method for its subtraction. Neuroimage 8 (3), 229–239. 
[PubMed: 9758737] 

Ipiña et al. Page 19

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Baker AP, Brookes MJ, Rezek IA, Smith SM, Behrens T, Smith PJP, Woolrich M, 2014 Fast transient 
networks in spontaneous human brain activity. Elife 3, e01867. [PubMed: 24668169] 

Baria AT, Baliki MN, Parrish T, Apkarian AV, 2011 Anatomical and functional assemblies of brain 
BOLD oscillations. J. Neurosci 31 (21), 7910–7919. [PubMed: 21613505] 

Bartolomei F, Naccache L, 2011 The global workspace (GW) theory of consciousness and epilepsy. 
Behav. Neurol 24 (1), 67–74. [PubMed: 21447900] 

Bayne T, Hohwy J, Owen AM, 2016 Are there levels of consciousness? Trends Cognit. Sci 20 (6), 
405–413. [PubMed: 27101880] 

Bayne T, Hohwy J, Owen AM, 2017 Reforming the taxonomy in disorders of consciousness. Ann. 
Neurol 82 (6), 866–872. [PubMed: 29091304] 

Beckmann CF, DeLuca M, Devlin JT, Smith SM, 2005 Investigations into resting-state connectivity 
using independent component analysis. Phil. Trans. Biol. Sci 360 (1457), 1001–1013.

Behrens TE, Woolrich MW, Jenkinson M, Johansen-Berg H, Nunes RG, Clare S, Matthews PM, Brady 
JM, Smith SM, 2003 Characterization and propagation of uncertainty in diffusion-weightedMR 
imaging. Magn. Reson. Med 50, 1077–1088. [PubMed: 14587019] 

Behrens TE, Berg HJ, Jbabdi S, Rushworth MF, Woolrich MW, 2007 Probabilistic diffusion 
tractography with multiple fibre orientations: what can we gain? Neuroimage 34, 144–155. 
[PubMed: 17070705] 

Berkovitch L, Dehaene S, Gaillard R, 2017 Disruption of conscious access in schizophrenia. Trends 
Cognit. Sci 21 (11), 878–892. [PubMed: 28967533] 

Berry RB, Brooks R, Gamaldo CE, Harding SM, Marcus CL, Vaughn BV, 2012 The AASM Manual 
for the Scoring of Sleep and Associated Events Rules, Terminology and Technical Specifications, 
Darien, Illinois, vol. 176 American Academy of Sleep Medicine.

Biswal B, Zerrin Yetkin F, Haughton VM, Hyde JS, 1995 Functional connectivity in the motor cortex 
of resting human brain using echo-planar MRI. Magn. Reson. Med 34 (4), 537–541. [PubMed: 
8524021] 

Breakspear M, 2017 Dynamic models of large-scale brain activity. Nat. Neurosci 20 (3), 340. 
[PubMed: 28230845] 

Buckner RL, Sepulcre J, Talukdar T, Krienen FM, Liu H, Hedden T, et al., 2009 Cortical hubs revealed 
by intrinsic functional connectivity: mapping, assessment of stability, and relation to Alzheimer’s 
disease. J. Neurosci 29 (6), 1860–1873. [PubMed: 19211893] 

Buzsaki G, 2006 Rhythms of the Brain. Oxford University Press.

Cabral J, Hugues E, Sporns O, Deco G, 2011 Role of local network oscillations in resting-state 
functional connectivity. Neuroimage 57 (1), 130–139. [PubMed: 21511044] 

Coombes S, 2010 Large-scale neural dynamics: simple and complex. Neuroimage 52 (3), 731–739. 
[PubMed: 20096791] 

Cordes D, Haughton VM, Arfanakis K, Carew JD, Turski PA, Moritz CH, et al., 2001 Frequencies 
contributing to functional connectivity in the cerebral cortex in “resting-state” data. Am. J. 
Neuroradiol 22 (7), 1326–1333. [PubMed: 11498421] 

Damoiseaux JS, Rombouts SARB, Barkhof F, Scheltens P, Stam CJ, Smith SM, Beckmann CF, 2006 
Consistent resting-state networks across healthy subjects. Proc. Natl. Acad. Sci. Unit. States Am 
103 (37), 13848–13853.

Deco G, McIntosh AR, Shen K, Hutchison RM, Menon RS, Everling S, et al., 2014 Identification of 
optimal structural connectivity using functional connectivity and neural modeling. J. Neurosci. 34 
(23), 7910–7916. [PubMed: 24899713] 

Deco G, Kringelbach ML, Jirsa VK, Ritter P, 2017a The dynamics of resting fluctuations in the brain: 
metastability and its dynamical cortical core. Sci. Rep 7 (1), 3095. [PubMed: 28596608] 

Deco G, Tagliazucchi E, Laufs H, Sanjuán A, Kringelbach ML, 2017b Novel intrinsic ignition method 
measuring local-global integration characterizes wakefulness and deep sleep. Eneuro 4 (5).

Deco G, Cabral J, Saenger VM, Boly M, Tagliazucchi E, Laufs H, et al., 2018a Perturbation of whole-
brain dynamics in silico reveals mechanistic differences between brain states. Neuroimage 169, 
46–56. [PubMed: 29225066] 

Ipiña et al. Page 20

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Deco G, Cruzat J, Cabral J, Knudsen GM, Carhart-Harris RL, Whybrow PC, et al., 2018b Whole-brain 
multimodal neuroimaging model using serotonin receptor maps explains non-linear functional 
effects of LSD. Curr. Biol 28 (19), 3065–3074. [PubMed: 30270185] 

Deco G, Cruzat J, Cabral J, Tagliazucchi E, Laufs H, Logothetis NK, Kringelbach ML, 2019 
Awakening: predicting external stimulation to force transitions between different brain states. Proc. 
Natl. Acad. Sci. Unit. States Am 116 (36), 18088–18097.

Dehaene S, Naccache L, 2001 Towards a cognitive neuroscience of consciousness: basic evidence and 
a workspace framework. Cognition 79 (1–2), 1–37. [PubMed: 11164022] 

Frackowiak RS, 2017 The functional architecture of the brain In: The Brain. Routledge, pp. 105–130.

Friston KJ, Williams S, Howard R, Frackowiak RS, Turner R, 1996 Movement-related effects in fMRI 
time-series. Magn. Reson. Med 35 (3), 346–355. [PubMed: 8699946] 

Fukushima M, Sporns O, 2018 Comparison of fluctuations in global network topology of modeled and 
empirical brain functional connectivity. PLoS Comput. Biol 14 (9), e1006497. [PubMed: 
30252835] 

Ghosh A, Rho Y, McIntosh AR, Kötter R, Jirsa VK, 2008 Noise during rest enables the exploration of 
the brain’s dynamic repertoire. PLoS Comput. Biol 4 (10), e1000196. [PubMed: 18846206] 

Glerean E, Salmi J, Lahnakoski JM, Jääskeläinen IP, Sams M, 2012 Functional magnetic resonance 
imaging phase synchronization as a measure of dynamic functional connectivity. Brain Connect. 2 
(2), 91–101. [PubMed: 22559794] 

Glover GH, Li TQ, Ress D, 2000 Image-based method for retrospective correction of physiological 
motion effects in fMRI: RETROICOR. Magn. Reson. Med 44 (1), 162–167. [PubMed: 10893535] 

Greicius MD, Supekar K, Menon V, Dougherty RF, 2009 Resting-state functional connectivity reflects 
structural connectivity in the default mode network. Cerebr. Cortex 19 (1), 72–78.

Grimbert F, Faugeras O, 2006 Bifurcation analysis of Jansen’s neural mass model. Neural Comput. 18 
(12), 3052–3068. [PubMed: 17052158] 

Hagmann P, Cammoun L, Gigandet X, Meuli R, Honey CJ, Wedeen VJ, Sporns O, 2008 Mapping the 
structural core of human cerebral cortex. PLoS Biol. 6 (7), e159. [PubMed: 18597554] 

Haimovici A, Tagliazucchi E, Balenzuela P, Chialvo DR, 2013 Brain organization into resting state 
networks emerges at criticality on a model of the human connectome. Phys. Rev. Lett 11 (17), 
178101.

Hansen EC, Battaglia D, Spiegler A, Deco G, Jirsa VK, 2015 Functional connectivity dynamics: 
modeling the switching behavior of the resting state. Neuroimage 105, 525–535. [PubMed: 
25462790] 

Helfrich RF, Schneider TR, Rach S, Trautmann-Lengsfeld SA, Engel AK, Herrmann CS, 2014 
Entrainment of brain oscillations by transcranial alternating current stimulation. Curr. Biol 24 (3), 
333–339. [PubMed: 24461998] 

Hobson JA, Pace-Schott EF, 2002 The cognitive neuroscience of sleep: neuronal systems, 
consciousness and learning. Nat. Rev. Neurosci 3 (9), 679–693. [PubMed: 12209117] 

Honey CJ, Kötter R, Breakspear M, Sporns O, 2007 Network structure of cerebral cortex shapes 
functional connectivity on multiple time scales. Proc. Natl. Acad. Sci. Unit. States Am 104 (24), 
10240–10245.

Honey CJ, Sporns O, Cammoun L, Gigandet X, Thiran JP, Meuli R, Hagmann P, 2009 Predicting 
human resting-state functional connectivity from structural connectivity. Proc. Natl. Acad. Sci. 
Unit. States Am 106 (6), 2035–2040.

Horovitz SG, Braun AR, Carr WS, Picchioni D, Balkin TJ, Fukunaga M, Duyn JH, 2009 Decoupling 
of the brain’s default mode network during deep sleep. Proc. Natl. Acad. Sci. Unit. States Am 106 
(27), 11376–11381.

Huang Y, Liu AA, Lafon B, Friedman D, Dayan M, Wang X, et al., 2017 Measurements and models of 
electric fields in the in vivo human brain during transcranial electric stimulation. Elife 6, e18834. 
[PubMed: 28169833] 

Jenkinson M, Bannister P, Brady M, Smith S, 2002 Improved optimization for the robust and accurate 
linear registration and motion correction of brain images. Neuroimage 17 (2), 825–841. [PubMed: 
12377157] 

Ipiña et al. Page 21

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Jobst BM, Hindriks R, Laufs H, Tagliazucchi E, Hahn G, Ponce-Alvarez A, et al., 2017 Increased 
stability and breakdown of brain effective connectivity during slow-wave sleep: mechanistic 
insights from whole-brain computational modelling. Sci. Rep 7 (1), 4634. [PubMed: 28680119] 

Kasinadhuni AK, Indahlastari A, Chauhan M, Schäor M, Mareci TH, Sadleir RJ, 2017 Imaging of 
current flow in the human head during transcranial electrical therapy. Brain Stimulat. 10 (4), 764–
772.

Keinänen T, Rytky S, Korhonen V, Huotari N, Nikkinen J, Tervonen O, et al., 2018 Fluctuations of the 
EEG-fMRI correlation reflect intrinsic strength of functional connectivity in default mode 
network. J. Neurosci. Res 96 (10), 1689–1698. [PubMed: 29761531] 

Lafon B, Henin S, Huang Y, Friedman D, Melloni L, Thesen T, et al., 2017 Low frequency transcranial 
electrical stimulation does not entrain sleep rhythms measured by human intracranial recordings. 
Nat. Commun 8 (1), 1199. [PubMed: 29084960] 

Li C, Chen G, 2004 Phase synchronization in small-world networks of chaotic oscillators. Phys. Stat. 
Mech. Appl 341, 73–79.

Lord LD, Expert P, Atasoy S, Roseman L, Rapuano K, Lambiotte R, et al., 2019 Dynamical 
exploration of the repertoire of brain networks at rest is modulated by psilocybin. Neuroimage 
199, 127–142. [PubMed: 31132450] 

Magnin M, Rey M, Bastuji H, Guillemant P, Mauguière F, Garcia-Larrea L, 2010 Thalamic 
deactivation at sleep onset precedes that of the cerebral cortex in humans. Proc. Natl. Acad. Sci. 
Unit. States Am 107 (8), 3829–3833.

McAvoy M, Larson-Prior L, Nolan TS, Vaishnavi SN, Raichle ME, d’Avossa G, 2008 Resting states 
affect spontaneous BOLD oscillations in sensory and paralimbic cortex. J. Neurophysiol 100 (2), 
922–931. [PubMed: 18509068] 

Messé A, Rudrauf D, Benali H, Marrelec G, 2014 Relating structure and function in the human brain: 
relative contributions of anatomy, stationary dynamics, and non-stationarities. PLoS Comput. Biol 
10 (3), e1003530. [PubMed: 24651524] 

Opitz A, Yeagle E, Thielscher A, Schroeder C, Mehta AD, Milham MP, 2018 On the importance of 
precise electrode placement for targeted transcranial electric stimulation. Neuroimage 181, 560–
567. [PubMed: 30010008] 

Orio P, Gatica M, Herzog R, Maidana JP, Castro S, Xu K, 2018 Chaos versus noise as drivers of 
multistability in neural networks. Chaos: Interdiscipl. J. Nonlinear Sci 28 (10), 106321.

Picchioni D, Pixa ML, Fukunaga M, Carr WS, Horovitz SG, Braun AR, Duyn JH, 2014 Decreased 
connectivity between the thalamus and the neocortex during human nonrapid eye movement sleep. 
Sleep 37 (2), 387–397. [PubMed: 24497667] 

Reveley C, Seth AK, Pierpaoli C, Silva AC, Yu D, Saunders RC, et al., 2015 Superficial white matter 
fiber systems impede detection of long-range cortical connections in diffusion MR tractography. 
Proc. Natl. Acad. Sci. Unit. States Am 112 (21), E2820–E2828.

Roberts JA, Robinson PA, 2012 Quantitative theory of driven nonlinear brain dynamics. Neuroimage 
62 (3), 1947–1955. [PubMed: 22652022] 

Roberts JA, Gollo LL, Abeysuriya RG, Roberts G, Mitchell PB, Woolrich MW, Breakspear M, 2019 
Metastable brain waves. Nat. Commun 10 (1), 1056. [PubMed: 30837462] 

Rosow C, Manberg PJ, 2001 Bispectral index monitoring. Anesthesiol. Clin 19 (4), 947–966.

Saenger VM, Kahan J, Foltynie T, Friston K, Aziz TZ, Green AL, et al., 2017 Uncovering the 
underlying mechanisms and whole-brain dynamics of deep brain stimulation for Parkinson’s 
disease. Sci. Rep 7 (1), 9882. [PubMed: 28851996] 

Sämann PG, Wehrle R, Hoehn D, Spoormaker VI, Peters H, Tully C, et al., 2011 Development of the 
brain’s default mode network from wakefulness to slow wave sleep. Cerebr. Cortex 21 (9), 2082–
2093.

Sanz-Leon P, Knock SA, Spiegler A, Jirsa VK, 2015 Mathematical framework for large-scale brain 
network modeling in the Virtual Brain. Neuroimage 111, 385–430. [PubMed: 25592995] 

Sawilowsky SS, 2009 New effect size rules of thumb. J. Mod. Appl. Stat. Methods 8 (2), 26.

Sergent C, Dehaene S, 2004 Neural processes underlying conscious perception: experimental findings 
and a global neuronal workspace framework. J. Physiol. Paris 98 (4–6), 374–384. [PubMed: 
16293402] 

Ipiña et al. Page 22

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Sherman SM, Guillery RW, 1996 Functional organization of thalamocortical relays. J. Neurophysiol 76 
(3), 1367–1395. [PubMed: 8890259] 

Song C, Tagliazucchi E, 2019 Linking the nature and functions of sleep: insights from multimodal 
imaging of the sleeping brain. Curr. Opin. Physiol 15, 29–36. 10.1016/j.cophys.2019.11.012.

Song C, Boly M, Tagliazucchi E, Laufs H, Tononi G, 2019 BOLD Signatures of Sleep, p. 531186 
bioRxiv.

Spiegler A, Hansen EC, Bernard C, McIntosh AR, Jirsa VK, 2016 Selective activation of resting-state 
networks following focal stimulation in a connectome-based network model of the human brain. 
eNeuro 3 (5).

Sporns O, Tononi G, Kötter R, 2005 The human connectome: a structural description of the human 
brain. PLoS Comput. Biol 1 (4), e42. [PubMed: 16201007] 

Steriade M, McCormick DA, Sejnowski TJ, 1993 Thalamocortical oscillations in the sleeping and 
aroused brain. Science 262 (5134), 679–685. [PubMed: 8235588] 

Sternbach GL, 2000 The Glasgow coma scale. J. Emerg. Med 19 (1), 67–71. [PubMed: 10863122] 

Tagliazucchi E, Laufs H, 2014 Decoding wakefulness levels from typical fMRI resting-state data 
reveals reliable drifts between wakefulness and sleep. Neuron 82 (3), 695–708. [PubMed: 
24811386] 

Tagliazucchi E, van Someren EJ, 2017 The large-scale functional connectivity correlates of 
consciousness and arousal during the healthy and pathological human sleep cycle. Neuroimage 
160, 55–72. [PubMed: 28619656] 

Tagliazucchi E, von Wegner F, Morzelewski A, Borisov S, Jahnke K, Laufs H, 2012 Automatic sleep 
staging using fMRI functional connectivity data. Neuroimage 63 (1), 63–72. [PubMed: 22743197] 

Tart CT, 1972 States of consciousness and state-specific sciences. Science 176 (4040), 1203–1210. 
[PubMed: 17790404] 

Tassi P, Muzet A, 2001 Defining the states of consciousness. Neurosci. Biobehav. Rev 25 (2), 175–
191. [PubMed: 11323082] 

Taylor PN, Wang Y, Goodfellow M, Dauwels J, Moeller F, Stephani U, Baier G, 2014 A computational 
study of stimulus driven epileptic seizure abatement. PloS One 9 (12), e114316. [PubMed: 
25531883] 

Tononi G, Edelman GM, 1998 Consciousness and complexity. Science 282 (5395), 1846–1851. 
[PubMed: 9836628] 

Treisman A, 1998 Feature binding, attention and object perception. Phil. Trans. Roy. Soc. Lond. B 
Biol. Sci 353 (1373), 1295–1306. [PubMed: 9770223] 

Tzourio-Mazoyer N, Landeau B, Papathanassiou D, Crivello F, Etard O, Delcroix N, et al., 2002 
Automated anatomical labeling of activations in SPM using a macroscopic anatomical parcellation 
of the MNI MRI single-subject brain. Neuroimage 15 (1), 273–289. [PubMed: 11771995] 

Van Den Heuvel MP, Mandl RC, Kahn RS, Hulshoff Pol HE, 2009 Functionally linked resting-state 
networks reflect the underlying structural connectivity architecture of the human brain. Hum. 
Brain Mapp 30 (10), 3127–3141. [PubMed: 19235882] 

Vidaurre D, Abeysuriya R, Becker R, Quinn AJ, Alfaro-Almagro F, Smith SM, Woolrich MW, 2018 
Discovering dynamic brain networks from big data in rest and task. Neuroimage 180, 646–656. 
[PubMed: 28669905] 

Wang Z, Bovik AC, Sheikh HR, Simoncelli EP, 2004 Image quality assessment: from error visibility to 
structural similarity. IEEE Trans. Image Process 13 (4), 600–612. [PubMed: 15376593] 

Windt JM, Nielsen T, Thompson E, 2016 Does consciousness disappear in dreamless sleep? Trends 
Cognit. Sci 20 (12), 871–882. [PubMed: 27765517] 

Zhou W, Bovik AC, Sheikh HR, Simoncelli EP, 4 2004 Image qualifty assessment: from error visibility 
to structural similarity. IEEE Trans. Image Process 13 (Issue 4), 600–612. [PubMed: 15376593] 

Ipiña et al. Page 23

Neuroimage. Author manuscript; available in PMC 2021 February 19.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Fig. 1. 
Procedure followed to construct the whole-brain model and a simplified example of the 

dynamics of two coupled oscillators. A) The model incorporates DTI data to define the SC 

between the non-linear oscillators, fMRI data to determine the intrinsic oscillation frequency 

of each node and the empirical FC that is fitted in the simulations, and RSNs as an 

anatomical prior to define the groups of nodes that contribute independently to the local 

bifurcation parameters. Dynamics are given by the normal form of a supercritical Hopf 

bifurcation (the equations and bifurcation diagram are provided in the inset). B-C) Example 

of two coupled oscillators with different bifurcation parameters. Panel B shows how 

oscillatory dynamics (a > 0) can induce oscillations in a critical node (a = 0) due to their 

coupling, while panel C shows that noisy dynamics at the fixed point (a < 0) prevents the 

synchronization with the oscillating node (a > 0). Re(z) stands for the real part of the 

simulated time series, which corresponds to the modeled fMRI signal.
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Fig. 2. 
Schematic of the genetic algorithm implemented to optimize the group coefficients. A 

population of 10 individuals (i.e. sets of parameters) with their corresponding scores (TFF of 

the empirical vs. simulated FC) is first generated, followed by a selection of parents based 

on their scores. A new generation of individuals is then generated by elite selection, 

crossover from the parents and mutation. This step is iteratively applied until at least one of 

the halting criteria is met. When finished, the algorithm outputs the optimal coefficients 

together with the TFF and the simulated FC.
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Fig. 3. 
FC matrices obtained from the whole-brain model fitted to empirical FC using the 

equipartition prior (panel A), heuristic prior (panel B) and the RSN prior (panel C) present 

GoF value respectively GoFW,E = 0.29, GoFW,H = 0.38 and GoFW,RSN = 0.43 comparing 

with the empirical FC matrix (panel D). The bottom part of all panels shows the indicator 

function 1Gj (i) of Eq. (3), signaling the group membership of node i. The empirical FC 

matrix is displayed in panel D. As shown in panel E, the best TFF is obtained using the RSN 

prior, followed by the heuristic prior. Black and red horizontal lines indicate the mean and 

the median of the distribution. The horizontal green line stands for the best GoF obtained 

with the exhaustive homogeneous exploration.
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Fig. 4. 
Coefficient distributions for 100 independent runs of the optimization procedures, for each 

group of nodes yielding the optimal GoF between simulated and empirical FC for the 

heuristic prior (panel A) and the RSN prior (panel B). Two sets (left and right) of 100 runs 

of optimization algorithm and are shown to highlight the convergence of the model 

parameters along repetitions (see Fig S5 to more repetitions). Black and red horizontal lines 

indicate the mean and the median of the distribution.
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Fig. 5. 
Comparison of empirical and simulated FC matrices for wakefulness and all sleep stages. A) 

Empirical and simulated FC, optimal fit using the RSN prior without changes to the SC. The 

obtained GoF between the empirical and simulated FC for each state are: GoFW = 0.43, 

GoFN1 = 0.41, GoFN2 = 0.38and GoFN3 = 0.33 B) Simulated FC matrices for wakefulness 

and all sleep stages with an ad-hoc increment in the homotopic SC. The values of GoF 

obtained are: GoFW = 0.50, GoFN1 = 0.48, GoFN2 = 0.45and GoFN3 = 0.42.
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Fig. 6. 
The coefficient distributions corresponding to the six RSNs, estimated from the optimal fit to 

the empirical FC data recorded during wakefulness (W), N1, N2 and N3 sleep. The bottom 

panels on each row show Cohen’s d (dCohen) for all pairwise comparisons. Primary visual 

(Vis) and sensorimotor (SM) nodes contributed towards oscillatory dynamics during 

wakefulness, but this contribution progressively approached zero as the subjects transitioned 

towards N3 sleep. The opposite result was observed for default mode (DM) nodes. In Fig 
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S8, the coefficient distributions corresponding to the six RSNs were obtained for 100 runs of 

the optimization procedure with 20 individuals per generations.
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Fig. 7. 
Changes in regional bifurcation parameters during sleep relative to wakefulness. Rendering 

of the regions associated with very large effect sizes (dCohen> 0.8) in the comparison of the 

bifurcation parameters corresponding to sleep (N1, N2, and N3) vs. wakefulness. Red and 

blue regions indicate dCohen> 0.8 for wakefulness < sleep and wakefulness > sleep, 

respectively. This implies that sleep transitions the dynamics towards a≈0, i.e. dynamics 

become more susceptible to external perturbations.
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Fig. 8. 
Changes in the coefficients (panel A) and bifurcation parameters (panel B) of subcortical 

nodes from wakefulness to deep sleep. The bottom panels show Cohen’s d (dCohen) for all 

pairwise comparisons.
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Fig. 9. 
In silico stimulation of the model fitted to deep sleep using an additive oscillatory forcing 

term. A) ΔGoFnorm against the forcing amplitude F0 for the 10 pairs of nodes leading to the 

lowest ΔGoFnorm values. B) Rendering of the three regions presenting the lowest ΔGoFnorm. 

The color code indicates three different qualitative behaviors as F0 is increased: ΔGoFnorm 

decreases as a function of F0 (posterior cingulate cortex [PCC], shown in red), ΔGoFnorm 

achieves an optimal value and then increases as a function of F0 (middle temporal gyrus 

[MTG], shown in blue), and ΔGoFnorm remains approximately constant as a function of F0 

(inferior occipital gyrus [IOG], shown in green).
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