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Abstract 31 

Genomic summary statistics, usually defined as single-variant test results from genome-32 

wide association studies, have been widely used to advance the genetics field in a wide 33 

range of applications. Applications that involve multiple genetic variants also require their 34 

correlations or linkage disequilibrium (LD) information, often obtained from an external 35 

reference panel. In practice, it is usually difficult to find suitable external reference panels 36 

that represent the LD structure for underrepresented and admixed populations, or rare 37 

genetic variants from whole genome sequencing (WGS) studies, limiting the scope of 38 

applications for genomic summary statistics. Here we introduce StocSum, a novel 39 

reference-panel-free statistical framework for generating, managing, and analyzing 40 

stochastic summary statistics using random vectors. We develop various downstream 41 

applications using StocSum including single-variant tests, conditional association tests, 42 

gene-environment interaction tests, variant set tests, as well as meta-analysis and LD score 43 

regression tools. We demonstrate the accuracy and computational efficiency of StocSum 44 

using two cohorts from the Trans-Omics for Precision Medicine Program. StocSum will 45 

facilitate sharing and utilization of genomic summary statistics from WGS studies, 46 

especially for underrepresented and admixed populations.  47 

 48 

 49 

Key words: genomic summary statistics, whole genome sequencing, rare variants, LD 50 
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Main 53 

International consortia for genomic epidemiology research on complex diseases and 54 

quantitative traits have generated a great abundance of genomic summary statistics1–11. 55 

These summary statistics are often in the form of regression coefficients and their standard 56 

errors (and/or z scores) from single-variant tests for common genetic variants, typically 57 

defined as those with a minor allele frequency (MAF) of greater than 5% or 1%, in genome-58 

wide association studies (GWAS). Genomic summary statistics contain important 59 

information for researchers without direct access to individual-level genotype data and 60 

sharing genomic summary results is now commonly mandated by scientific journals and 61 

funding agencies. Genomic summary statistics also play a crucial role for cross-62 

institutional (both national and international) collaborations where individual-level data are 63 

difficult to share due to ethical and legal restrictions.  64 

 65 

Genomic summary statistics have been used to address different scientific questions in 66 

genetic and genomic research, such as meta-analysis12,13, heritability estimation14–16, 67 

conditional analysis17, variant set18–21 and gene-based tests22,23, multiple phenotype 68 

analysis24–26, genetic correlation or co-heritability estimation27,28, and others29,30. Many of 69 

these methods also require information on the linkage disequilibrium (LD) or correlation 70 

structure between genetic variants, which is commonly derived from external reference 71 

panels14–17,23. While these methods usually have good performance for common variants 72 

in populations of European ancestry, it has been challenging to extend the scope of 73 

summary statistic-based applications to other ancestry groups and admixed populations14 74 

as well as rare variants15, defined as those with MAF < 5% or 1%, since the LD patterns in 75 

an external reference panel often do not match with those in the study sample.  76 

 77 

Current large-scale whole genome sequencing (WGS) projects, such as the National Heart, 78 

Lung, and Blood Institute’s (NHLBI’s) Trans-Omics for Precision Medicine (TOPMed) 79 

program, the National Human Genome Research Institute’s (NHGRI’s) Centers for 80 

Common Disease Genomics (CCDG) initiative, and the National Institute on Aging’s 81 

(NIA’s) Alzheimer’s Disease Sequencing Project (ADSP), have unveiled hundreds of 82 

millions of rare variants from diverse populations. Making efficient and flexible use of 83 
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these WGS resources and derived genomic summary results is paramount to facilitate 84 

international collaborations and scientific discoveries. However, managing and 85 

coordinating large-scale consortium efforts on rare variant meta-analyses has been quite 86 

challenging, since many existing meta-analysis software programs such as seqMeta31, 87 

MetaSKAT18, RVTESTS32, RAREMETAL33 and SMMAT21, require the correlation (or 88 

LD) matrices for rare variants to be computed internally in the study samples. In rare 89 

variant tests21,34–40, variant set definitions often need to be pre-specified (e.g., by genomic 90 

motifs such as genes or physical windows). Therefore, researchers have to recreate the LD 91 

matrices every time they want to redefine a variant set (e.g., by including more variants in 92 

a test region or combining two testing windows). This requires additional computational 93 

resources, making it difficult for researchers to efficiently leverage the richness of the data. 94 

On the other hand, sharing terabytes or even petabytes of individual-level WGS and 95 

phenotype data across research groups is a daunting task, and the risk of privacy breaches 96 

generally increases as more copies of individual-level data are being shared. Although 97 

individual-level WGS data can now be accessed through cloud-based computing platforms 98 

such as the Analysis Commons41, BioData Catalyst and AnVIL, and recently developed 99 

analysis tools such as STAARpipeline42 have greatly improved rare variant analyses 100 

especially for the noncoding genome, research groups are still largely constrained by the 101 

computational costs they can afford in running WGS data analysis using individual-level 102 

data directly. 103 

 104 

Ideally, computing genomic summary statistics only once and then recycling them for 105 

different variant set definitions and weighting schemes is a more efficient strategy for WGS 106 

analysis on rare variants. Downstream analyses using summary statistics would not depend 107 

on the sample size 𝑁 and therefore could be easily performed on a desktop computer. 108 

However, there are critical barriers in scaling existing statistical methods based on GWAS 109 

summary statistics up to allow for summary statistics based on WGS studies. First, 110 

calculating traditional pairwise LD measures from individual-level genomic data is 111 

computationally intensive. In general, a covariance matrix of size 𝑀 × 𝑀  is desired 112 

(Fig.1a), where 𝑀 is the total number of variants, which has already exceeded 700 million 113 

in TOPMed. In practice, genotype data are usually saved by chromosome, but 𝑀 is still on 114 
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the scale of millions even for the shortest chromosome, making pairwise LD calculations 115 

on the whole genome (or one chromosome) computationally infeasible. Second, although 116 

restricting LD calculations to only genetic variants in close proximity (e.g., the sliding 117 

window strategy43 and the banded sparse LD matrices in 500kb windows44) is more 118 

computationally efficient than calculating the full 𝑀 × 𝑀 covariance matrix, it does not 119 

allow for the flexibility of testing distant genetic variants jointly. As there is growing 120 

evidence that the three-dimensional organization of chromosomes profoundly affects gene 121 

regulation29,45–52, LD matrices generated through sliding windows cannot be used if the 122 

variant set of interest contains genetic variants that are located far away from each other. 123 

In addition, LD statistics used in rare variant tests can greatly depend on the phenotype of 124 

interest (e.g., the phenotype distributions in minor allele carriers vs. non-carriers for each 125 

variant), and generally cannot be pre-computed using WGS data without the phenotype 126 

information.  127 

 128 

In addition, many existing methods using genomic summary statistics based on common 129 

variants rely on LD information from external reference panels14–17,23 (Fig. 1b). These 130 

methods have been widely applied to common variants in primary populations of European 131 

ancestry. Extension of these methods to underrepresented and admixed populations, 132 

however, has been noted as a challenge14,27 due to lack of appropriate reference panels that 133 

accurately represent the LD structure.  134 

 135 

In this study, we propose the StocSum framework as illustrated in Fig. 1c to extend the 136 

scope of summary statistic-based applications. For methods that require between-variant 137 

correlation or LD matrices, we use a stochastic summary statistic matrix 𝑼 to replace the 138 

traditional pairwise LD matrix  𝑽. Specifically, by using 𝐵 independent and identically 139 

distributed random vectors to represent the parametric distribution of any model-based 140 

residuals from a complex statistical model that accounts for potential sample correlations, 141 

matrix 𝑼 can be quickly computed by matrix multiplication of the 𝑁 × 𝑀 genotype matrix 142 

𝑮 and these B random vectors. The size of 𝑼 scales linearly with 𝑀 and 𝐵 (i.e., 𝑂(𝑀𝐵)), 143 

compared to quadratically in the form of a traditional pairwise LD matrix 𝑽. The stochastic 144 

summary statistic matrix 𝑼 can always be computed in linear time with the sample size 𝑁 145 
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(i.e., 𝑂(𝑁𝑀𝐵)), regardless of any complex sample correlation structures, compared to 146 

𝑂(𝑁𝑀2) for the traditional pairwise LD matrix 𝑽 in classical linear and logistic regression 147 

models for unrelated individuals, or mixed effect models to account for sample correlations 148 

in the presence of a sparse and block-diagonal relatedness matrix with bounded block sizes 149 

(e.g., a population-based family study, with known pedigrees). The complexity for 150 

computing 𝑽 could further increase to 𝑂(𝑁2𝑀 + 𝑁𝑀2) if the relatedness matrix used in 151 

the mixed effect model is not block-diagonal (e.g., the genetic relationship matrix, or 152 

GRM). We also develop downstream applications using StocSum, including single-variant, 153 

conditional association, gene-environment interaction, variant set tests, as well as meta-154 

analysis and LD score regression tools. This framework can flexibly accommodate changes 155 

of variant set definitions in analysis plans. For example, in variant set tests for rare variants, 156 

we can efficiently calculate the LD matrix for any variant sets by simply looking up 
𝑼𝑼𝑇

𝐵
 157 

rather than rerunning the analysis with individual-level genotype data to update LD 158 

matrices for new variant sets. Compared with using external reference panels which might 159 

not well represent the LD structure in study samples from underrepresented and admixed 160 

populations, StocSum can be used to better calibrate the LD information in a wide range 161 

of genomic summary statistic-based applications. 162 

 163 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

7 

 

 164 

Figure 1:  The StocSum framework. a) Traditional methods calculate the correlation or 165 

LD matrix 𝑽 from individual-level genotype data. To reduce the computational burden, the 166 

full 𝑀 × 𝑀 matrix is usually not computed in practice, but rather replaced by a block-167 

diagonal or banded sparse matrix based on pre-defined variant sets, at the cost of losing the 168 

flexibility in testing distant genetic variants jointly. b) The approximate LD matrix 𝜳 is 169 

obtained from external reference panels when individual-level genotypes are not available, 170 

in many genomic summary statistic-based applications. However, variants may be 171 

excluded if they do not exist in the reference panel. c) StocSum generates stochastic 172 

summary statistics 𝑼 from random vectors, which can be used to efficiently look up the 173 

covariance among arbitrary variant sets that are not pre-defined. 𝑀, the number of variants. 174 

𝑁, the sample size. 𝐵, the number of random vectors used to construct stochastic summary 175 

statistics 𝑼. 176 
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Results 177 

Overview of the method 178 

We describe StocSum under the generalized linear mixed model (GLMM) framework. It 179 

can also be applied to simpler statistical models such as generalized linear models53 and 180 

extended to more complex models such as generalized additive mixed models54. The 181 

GLMM can be written as:182 

 183 

 𝕘(𝜇𝑖) = 𝑿𝑖𝜶 + �̃�𝑖𝜷 + 𝑏𝑖 (1) 

where 𝕘(∙) is a monotonic link function of 𝜇𝑖, and 𝜇𝑖 = 𝐸(𝑦𝑖|𝑿𝑖 , �̃�𝑖 , 𝑏𝑖) is the conditional 184 

mean of the phenotype 𝑦𝑖 given 𝑝 covariates 𝑿𝑖, 𝑞 genotypes �̃�𝑖  and random effects 𝑏𝑖, for 185 

individual 𝑖  of 𝑁  samples. The phenotype 𝑦𝑖  follows a distribution in the exponential 186 

family, such as a normal distribution for continuous phenotypes, or a Bernoulli distribution 187 

for binary phenotypes. Here 𝜶  is a length 𝑝  column vector of fixed covariate effects 188 

including an intercept term. The genotype matrix �̃� = (�̃�1
𝑇 �̃�2

𝑇  ⋯ �̃�𝑁
𝑇 )

𝑇
is an 𝑁 ×  𝑞 matrix 189 

for q (q ≥ 1) genetic variants and 𝜷 is a length 𝑞 genotype effect vector. We assume that 190 

𝒃  = (𝑏1 𝑏2  ⋯ 𝑏𝑁  )𝑇is a length 𝑁 column vector of random effects and 𝒃 ∼ ∑ 𝜏𝑘𝜱𝑘
𝐾
𝑘=1 , 191 

where 𝜏𝑘  are the variance component parameters and 𝜱𝑘  are known 𝑁 ×  𝑁  dense or 192 

sparse relatedness matrices which account for multiple layers of correlation structures, such 193 

as genetic relatedness, hierarchical designs, shared environmental effects and repeated 194 

measures from longitudinal studies.  195 

 196 

For both single-variant (𝑞 = 1) and variant set (𝑞 > 1) tests, we only need to fit the null 197 

model 𝕘(𝜇0𝑖
) = 𝑿𝑖𝜶 + 𝑏𝑖  without fixed genetic effects one time, then each test can be 198 

constructed using single-variant scores  𝑺  and 𝑞 ×  𝑞  covariance matrices �̃� = �̃� 𝑇𝑷�̃� , 199 

where 𝑷 is the projection matrix from this model21,55. Denote 𝑀 as the total number of 200 

genetic variants on the whole genome (or one chromosome). To avoid computing the full 201 

𝑀 ×  𝑀  matrix 𝑽  or its block-diagonal version for every 𝑞  variants �̃�  directly from 202 

individual-level data or an external reference panel, StocSum leverages a length 𝑁 random 203 

vector 𝑹𝑏  from a multivariate normal distribution with mean 𝟎 and covariance matrix 𝑷. 204 
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Then it repeats this simulation process 𝐵 times and combines these random vectors into an 205 

𝑁 ×  𝐵  random matrix 𝑹 = (𝑹1 𝑹2  ⋯ 𝑹𝐵) . Denoting 𝑼 = 𝑮𝑇𝑹  as the stochastic 206 

summary statistics for 𝑀 genetic variants on the whole genome (or one chromosome), for 207 

arbitrary 𝑞  variants (𝑞 < 𝐵 ), we can extract the corresponding rows from the 𝑀 × 𝐵 208 

stochastic summary statistics matrix 𝑼 as �̃� and use 
�̃��̃� 𝑇

𝐵
 to estimate the covariance matrix 209 

�̃�. 210 

 211 

To implement StocSum and various downstream genetic analysis applications, our 212 

framework comprises four major steps: (1) fitting a generalized linear mixed model under 213 

the null hypothesis, e.g., 𝕘(𝜇0𝑖
) = 𝑿𝑖𝜶 + 𝑏𝑖, estimating variance component parameters, 214 

residuals and the projection matrix 𝑷; (2) generating an 𝑁 × 𝐵 random matrix 𝑹, with each 215 

column of 𝑹  simulated from a multivariate normal distribution with mean 𝟎  and 216 

covariance matrix 𝑷; (3) using individual-level genotypes 𝑮 to compute score statistics 217 

from residuals, and the stochastic summary statistics matrix 𝑼 = 𝑮𝑇𝑹; and (4) computing 218 

P values in each downstream application (see Methods). The first three steps could be 219 

shared by multiple genetic analysis applications including single-variant, conditional 220 

association, gene-environment interaction, and variant set tests. We could also estimate LD 221 

scores efficiently in the stochastic summary statistics framework, thus extending its 222 

application to underrepresented and admixed populations (see Methods).  223 

Single-variant tests 224 

To evaluate the performance of StocSum in single-variant tests, we used TOPMed WGS 225 

freeze 8 data from the Hispanic Community Health Study/Study of Latinos (HCHS/SOL). 226 

After quality control we had data for 120M variants in 7,297 individuals (Methods). We 227 

first compared P values calculated by StocSum with different numbers of random vector 228 

replicates 𝐵 and GMMAT55 using individual-level genotypes in a genome-wide single-229 

variant analysis of blood low-density lipoprotein (LDL) cholesterol levels (Fig. 2a-d). The 230 

P values calculated from StocSum were compared with those from GMMAT using 231 

individual-level data. No systematic genomic inflation was observed from the quantile-232 

quantile (Q-Q) plots (Fig. S1). StocSum P values were close to GMMAT when the number 233 
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of random vector replicates B ranged from 100 to 10,000 (Fig.2b-2d). We did observe that 234 

a small B (B=10) led to inaccurate P values (Fig. 2a). 235 

 236 

To demonstrate the computational efficiency of StocSum, we ran GMMAT and StocSum 237 

(B=1,000) on the same computing platform where 64 cores were used in parallel computing 238 

for both programs. Both runtime and memory usage of StocSum were much lower 239 

compared to GMMAT. For example, it took about 50.2 CPU hours to run chromosome 1 240 

with 9.7M variants using StocSum, which was 4.6-fold faster than GMMAT. Meanwhile, 241 

StocSum only had 29.3% of the memory footprint compared to GMMAT. Across all 22 242 

autosomes, StocSum was 4.4-fold faster than GMMAT, with about 25.1% of the memory 243 

footprint compared to GMMAT (Fig. 2e-f). As expected, both the run time and memory 244 

footprint increased with a larger B. However, the run time and memory footprint of 245 

StocSum when B=10,000 were still only 29.3% and 50.6% compared to GMMAT, 246 

respectively. 247 

 248 

Using StocSum, we ran a WGS study of LDL cholesterol in HCHS/SOL and identified 249 

seven genome-wide significant (P values < 5×10-8) regions mapped to genes PCSK9 and 250 

CELSR2 on chromosome 1, APOB on chromosome 2, LPA on chromosome 6, LDLR, 251 

SUGP1, and APOE on chromosome 19 (Fig. 2g, Table S1), all of which had been 252 

previously reported to be associated with LDL4,56–59. 253 

 254 

We also compared StocSum with fastGWA60, another widely used single-variant test tool 255 

(Figs. S2-3). To make a fair comparison on the same statistical model, we only included 256 

one random effect term for genetic relatedness, without allowing for heteroscedasticity in 257 

the null model for GMMAT and StocSum. Both fastGWA and GMMAT results were very 258 

similar (Figs.S2-3). In this different null model, StocSum P values were still consistent 259 

with GMMAT when B ranged from 100 to 10,000. The CPU time used by fastGWA was 260 

generally stable for different chromosomes (Fig.S4a). The total CPU time for the whole 261 

genome analysis was similar for StocSum (B=1,000) and fastGWA. The memory usage of 262 

fastGWA was slightly larger (about 1.7-fold) compared to StocSum with B=1,000 263 

(Fig.S4b). 264 
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 265 

 266 

Figure 2: StocSum in single-variant tests. a-d) comparison of P values from GMMAT 267 

and StocSum with the number of random vector replicates B being equal to 10 (a), 100 (b), 268 

1,000 (c) and 10,000 (d). The x axis and the y axis represent –log10(P) from single-variant 269 

tests using GMMAT and StocSum, respectively. The red line denotes the reference line of 270 

equality. Spearman’s rank correlation coefficients are shown at the bottom right. e) 271 

comparison of CPU time between GMMAT and StocSum. The x axis represents the 272 

chromosome numbers, and the y axis represents the CPU time in 105 seconds. For 273 

GMMAT, the CPU time consists of fitting the null model and conducting the association 274 

test. For StocSum, the CPU time is the sum of four steps: fitting the null model, generating 275 

the random vectors, computing the single-variant score statistics and the stochastic 276 

summary statistics, and computing the P values. f) comparison of memory usage by 277 

GMMAT and StocSum. The x axis represents the chromosome numbers and the y axis 278 

represents the memory footprint per core in GB. The data used in this test consisted of 279 

120M variants from 7,297 individuals in HCHS/SOL. All tests were performed on a high-280 

performance computing server, with 64 cores used for parallel computing. g) the 281 

Manhattan plot of single-variant test on LDL in the HCHS/SOL study using StocSum. The 282 

x-axis represents the physical chromosome and position of each variant and the y-axis 283 

represents –log10(P) from the StocSum single-variant test. Only variants with MAF > 0.5% 284 
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were included in the Manhattan plot. The red line indicates the genome-wide significance 285 

level on the log scale, –log10 (5×10-8).  286 

Conditional association tests 287 

We implemented StocSum for conditional association tests and applied it to the seven 288 

genome-wide significant regions identified in Fig. 2g. The sentinel variant in the APOE 289 

gene region is chr19: 44908822 (rs7412) with P = 7.1×10-55. There are 26 common variants 290 

with MAF > 0.5% close to this sentinel variant in this region, with a P value less than 5×10-291 

8 (Fig. 3). After conditioning on the sentinel variant, we identified a secondary association 292 

variant chr19: 44908684 (rs429358) with conditional P = 8.2×10-15. After conditioning on 293 

both rs7412 and rs429358, all other variants in the region had P values > 1.8×10-3, 294 

indicating that no additional independent associations exist in this region. We also observed 295 

similar patterns in the other six regions (Table S1), after conditioning on either one or two 296 

top associated variants in each region (Fig. S5 a-f). 297 

 298 

299 

Figure 3: A regional plot of StocSum conditional association test results in the APOE 300 

region. Variants with MAF > 0.5% in a 1Mb window near association variants rs7412 and 301 

rs429358 (highlighted in black dots). Original single variant test P values are shown in dots 302 
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and conditional P values are shown in triangles. Variants in four LD categories are shown 303 

in different colors based on the maximum squared correlation to the sentinel variant rs7412 304 

and the secondary association variant rs429358 calculated in HCHS/SOL. The horizontal 305 

dashed line indicates the genome-wide significance level on the log scale, –log10 (5 × 10-306 

8). The blue curve shows recombination rates from all populations in the 1000 Genome 307 

Project. 308 

Gene-environment interaction tests 309 

We next developed and implemented a one-degree-of-freedom gene-environment 310 

interaction test and a two-degree-of-freedom joint test of the genetic main effects and the 311 

gene-environment interactions in the StocSum framework. We benchmarked our tests with 312 

MAGEE using individual-level data61. No systematic genomic inflation was observed from 313 

the quantile-quantile (Q-Q) plots (Fig. S6). Fig. S7 shows P values from a gene-sex 314 

interaction analysis on waist-hip ratio (WHR) in HCHS/SOL. MAGEE and StocSum P 315 

values were highly consistent, with Spearman’s correlations of 1.000, 0.998, 0.999, 316 

respectively, for the marginal genetic effect test, the gene-environment interaction test and 317 

the joint test. We identified four potential loci from marginal genetic effect tests,  three 318 

with significant gene-sex interactions, and four from the joint tests, at the suggestive 319 

significance level of 5 × 10-7, including six previously reported genome-wide significant 320 

loci in gene regions COBLL1, IGF2R, AOAH, IQSEC3, TEKT5, and MAPT62–68 (Table S2).  321 

Variant set tests 322 

We also used TOPMed WGS freeze 8 data and LDL cholesterol levels from the 323 

HCHS/SOL study to illustrate variant set tests in the StocSum framework. We compared 324 

P values calculated by StocSum with different numbers of random vector replicates 𝐵 and 325 

SMMAT21 using individual-level genotypes in a genome-wide 20 kb non-overlapping 326 

sliding window analysis on all genetic variants, using a beta density weight on the MAF 327 

with parameters 1 and 25. We noted that 20 kb was probably wider than what was 328 

commonly used in WGS sliding window analyses43, but we chose this window size to 329 

evaluate the performance of StocSum variant set tests in an extreme scenario not in favor 330 

of StocSum, because there could be many windows with the number of variants 𝑞 > 𝐵. In 331 

this case, 
�̃��̃� 𝑇

𝐵
 from StocSum would not be an appropriate estimate for the 𝑞 × 𝑞 332 
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covariance matrix �̃� computed directly from individual-level data, since only 𝐵 singular 333 

values could be computed from the 𝑞 × 𝐵 matrix �̃� . 334 

 335 

Figs. 4a-d shows comparisons of P values from SMMAT using individual-level genotypes 336 

and StocSum with B ranging from 10 to 10,000. When B=1,000 or 10,000, P values from 337 

the two methods were highly consistent (Figs. 4c-d). For windows with small SMMAT P 338 

values, StocSum tended to overestimate these P values when B=10 or 100 (Fig. 4a-b), 339 

possibly because only 10 or 100 singular values from �̃�  was insufficient to approximate 340 

the eigenvalues from the 𝑞 × 𝑞 covariance matrix �̃� from SMMAT.  341 

 342 

StocSum variant set tests are computationally efficient (Figs. 4e-f). It only took StocSum 343 

(B=1,000) 2.7 CPU hours to finish variant set tests on chromosome 1 using 20 kb sliding 344 

windows, which was 9.7-fold faster than SMMAT using individual-level data. Across the 345 

autosomes, there were a total of 134,739 non-overlapping 20 kb windows containing at 346 

least one variant. On average, the StocSum (B=1,000) CPU time was about 14.3% of the 347 

SMMAT CPU time. Meanwhile, StocSum (B=1,000) only required about 68.1% of the 348 

memory compared to SMMAT. StocSum with B=10,000 utilized more CPU time than 349 

SMMAT since B was larger than the sample size (N=7,297), making the 𝑀 × 𝐵 stochastic 350 

summary statistics matrix 𝑼 even larger in size compared to the 𝑁 × 𝑀 genotype matrix 351 

𝑮. In this 20 kb sliding window analysis using StocSum variant set tests, we identified four 352 

regions associated with LDL levels in HCHS/SOL4,56–59, at the significance level of 353 

0.05/134,739=3.7x10-7 (Fig. 4g, Table S3).  354 

 355 

We next compared StocSum with fastBAT for variant set tests. fastBAT utilizes single-356 

variant summary statistics from fastGWA and LD information from a reference panel such 357 

as the 1000 Genomes Project69. To make a fair comparison on the same statistical model 358 

and same weights used in variant set tests, we only included one random effect term for 359 

genetic relatedness, without allowing for heteroscedasticity in the null model for SMMAT 360 

and StocSum, and a beta density weight on the MAF with parameters 0.5 and 0.5 (which 361 

is equivalent to rescaling each variant with a unit variance as implemented in fastBAT). 362 

For fastBAT, we compared five different reference panels, including an internal reference 363 
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panel using individual-level genotypes from the original study sample (called fastBAT 364 

(Sample)), as well as four external reference panels from the 1000 Genomes Project69: 365 

European populations (fastBAT (Eu)), European and African populations (fastBAT 366 

(EuAf)), European and American populations (fastBAT (EuAm)), and European, African 367 

and American populations (fastBAT (EuAfAm)). Variant set test P values from SMMAT, 368 

StocSum (B=1,000), and fastBAT (Sample) were highly concordant (Figs. S9-10), with 369 

pairwise Spearman correlation coefficients being greater than 0.99. However, fastBAT 370 

with external reference panels, i.e., fastBAT (Eu), fastBAT (EuAf), fastBAT (EuAm), 371 

fastBAT (EuAfAm), gave inaccurate variant set test P values compared to SMMAT using 372 

individual-level genotypes. The correlation coefficients of log10(P) between SMMAT and 373 

fastBAT with Eu, EuAf, EuAm, EuAfAm reference panels were 0.59, 0.77, 0.66, and 0.78, 374 

respectively (Fig. S10). Since Hispanic/Latino adults are three-way admixed populations 375 

with European, African and Amerindian ancestries, it is not surprising that an external 376 

reference panel from only European populations could not represent the LD structure in 377 

HCHS/SOL samples accurately. Interestingly, although including African and American 378 

populations in the external reference panel did improve the concordance of fastBAT P 379 

values compared to SMMAT, fastBAT using the internal reference panel clearly 380 

outperformed all external reference panels that we investigated. In addition, when an 381 

external reference panel was used, variants not included in the panel would have to be 382 

excluded, leading to loss of unique variants in the study samples. This highlights the 383 

importance of choosing an accurate reference panel for fastBAT, and the best reference 384 

panel for study samples from underrepresented, admixed or isolated populations are the 385 

study samples themselves. StocSum represents the LD structure in any variant sets through 386 

a stochastic summary statistic matrix 𝑼 directly derived from study samples rather than 387 

external reference panels, thus providing accurate variant set test results. Meanwhile, 388 

StocSum with B=1,000 was slightly faster (1.7-fold) than fastBAT (Sample) on the whole 389 

genome (Fig. S11a), with a dramatically reduced memory footprint (3.6%) compared to 390 

fastBAT (Sample) (Fig. S11b). 391 

 392 

To illustrate StocSum variant set tests beyond sliding windows, we compared StocSum 393 

(B=1,000) with SMMAT when the variant sets composed of different regions that were 394 
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physically farther away. These variant sets were defined by merging chromatin loops of 395 

H3K27ac HiChIP interaction in the GM12878 cell line70–72. As the definition of variant 396 

sets changed, SMMAT required rerunning the analysis using individual-level genotypes, 397 

while StocSum variant set tests could directly extract information about these new variant 398 

sets from the same pre-computed stochastic summary statistic matrix 𝑼, which yielded 399 

highly accurate P values (Fig. S12a), while using much less CPU time and memory (Figs. 400 

S12b-c). 401 

 402 

 403 

Figure 4: StocSum in variant set tests. Comparison of P values from SMMAT and 404 

StocSum with the number of random vector replicates B being equal to 10 (a), 100 (b), 405 

1,000 (c) and 10,000 (d) in a 20 kb sliding window analysis on the whole genome. The x 406 

axis and the y axis represent –log10(P) from a whole genome 20 kb sliding window analysis, 407 

using variant set tests from SMMAT and StocSum, respectively, with a beta density weight 408 

on the MAF with parameters 1 and 25. The red line denotes the reference line of equality. 409 

Spearman’s rank correlation coefficients are shown at the bottom right. e, comparison of 410 

CPU time between SMMAT and StocSum. The x axis represents the chromosome numbers 411 

and the y axis represents the CPU time in 105 seconds. For SMMAT, the CPU time did not 412 

include fitting the null model or reading the variant set definitions. For StocSum, the CPU 413 

time did not include computing stochastic summary statistics from individual-level data. f, 414 

comparison of memory usage by SMMAT and StocSum. The x axis represents the 415 
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chromosome number and the y axis represents the memory footprint in GB. The data used 416 

in this test consisted of 120M variants from 7,297 individuals in HCHS/SOL, including all 417 

variants regardless of their MAF (such as singletons and doubletons). All tests were 418 

performed on a high-performance computing server, with a single thread for each 419 

chromosome. g, the Manhattan plot of 20 kb sliding window variant set tests on LDL in 420 

the HCHS/SOL study using StocSum. The x-axis represents the start physical chromosome 421 

and position of each variant set and the y-axis represents –log10(P) from the StocSum 422 

variant set test corresponding to SMMAT. The red line indicates the genome-wide 423 

significance level on the log scale, –log10 (3.7x10-7). 424 

Meta-analysis 425 

Meta-analysis in the StocSum framework can be performed by combining the stochastic 426 

summary statistic matrices 𝑼 from different studies. To illustrate how single-variant and 427 

variant set tests can be conducted in a meta-analysis, we combined the stochastic summary 428 

statistic matrices 𝑼 from three studies: longitudinal LDL levels as repeated measures in 429 

African-Americans (AA) from the Atherosclerosis Risk in Communities (ARIC) study 430 

(70M variants from 2,045 individuals) visits 1-6, European-Americans (EA) from ARIC 431 

(92M variants from 6,327 individuals) visits 1-6, and baseline LDL levels as cross-432 

sectional measures in Hispanic/Latino adults from HCHS/SOL (120M variants from 7,297 433 

individuals). P values from StocSum (B=1,000) were highly concordant with GMMAT 434 

results from longitudinal LDL level analyses, for both ARIC AA and EA subgroups (Fig. 435 

S13), which further demonstrated the robustness of StocSum in different populations. P 436 

values from StocSum meta-analysis (B=1,000) were highly concordant with those from 437 

GMMAT single-variant meta-analysis (Fig. 5a) and SMMAT variant set meta-analysis 438 

(Fig. 5c). We identified 14 LDL loci from StocSum meta-analysis (B=1,000) single-variant 439 

tests4,56–59,73–76 (Fig. 5b, Table S4), at the significance level of 5x10-8. In variant set tests 440 

(Fig. 5d, Table S5), we identified four regions associated with LDL levels from StocSum 441 

meta-analysis (B=1,000), at the significance level of 3.7x10-7.  442 

 443 
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 444 

Figure 5: StocSum in meta-analysis. a, comparison of single-variant meta-analysis P 445 

values from GMMAT and StocSum with the number of random vector replicates B being 446 

equal to 1,000. The x axis and the y axis represent –log10(P) from single-variant meta-447 

analysis using GMMAT and StocSum, respectively. The red line denotes the reference line 448 

of equality. Spearman’s rank correlation coefficients are shown at the bottom right. b, the 449 

Manhattan plot of single-variant tests on LDL in the meta-analysis of ARIC AA and EA, 450 

and HCHS/SOL studies using StocSum. The x-axis represents the physical chromosome 451 

and position of each variant and the y-axis represents –log10(P) from the StocSum single-452 

variant test. Only variants with MAF > 0.5% were included in the Manhattan plot. The red 453 

line indicates the genome-wide significance level on the log scale, –log10 (5×10-8). c, 454 

comparison of variant set meta-analysis P values from SMMAT and StocSum with the 455 

number of random vector replicates B being equal to 1,000. The x axis and the y axis 456 

represent –log10(P) from variant set meta-analysis using SMMAT and StocSum, 457 

respectively. The red line denotes the reference line of equality. Spearman’s rank 458 

correlation coefficients are shown at the bottom right. d, the Manhattan plot of variant set 459 

tests on LDL in the meta-analysis of ARIC AA and EA, and HCHS/SOL studies using 460 

StocSum. The x-axis represents the start physical chromosome and position of each variant 461 
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set and the y-axis represents –log10(P) from the StocSum variant set test corresponding to 462 

SMMAT. The red line indicates the genome-wide significance level on the log scale, –463 

log10 (3.7x10-7). All tests were performed on a high-performance computing server, with a 464 

single thread for each chromosome. 465 

LD score regression 466 

StocSum can also be used to extend the LD Score Regression (LDSC) framework14 to 467 

underrepresented, admixed or isolated populations, without external reference panels. In 468 

this example, we compared LD scores and heritability estimates of four traits: LDL, high-469 

density lipoprotein (HDL) cholesterol levels, systolic blood pressure (SBP), and diastolic 470 

blood pressure (DBP) from Hispanic/Latino adults in HCHS/SOL. LD scores were 471 

calculated using six different approaches: 1) StocSum (Sample): StocSum (B=1,000) on 472 

HCHS/SOL study samples; 2) LDSC (Sample): LDSC using HCHS/SOL study samples as 473 

internal reference panels; 3) LDSC (Eu): LDSC using European populations from the 1000 474 

Genomes Project as external reference panels; 4) LDSC (EuAf): LDSC using European 475 

and African populations from the 1000 Genomes Project as external reference panels; 5) 476 

LDSC (EuAm): LDSC using European and American populations from the 1000 Genomes 477 

Project as external reference panels; and 6) LDSC (EuAfAm): LDSC using European, 478 

African and American populations from the 1000 Genomes Project as external reference 479 

panels. LD scores computed from StocSum (Sample) and LDSC using external reference 480 

panels were compared with those computed from LDSC (Sample). 481 

 482 

LD scores from StocSum (Sample) were much closer to those from LDSC (Sample) (Fig. 483 

6e), compared to LDSC results using external reference panels (Fig. 6a-d). Moreover, there 484 

seems to be an upward bias for many variants in LDSC (EuAf) and LDSC (EuAfAm) 485 

results, when African populations from the 1000 Genomes Project were included in the 486 

reference panel (Fig. 6b,d), highlighting the challenges in selecting appropriate external 487 

reference panels for LD score estimation in underrepresented, admixed or isolated 488 

populations. StocSum (Sample) required only 1.4% of CPU time used by LDSC (Sample) 489 

(Fig. 6f). It was also 6-fold to 42-fold faster than LDSC using different external reference 490 

panels. 491 
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 492 

Using LD scores from these six approaches, we compared heritability estimates of four 493 

traits LDL, HDL, SBP and DBP in HCHS/SOL (Fig. 6g). StocSum (Sample) results were 494 

consistently observed to be close to LDSC (Sample) heritability estimates, for all these 495 

traits. Heritability estimates from LDSC using external reference panels tended to be lower 496 

than LDSC (Sample), especially when African populations from the 1000 Genomes Project 497 

were excluded in the reference panel. For example, heritability estimates from LDSC 498 

(EuAm) were about 46.1%, 71.4%, 59.0%, and 51.1% lower compared to those from 499 

LDSC (Sample), for LDL, HDL, SBP, and DBP traits. Heritability estimates partitioned 500 

by different MAF bins also showed that StocSum (Sample) results were consistent with 501 

those from LDSC (Sample) (Fig. S14). Overall, StocSum is better suited for conducting 502 

LD score regression in Hispanic/Latino adults, while LDSC needs a reference panel that 503 

matches the LD structure in the study samples. 504 

 505 

 506 
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Figure 6: StocSum in LD score regression and heritability estimation. a-e, comparison 507 

of LD scores from LDSC (Sample) (x-axis) and different alternative methods (y-axis). a, 508 

LDSC (Eu). b, LDSC (EuAf). c, LDSC (EuAm). d, LDSC (EuAfAm). e, StocSum 509 

(Sample). Spearman’s rank correlation coefficients are shown at the bottom right. f, 510 

comparison of CPU time between StocSum and LDSC in LD score calculations. The x axis 511 

represents the chromosome numbers and the y axis represents the CPU time in 106 seconds. 512 

g, heritability estimates using LD scores from LDSC and StocSum. The error bars show 513 

point estimates ± standard errors. LD scores were estimated from LDSC (Sample) and 514 

StocSum (Sample) using HCHS/SOL study samples, or LDSC on external reference panels 515 

using European, African and/or American populations from the 1000 Genomes Project: 516 

LDSC (Eu), LDSC (EuAf), LDSC (EuAm), and LDSC (EuAfAm). 517 

Discussion 518 

We have developed and implemented StocSum, a novel framework for generating, 519 

managing, and using stochastic summary statistics for WGS studies. We showed that in all 520 

the example applications that use between-variant correlation or LD matrices, either from 521 

the study samples or external reference panels, such as conditional association tests, variant 522 

set tests and LD score regression, we could use a much smaller stochastic summary statistic 523 

matrix 𝑼 to replace the between-variant correlation or LD matrices, and flexibly extract 524 

the pairwise LD information between any variants on the same chromosome. This strategy 525 

was highly accurate and computationally efficient. The size of 𝑼 scales linearly with the 526 

number of genetic variants M, compared to quadratically in the form of traditional pairwise 527 

LD matrices. The computing time for the stochastic summary statistic matrix 𝑼 always 528 

scales linearly with both the sample size N and the number of genetic variants M (the same 529 

complexity with reading the data), regardless of any complex sample correlation structures. 530 

This matrix only needs to be computed once for each phenotype in both cross-sectional 531 

and longitudinal studies, and can be reused in single-variant tests, conditional association 532 

tests, and variant set tests with different variant set definitions. 533 

 534 

StocSum leverages stochastic algorithms to reduce the computational burden in WGS 535 

studies. Similar algorithms have previously been applied to principal component 536 
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analysis77,78, heritability79 and genetic correlation estimation80, and it is our hope that the 537 

StocSum framework can be extended to a wide range of other applications to genomic 538 

summary statistics that currently require external reference panels, thus facilitating use of 539 

genomic summary statistics from WGS studies. This is especially important for 540 

underrepresented, admixed, and/or isolated populations, for which appropriate reference 541 

panels are difficult to find. We have shown for variant set tests (Fig. S9-10) and LD score 542 

regression (Fig. 6) that external reference panels did not perform well even when all three 543 

ancestry populations for Hispanic/Latino adults were included, and the performance was 544 

even worse when a European-only reference panel was used. By using StocSum instead of 545 

external reference panels, more genetic research can be conducted in diverse populations 546 

that will equally benefit all humans. 547 

 548 

StocSum will likely also facilitate international collaborations on genomic epidemiological 549 

research using WGS data, so that meta-analysis for rare genetic variants can be easily 550 

conducted without sharing individual-level WGS data across borders. Such collaborations 551 

have largely focused on common genetic variants in the past, by sharing genomic summary 552 

statistics. With the decreasing cost and increasing availability of WGS data, large-scale 553 

meta-analysis efforts on rare genetic variants are currently very difficult to coordinate, as 554 

variant sets determining how rare genetic variants should be grouped need to be pre-555 

defined. In contrast, in the StocSum framework, researchers can combine the stochastic 556 

summary statistic matrices U from different studies first, and then decide how the variants 557 

should be grouped. When analysis plans change, there is no need to rerun any analyses 558 

using individual-level data, thus encouraging use of WGS data in international consortia. 559 

 560 

WGS data are big in size and often difficult to share. Although large-scale studies such as 561 

the UK Biobank11, the TOPMed program10, and the CCDG initiative, have made plans to 562 

host their WGS data on cloud-computing platforms to facilitate access, it is still 563 

computationally expensive to directly analyzing individual-level data, making it financially 564 

difficult for small research groups to contribute to scientific discoveries using WGS data. 565 

The StocSum framework will democratize access to WGS resources, as we expect these 566 

high-level summary data will be generated by central analysis centers who are familiar 567 
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with and have direct access to individual-level phenotype and WGS data, and broadly 568 

shared with the scientific community. All downstream analyses using StocSum are free of 569 

the sample size N and could be performed on a laptop. It is also an eco-friendly strategy by 570 

avoiding different research teams running individual-level WGS data analyses on the same 571 

phenotypes, which are at least 𝑂(𝑁𝑀)  operations for each team, thus saving a lot of 572 

electricity in computation. 573 

 574 

There are also several limitations. We have demonstrated concordance of StocSum results 575 

as compared to methods that directly use individual-level data, for both common and rare 576 

variants, but it does not imply these results are statistically valid in all scenarios. For 577 

example, asymptotic P values from GMMAT may not be well-calibrated for extremely 578 

unbalanced cases:control ratios from Biobank studies81. This issue likely also exists for 579 

StocSum tests, given the concordance of StocSum and GMMAT results, and would require 580 

further adjustments or approximations. Moreover, although LD scores and heritability 581 

estimates from StocSum matched well with those from LDSC using internal reference 582 

panels (Fig. 6), these heritability estimates are likely underestimates and may not compare 583 

with estimates from other studies, due to the relatively small sample size in HCHS/SOL. 584 

Also, the choice of the number of random vector replicates 𝐵 depends on the scientific 585 

questions to be investigated in downstream analyses. It does not depend on the sample size 586 

𝑁, although we note that for small studies with 𝑁 < 𝐵, it might be more computationally 587 

expensive to use StocSum, compared to directly using individual-level data. In this study 588 

we have recommended using B=1,000 in all applications, and it worked well in variant set 589 

tests for both regions with the number of variants 𝑞 ≤ 𝐵 and 𝑞 > 𝐵 (Fig. S8). However, 590 

when it is of interest to test a very wide region with 𝑞 being much greater than 𝐵, such as 591 

topologically associating domains ande chromosome-wide association by class of histone 592 

markers82, the performance of StocSum is not guaranteed. Nevertheless, we expect 593 

StocSum to be a computationally efficient and eco-friendly framework for WGS studies 594 

that will facilitate genetic research in diverse populations, international collaborations, and 595 

equal access to WGS resources for the scientific community. 596 
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Methods 597 

Stochastic summary statistics 598 

 599 

We first define the basic null model in the StocSum framework. Under the null hypothesis 600 

of no genetic fixed effects H0: 𝜷 = 0,  model (Eq.(1)) (see Results) reduces to  601 

 602 

 𝕘(𝜇0𝑖
) = 𝑿𝑖𝜶 + 𝑏𝑖 . (2) 

Here 𝕘(∙) is a monotonic link function of 𝜇0𝑖
, and 𝜇0𝑖

= 𝐸(𝑦𝑖|𝑿𝑖 , 𝑏𝑖) is the conditional 603 

mean of the phenotype 𝑦𝑖  under the null hypothesis H0: 𝜷 = 0, given 𝑝 covariates 𝑿𝑖 604 

(including an intercept) and random effects 𝑏𝑖 , for individual 𝑖 of 𝑁 samples. Let �̂�0 =605 

(�̂�01
, �̂�02

, … , �̂�0𝑁
)𝑇 be a length 𝑁 column vector for the estimated values of 𝜇0𝑖

, �̂� be an 606 

estimate of the dispersion parameter (or the residual variance for continuous traits in linear 607 

mixed models) 𝜙 , and �̂�𝑘  be the estimates for variance component parameters 𝜏𝑘 608 

corresponding to 𝑁 × 𝑁 relatedness matrices 𝜱𝑘, from the null model (Eq.(2)), we define 609 

𝑷 = �̂�−1 − �̂�−1𝑿  (𝑿𝑇�̂�−1𝑿)
−1

𝑿𝑇 �̂�−1  as the projection matrix, where 𝑿 =610 

(𝑿1
𝑇 𝑿2

𝑇  ⋯ 𝑿𝑁
𝑇 )𝑇  is a 𝑁 × 𝑝  covariate matrix, and �̂� = �̂�−1 + ∑ �̂�𝑘𝜱𝑘

𝐾
𝑘=1  with �̂�−1 =611 

�̂�𝑰𝑛 for continuous traits in linear mixed models, and  �̂�−1 = 𝑑𝑖𝑎𝑔 {
1

�̂�0𝑖(1−�̂�0𝑖)
} for binary 612 

traits in logistic mixed models55. 613 

 614 

StocSum leverages a length 𝑁 random vector 𝑹𝑏  from a multivariate normal distribution 615 

with mean 𝟎  and covariance matrix 𝑷 , repeats this simulation process 𝐵  times and 616 

combines 𝑹𝑏  (1 ≤ 𝑏 ≤ 𝐵 ) into an 𝑁 ×  𝐵  random matrix 𝑹 = (𝑹1 𝑹2  ⋯ 𝑹𝐵) . In our 617 

implementation, we first decompose relatedness matrices 𝜱𝑘 = 𝒁𝑘𝒁𝑘
𝑇, where 𝒁𝑘  is an 618 

𝑁 × 𝐿𝑘  matrix (𝐿𝑘 ≤ 𝑁 ). For low-rank relatedness matrices (such as those indicating 619 

observations from the same sample in longitudinal studies), 𝒁𝑘  is often known as the 620 

random effect design matrix, with 𝐿𝑘  being the rank of 𝜱𝑘 . For sparse block-diagonal 621 

relatedness matrices (such as positive definite kinship matrices), 𝒁𝑘  is the Cholesky 622 

decomposition of 𝜱𝑘, which is also sparse block-diagonal. We construct the  N × B random 623 
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matrix as 𝑹 = √�̂�𝒓0 + ∑ √𝜏�̂�𝒁𝑘𝒓𝑘
𝐾
𝑘=1  , in which 𝒓0 is an 𝑁 × 𝐵  random matrix and  𝒓𝑘 624 

(1 ≤ 𝑘 ≤ 𝐾) are 𝐿𝑘 × 𝐵  random matrices, with all entries in 𝒓0 and 𝒓𝑘 simulated from a 625 

standard normal distribution.  626 

 627 

For an 𝑁 × 𝑀  genotype matrix 𝑮  for 𝑀  variants on the whole genome (or on one 628 

chromosome), the 𝑀 × 𝐵 stochastic summary statistic matrix 𝑼 can be calculated as 𝑼 =629 

𝑮𝑇𝑹. In the next sections, we describe how the stochastic summary statistics can be used 630 

in various downstream genetic analysis applications. 631 

Single-variant tests 632 

We are interested in conducting single-variant tests for the null hypothesis H0: 𝛽 = 0, using 633 

the score test. The GMMAT single-variant score is 𝑆 =
𝒈𝑇(𝒚−�̂�𝟎)

�̂�
, where 𝒈 =634 

(𝑔1 𝑔2 … 𝑔𝑁)𝑇   is a length 𝑁  column genotype vector for the variant of interest, 𝒚 =635 

(𝑦1 𝑦2 … 𝑦𝑁)𝑇  is a length 𝑁 column vector for the phenotype (Chen et al., 2016). The 636 

variance of the score is  𝑉𝑎𝑟(𝑆|𝐻0) = 𝒈𝑇𝑷𝒈. 637 

 638 

Denote the 𝑗th row of the stochastic summary statistic matrix 𝑼 (for variant 𝑗, 1 ≤ 𝑗 ≤ 𝑀) 639 

by a length 𝐵 row vector 𝑼𝑗., we can show that the variance 𝑉𝑎𝑟(𝑆|𝐻0) of single-variant 640 

score 𝑆 for variant 𝑗 can be estimated as 
1

𝐵
𝑼𝑗.𝑼𝑗.

𝑇, without using any individual-level data. 641 

The asymptotic 𝑃 value is then computed using the single-variant score 𝑆55 and its variance 642 

estimated from the stochastic summary statistic matrix 𝑼, for each variant of interest.  643 

Conditional association tests 644 

Assume �̇�  is an 𝑁 × 𝑐  genotype matrix for 𝑐 ≥ 1  association genetic variants to be 645 

conditioned on and 𝒈 is a length 𝑁 column genotype vector for the variant of interest in 646 

the conditional association test. The single-variant score conditional on the variant set �̇� is 647 

 𝑆𝒈|�̇� = 𝑆𝒈 − 𝒈𝑇𝑷�̇�(�̇�𝑇𝑷�̇�)
−1

𝑆�̇�.  648 

The variance of the conditional score is 𝑉𝑎𝑟(𝑆𝒈|�̇�) = 𝒈𝑇𝑷𝒈 − 𝒈𝑇𝑷�̇�(�̇�𝑇𝑷�̇�)
−1

�̇�𝑇𝑷𝒈17. 649 

 650 
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In the StocSum framework, 𝑆𝒈 and 𝑼𝒈 are the single-variant score and stochastic summary 651 

statistics corresponding to the variant of interest in the conditional association test and 𝑺�̇� 652 

(a length 𝑐  vector) and 𝑼�̇�  (a 𝑐 × 𝐵  matrix) are the single-variant score and stochastic 653 

summary statistics corresponding to the association variants to be conditioned on.  The 654 

conditional score can be computed as  655 

𝑆𝒈|�̇� = 𝑆𝒈 − 𝑼𝒈𝑼�̇�
𝑇(𝑼�̇�𝑼�̇�

𝑇)
−1

𝑺�̇�,   656 

and the conditional stochastic summary statistics can be computed as 657 

 𝑼𝒈|�̇� = 𝑼𝒈 − 𝑼𝒈𝑼�̇�
𝑇(𝑼�̇�𝑼�̇�

𝑇)
−1

𝑼�̇� . 658 

 659 

The variance 𝑉𝑎𝑟(𝑆𝒈|�̇�) of the conditional score 𝑆𝒈|�̇� can be estimated as 
1

𝐵
𝑼𝒈|�̇�𝑼𝒈|�̇�

𝑇. 660 

The asymptotic P value is computed using the conditional score 𝑆𝒈|�̇�  and its variance 661 

estimated from the stochastic summary statistics 𝑼𝒈|�̇�, for each variant of interest in the 662 

conditional association test.  663 

 664 

Gene-environment interaction tests 665 

We introduce a general model for testing 𝑚 gene-environment interaction (GEI) terms in 666 

the GLMM framework. The full model including the genetic main effect and GEI effects 667 

is 668 

 𝕘(𝜇𝑖) = 𝑿𝒊𝜶 + 𝑔𝑖𝛽 + 𝑯𝒊𝜸 + 𝑏𝑖 , (3) 

where 𝑔𝑖  is the genotype for the variant of interest for individual 𝑖, 𝛽 is a scalar of the 669 

genetic main effect, 𝑯𝑖  is a length 𝑚 row vector for the GEI terms, which include the 670 

products of 𝑔𝑖  and 𝑚 environmental factors (a subset from 𝑝 covariates in 𝑿𝑖), and 𝜸 is a 671 

length 𝑚 column vector for GEI effects. We note that under the constraint 𝜸 = 0, 𝛽 also 672 

represents the marginal genetic effect. Other notations follow the null model (Eq.(2)). 673 

 674 

The single-variant score for the marginal genetic effect is 𝑆𝒈 =
𝒈𝑇(𝒚−�̂�𝟎)

�̂�
 and its variance is 675 

𝑉𝑎𝑟(𝑆𝒈) = 𝒈𝑇𝑷𝒈. The single-variant score for the GEI effects is 𝑆𝑯 =
𝑯𝑇(𝒚−�̂�𝟎)

�̂�
 and its 676 

𝑚 × 𝑚 covariance matrix is 𝑉𝑎𝑟(𝑆𝑯) = 𝑯𝑇𝑷𝑯, where 𝑯 = (𝑯1
𝑇 𝑯2

𝑇  ⋯ 𝑯𝑁
𝑇 )𝑇 is a 𝑁 × 𝑚 677 
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matrix for the GEI terms. The score for GEI effects adjusting for the marginal genetic effect 678 

can be approximated by 𝑆𝑯|𝒈 = 𝑆𝑯 − 𝑯𝑇𝑷𝒈(𝒈𝑇𝑷𝒈)−1𝑆𝒈
61, with a covariance matrix 679 

𝑉𝑎𝑟(𝑆𝑯|𝒈) = 𝑯𝑇𝑷𝑯 − 𝑯𝑇𝑷𝒈(𝒈𝑇𝑷𝒈)−1𝒈𝑇𝑷𝑯. The marginal genetic effect can be tested 680 

using the quadratic form 𝑆𝒈
𝑇𝑉𝑎𝑟(𝑆𝒈)

−1
𝑆𝒈, which follows a chi-square distribution with 1 681 

degree of freedom under the null hypothesis of no marginal genetic effects. The GEI effects 682 

can be tested using 𝑆𝑯|𝒈
𝑇𝑉𝑎𝑟(𝑆𝑯|𝒈)

−1
𝑆𝑯|𝒈, which follows a chi-square distribution with 683 

𝑚 degrees of freedom under the null hypothesis of no gene-environment interactions. The 684 

joint test, which evaluates both marginal genetic effects and GEI effects, can be constructed 685 

by the sum of these two chi-square statistics, since 𝑆𝑯  and 𝑆𝑯|𝒈  are asymptotically 686 

independent. The joint test statistic follows a chi-square distribution with 1 + 𝑚 degrees 687 

of freedom under the null hypothesis of no marginal genetic effects or gene-environment 688 

interactions. 689 

 690 

In the StocSum framework, we first compute stochastic summary statistics for the marginal 691 

genetic effect 𝑼𝒈 = 𝒈𝑇𝑹 and GEI effects 𝑼𝑯 = 𝑯𝑇𝑹 using individual-level data. We can 692 

use 
1

𝐵
𝑼𝒈𝑼𝒈

𝑇 , 
1

𝐵
𝑼𝑯𝑼𝑯

𝑇 , and 
1

𝐵
𝑼𝒈𝑼𝑯

𝑇  to estimate the variance of the marginal genetic effect 693 

score 𝑉𝑎𝑟(𝑆𝒈), the covariance matrix of the GEI effect score 𝑉𝑎𝑟(𝑆𝑯), and the covariance 694 

of 𝑆𝒈  and 𝑆𝑯 , respectively. The adjusted scores can be constructed as 𝑆𝑯|𝒈 = 𝑆𝑯 −695 

𝑼𝑯𝑼𝒈
𝑇  (𝑼𝒈𝑼𝒈

𝑇)
−1

𝑆𝒈 , and its variance 𝑉𝑎𝑟(𝑆𝑯|𝒈)  can be approximated as 
1

𝐵
{𝑼𝑯𝑼𝑯

𝑇 −696 

𝑼𝑯𝑼𝒈
𝑇  (𝑼𝒈𝑼𝒈

𝑇)
−1

𝑼𝒈𝑼𝑯
𝑇 }.  697 

 698 

Variant set tests 699 

We include four variant set tests: the burden test34–37, SKAT38, SKAT-O83, and the efficient 700 

hybrid test of burden and SKAT21,39, in the StocSum framework. Here we consider a 701 

variant set including 𝑞 genetic variants (𝑞 > 1) and denote �̃� as a length 𝑞 single-variant 702 

score vector, and �̃� as an 𝑁 × 𝑞 genotype matrix (a subset of the 𝑁 × 𝑀 genotype matrix 703 

𝑮 on the whole genome, or on one chromosome). We note that our examples are not a 704 

complete list of all variant set tests that are commonly used, but any other variant set tests 705 
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that would require 𝑞 × 𝑞 covariance matrices could also be implemented using stochastic 706 

summary statistics. 707 

 708 

The burden test statistic can be constructed as 709 

𝑇𝐵𝑢𝑟𝑑𝑒𝑛 =  �̃�𝑇𝑾𝟏𝑞𝟏𝑞
𝑇𝑾�̃�, 710 

where 𝑾 = 𝑑𝑖𝑎𝑔{𝑤𝑗} is a pre-specified 𝑞 ×  𝑞 diagonal weight matrix, and 𝟏𝑞 is a length 711 

𝑞 vector of 1’s. The weights can be a function of the MAF36,38, or functional annotation 712 

scores such as CADD84,85, FATHMM-XF86, and annotation principal components from 713 

STAAR87. Under the null hypothesis, the statistic 𝑇𝐵𝑢𝑟𝑑𝑒𝑛  asymptotically follows 714 

𝜉𝐵𝑢𝑟𝑑𝑒𝑛𝜒1
2, where the scaling factor 𝜉𝐵𝑢𝑟𝑑𝑒𝑛 = 𝟏𝑞

𝑇𝑾�̃� 𝑇𝑷�̃�𝑾𝟏𝑞 = 𝟏𝑞
𝑇𝑾�̃�𝑾𝟏𝑞 (where �̃� 715 

is a 𝑞 ×  𝑞 covariance matrix for the single-variant score vector �̃�), and 𝜒1
2 is a chi-square 716 

distribution with 1 df. In the StocSum framework,  𝜉𝐵𝑢𝑟𝑑𝑒𝑛  can be estimated as 717 

1

𝐵
𝟏𝑞

𝑇𝑾�̃��̃�𝑇𝑾𝟏𝑞 =
1

𝐵
�̃�𝑇�̃�, where �̃� is a 𝑞 × 𝐵 matrix (a subset of the 𝑀 × 𝐵 stochastic 718 

summary statistic matrix 𝑼), and �̃� = �̃�𝑇𝑾𝟏𝑞  is a length 𝐵 vector (i.e., column sum of 719 

𝑾�̃�).  720 

 721 

The SKAT statistic can be constructed as 722 

𝑇𝑆𝐾𝐴𝑇 =  �̃�𝑇𝑾𝑾�̃�. 723 

Under the null hypothesis, 𝑇𝑆𝐾𝐴𝑇  asymptotically follows ∑ 𝜉𝑆𝐾𝐴𝑇𝑗
𝜒1,𝑗

2𝑞
𝑗=1 , where 𝜒1,𝑗

2  are 724 

independent chi-square distributions with 1 df, and 𝜉𝑆𝐾𝐴𝑇𝑗
 are the eigenvalues of 𝜩𝑆𝐾𝐴𝑇 =725 

𝑾�̃� 𝑇𝑷�̃�𝑾 = 𝑾�̃�𝑾.  In the StocSum framework, 𝜉𝑆𝐾𝐴𝑇𝑗
 can be estimated as the square 726 

of the singular values of 
1

√𝐵
𝑾�̃� (Supplementary Note 1).  727 

 728 

In SKAT-O, the variance component statistic 𝑇𝜌 given a weight parameter 𝜌 (0 ≤ 𝜌 ≤ 1) 729 

is 730 

𝑇𝜌 = 𝜌𝑇𝐵𝑢𝑟𝑑𝑒𝑛 + (1 − 𝜌)𝑇𝑆𝐾𝐴𝑇. 731 

If 𝜌 = 1, 𝑇𝜌 becomes the burden test statistic 𝑇𝐵𝑢𝑟𝑑𝑒𝑛; if 𝜌 = 0, 𝑇𝜌 becomes the SKAT 732 

statistic 𝑇𝑆𝐾𝐴𝑇 . SKAT-O searches for an optimal 𝜌  by minimizing the P value of 𝑇𝜌 . 733 

Specifically, the 𝑞 × 𝑞 weighted covariance matrix 𝜩𝑆𝐾𝐴𝑇 = 𝑾�̃�𝑾 is decomposed into 734 
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two parts 𝜩𝐵𝑢𝑟𝑑𝑒𝑛 = 𝜩𝑆𝐾𝐴𝑇𝟏𝑞(𝟏𝑞
𝑇𝜩𝑆𝐾𝐴𝑇𝟏𝑞)−1𝟏𝑞

𝑇𝜩𝑆𝐾𝐴𝑇  and 𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 = 𝜩𝑆𝐾𝐴𝑇 −735 

𝜩𝐵𝑢𝑟𝑑𝑒𝑛, used in subsequent one-dimensional numerical integration to compute the SKAT-736 

O P value. In the StocSum framework, 𝜩𝐵𝑢𝑟𝑑𝑒𝑛 can be estimated as 
1

𝐵
�̃�𝐵𝑢𝑟𝑑𝑒𝑛�̃�𝐵𝑢𝑟𝑑𝑒𝑛

𝑇
, 737 

where �̃�𝐵𝑢𝑟𝑑𝑒𝑛 = 𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇 , and 𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛  can be estimated as 738 

1

𝐵
�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛

𝑇
, where �̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 = 𝑾�̃� − �̃�𝐵𝑢𝑟𝑑𝑒𝑛.  739 

 740 

In the efficient hybrid test to combine the burden test and SKAT, the adjusted SKAT 741 

statistic 𝑇𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛  can be approximated by  742 

𝑇𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 =  �̃�𝑇𝑾 {𝑰𝑞 − 𝟏𝑞(𝟏𝑞
𝑇𝜩𝑆𝐾𝐴𝑇𝟏𝑞)

−1
𝟏𝑞

𝑇𝜩𝑆𝐾𝐴𝑇} {𝑰𝑞743 

− 𝜩𝑆𝐾𝐴𝑇𝟏𝑞(𝟏𝑞
𝑇𝜩𝑆𝐾𝐴𝑇𝟏𝑞)

−1
𝟏𝑞

𝑇} 𝑾�̃�. 744 

Under the null hypothesis, 𝑇𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛  asymptotically follows ∑ 𝜉𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛𝑗
𝜒1,𝑗

2𝑞
𝑗=1 , 745 

where 𝜒1,𝑗
2  are independent chi-square distributions with 1 df and 𝜉𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛𝑗

 are the 746 

eigenvalues of 𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 . In the StocSum framework, these eigenvalues can be 747 

estimated as the square of the singular values of 
1

√𝐵
�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 (Supplementary Note 748 

2).  749 

 750 

Meta-analysis 751 

In a traditional meta-analysis on a region with 𝑞 genetic variants from 𝐿 studies, we use 752 

the single-variant scores �̃�𝑙  and the covariance matrix �̃�𝑙 from each study 𝑙 (1 ≤ 𝑙 ≤ 𝐿). 753 

The variant set meta-analysis can be performed using the summary scores �̃� = ∑ �̃�𝑙
𝐿
𝑙=1  and 754 

the summary covariance matrix �̃� = ∑ �̃�𝑙
𝐿
𝑙=1

18,19,21,31,33. The single-variant meta-analysis 755 

only requires �̃� and the diagonal elements of �̃�. In the StocSum framework, we compute 756 

�̃� = ∑ �̃�𝑙
𝐿
𝑙=1  instead of �̃�. Assuming 𝑞 < 𝐵, each column of �̃�𝑙  follows a multivariate 757 

normal distribution with mean 𝟎 and covariance matrix �̃�𝑙, and �̃�𝑙 are independent across 758 

𝐿  studies assuming no sample overlaps or between-study relatedness. Therefore, each 759 

column of �̃� follows a multivariate normal distribution with mean 𝟎 and covariance matrix 760 

�̃�. In our implementation, we first compute the stochastic summary statistic matrix 𝑼 =761 
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∑ 𝑼𝑙
𝐿
𝑙=1  for all 𝑀 genetic variants on the whole genome (or one chromosome), regardless 762 

of how variants should be grouped, and then extract 𝑞 genetic variants by taking a subset 763 

of 𝑼 only when computing P values, for both single-variant meta-analysis and variant set 764 

meta-analysis.  765 

LD score regression 766 

LD Score Regression (LDSC) has been widely applied to GWAS summary statistics to 767 

estimate confounding bias, heritability explained by genotyped variants, heritability 768 

enrichments of functional categories, and genetic correlations14,15,88. The classical LDSC 769 

model can be written as 770 

𝐸 [𝜒2
𝑗|𝑙𝑗] =

𝑁ℎ2𝑙𝑗
𝑀

+ 𝑁𝑎 + 1, 771 

where 𝜒2
𝑗  denotes the 𝜒2  statistic of variant 𝑗  from GWAS summary statistics;  𝑙𝑗 =772 

∑ 𝑟𝑗𝑘
2

𝑘  is the LD score of variant 𝑗  with 𝑟𝑗𝑘
2  being the squared Pearson correlation 773 

coefficient of genotypes between variants 𝑗  and 𝑘, 𝑁 is the sample size, 𝑀 is the total 774 

number of variants, 𝑎 is a measure of confounding bias, and ℎ2 is the heritability of the 775 

phenotype. In practice, LDSC calculates 𝑙𝑗  by summing up �̂�𝑎𝑑𝑗𝑗𝑘

2  for all variants 𝑘  in 776 

specific window around the index variant 𝑗.  The adjusted correlation estimate �̂�𝑎𝑑𝑗𝑗𝑘
 can 777 

be computed from the sample correlation estimate �̂�𝑗𝑘 using 778 

�̂�𝑎𝑑𝑗𝑗𝑘

2 = �̂�𝑗𝑘
2 −

1−�̂�𝑗𝑘
2

𝑁−2
. 779 

Sample correlation coefficients �̂�𝑗𝑘 can be estimated as 
𝑤𝑗 𝑮.𝑗

𝑇𝑳𝑮.𝑘𝑤𝑘

𝑁−1
, where 𝑮.𝑗  is the 𝑗th 780 

column of the genotype matrix 𝑮, representing variant 𝑗, 𝑳 = (𝑰𝑁 − 𝟏𝑁(𝟏𝑁
𝑇𝟏𝑁)

−1
𝟏𝑁

𝑇) 781 

is an 𝑁 × 𝑁 idempotent projection matrix, and 𝑤𝑗 =
1

√2𝑓𝑗(1−𝑓𝑗)
  (𝑓𝑗 is the MAF of variant 782 

𝑗) is a weight that standardizes 𝑮.𝑗 to a unit variance.   783 

 784 

In the StocSum framework, we construct the N × B random matrix as 𝑹 = 𝑳𝒓0, where 𝒓0 785 

is an 𝑁 × 𝐵  random matrix with all entries simulated from a standard normal distribution. 786 

For an 𝑁 × 𝑀 genotype matrix 𝑮 for all 𝑀 genetic variants on the whole genome (or one 787 
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chromosome), we compute the 𝑀 × 𝐵 stochastic summary statistic matrix 𝑼 = 𝑾𝑮𝑇𝑹, 788 

where 𝑾 = 𝑑𝑖𝑎𝑔{𝑤𝑗} is an 𝑀 × 𝑀 diagonal weight matrix.  For variant 𝑗, we subset 𝑀𝑗 789 

variants within the flanking region (with a default window width of 1000 Kb) to get the 790 

corresponding 𝑀𝑗 × 𝐵  subset �̃�. The adjusted correlation coefficient �̃�𝑎𝑑𝑗𝑗𝑘
 for �̃�𝑗𝑘  from 791 

StocSum is computed as (Supplementary Note 3) 792 

�̃�𝑎𝑑𝑗𝑗𝑘

2 = �̃�𝑗𝑘
2 −

1−�̃�𝑗𝑘
2

𝐵−2
−

1−�̃�𝑗𝑘
2

𝑁−2
. 793 

The LD score 𝑙𝑗  of variant 𝑗  could be estimated by summarizing stochastic summary 794 

statistics of 𝑀𝑗 variants in flanking region,  795 

𝑙𝑗 = ∑ �̃�𝑎𝑑𝑗𝑗𝑘

2

𝑀𝑗

𝑘=1

= {∑ (1 +
1

𝐵 − 2
+

1

𝑁 − 2
) �̃�𝑗𝑘

2

𝑀𝑗

𝑘=1

} −
𝑀𝑗

𝐵 − 2
−

𝑀𝑗

𝑁 − 2
 796 

= (1 +
1

𝐵−2
+

1

𝑁−2
) (

�̃� �̃� 𝑗.
𝑇

𝐵(𝑁−1)
∘

�̃� �̃� 𝑗.
𝑇

𝐵(𝑁−1)
)

𝑇

1𝑀𝑗
−

𝑀𝑗

𝐵−2
−

𝑀𝑗

𝑁−2
. 797 

in which ∘ denotes the Hadamard product, and �̃�𝑗. is the jth row of �̃�. 798 

Whole genome sequence and phenotype data 799 

 800 

The Trans-Omics for Precision Medicine (TOPMed), sponsored by the National Heart, 801 

Lung and Blood Institute (NHLBI), generates scientific resources to enhance our 802 

understanding of fundamental biological processes that underlie heart, lung, blood and 803 

sleep disorders (HLBS)10. WGS of the TOPMed samples was performed over multiple 804 

studies, years and sequencing centers. The TOPMed freeze 8 WGS data include 138K 805 

samples from 72 studies. The sequence reads were aligned to the human genome build 806 

GRCh38 using BWA-MEM following the protocol published previously89. To perform 807 

variant quality control, a support vector machine classifier was trained on known variant 808 

sites (positive labels) and Mendelian inconsistent variants (negative labels). Further variant 809 

filtering was done for variants with excess heterozygosity and Mendelian discordance. 810 

Sample quality control measures included: concordance between annotated and inferred 811 

genetic sex, concordance between prior array genotype data and TOPMed WGS data, and 812 

pedigree checks10.  813 

 814 
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In this paper, our analysis includes genotypes and phenotypes from two TOPMed studies, 815 

Hispanic Community Health Study/Study of Latins (HCHS/SOL) and the Atherosclerosis 816 

Risk in Communities (ARIC) study.  817 

 818 

HCHS/SOL data. The HCHS/SOL is a multi-center study of Hispanic/Latino populations 819 

with the goal of determining the role of acculturation in the prevalence and development 820 

of diseases, and to identify other traits that impact Hispanic/Latino health90. Participants 821 

were recruited using a multi-stage probability sample design, as described previously90,91. 822 

The HCHS/SOL is composed of six different background groups including Central 823 

Americans, Cubans, Dominicans, Mexicans, Puerto Ricans, and South Americans7. A total 824 

of 123,004,674 variants from 7,684 HCHS/SOL participants in TOPMed were available 825 

for genetic association analyses.  826 

 827 

Low-density lipoprotein (LDL) cholesterol levels were used as an illustrating example in 828 

single-variant tests, conditional association tests, variant set tests, meta-analysis, and LD 829 

score regression. Additional phenotypes including high-density lipoprotein (HDL) 830 

cholesterol levels, systolic blood pressure (SBP), and diastolic blood pressure (DBP) were 831 

also used as examples in LD score regression. To account for the effect of lipid-lowering 832 

medication, LDL cholesterol levels for study participants who took statins were adjusted 833 

by dividing raw values by 0.7, following previous studies57,92,93. Both LDL and HDL 834 

cholesterol levels were set to missing for study participants with unknown statins use, 835 

unknown fibric/nicotinic acids use, or those who took only fibric/nicotinic acids but no 836 

statins. SBP and DBP were adjusted by adding 15 mmHg and 10 mmHg for study 837 

participants self-reporting use of any antihypertensive medication, respectively76. The 838 

waist-hip ratio (WHR) was used as an illustrating example in gene-environment interaction 839 

tests. 840 

 841 

ARIC data. The cohort component of the ARIC study began in 1987, and each of the four 842 

ARIC field centers (Washington County, MD; Forsyth County, NC; Jackson, MS; and 843 

Minneapolis, MN) randomly selected and recruited a cohort sample of approximately 4,000 844 

individuals aged 45-64 from a defined population in their community. A total of 15,792 845 
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participants received an extensive examination, including medical, social, and 846 

demographic data94. These participants were examined with the first (baseline) exam 847 

occurring in 1987-89, the second in 1990-92, the third in 1993-95, the fourth in 1996-98, 848 

the fifth in 2011-13, and the sixth in 2016-17. The TOPMed WGS study over-sampled 849 

ARIC participants with incident venous thromboembolism (VTE). We removed 850 

samples/visits with missing phenotype (LDL) or covariates (age, sex, BMI, field center, 851 

and top five ancestry principal components), resulting in 26,668 observations from 6,327 852 

ARIC EA samples and 7,514 observations from 2,045 ARIC AA samples. After removing 853 

low-quality variants with a genotype call rate less than 90% and monomorphic markers, 854 

there were 91,715,717 and 69,958,574 variants in ARIC EA and AA samples, respectively.  855 

 856 

Longitudinal LDL cholesterol levels from the baseline exam until up to the 6th exam were 857 

used as an illustrating example in single-variant and variant set meta-analyses. To account 858 

for the effect of lipid-lowering medication, LDL cholesterol levels for study participants 859 

who took statins were adjusted by dividing raw values by 0.757,92,93. LDL cholesterol levels 860 

were set to missing for study participants with unknown statins use, unknown cholesterol 861 

medication use, or inconsistent information from statins use and cholesterol medication 862 

use. 863 

 864 

Reference data from 1000 Genomes. Individual-level WGS data from the 1000 Genomes 865 

Project95 were used as reference panels in fastBAT variant set tests and LD score 866 

regression. Only high-quality variants with a genotype call rate ≥ 95% and passed the 867 

quality control filters were included. Four reference panels were constructed with different 868 

combinations of super-populations: European (Eu), European and African (EuAf), 869 

European and American (EuAm), and European, African and American (EuAfAm), with 870 

23,654,568, 45,780,202, 31,334,904, and 49,350,7868 variants from 503, 894, 682, and 871 

1,073 samples, respectively. 872 

 873 

Statistical Analyses  874 

Single-variant tests. We removed samples with missing values in the phenotype LDL 875 

cholesterol levels or covariates (age, sex, body mass index [BMI], field center, sampling 876 
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weight, Hispanic/Latino background groups, and top five ancestry principal components) 877 

and excluded variants with a genotype call rate less than 90% and monomorphic markers 878 

in single-variant test comparisons. After quality control, a total of 120,066,450 variants 879 

from 7,297 HCHS/SOL samples were available for analysis. We included age, age2, sex, 880 

age × sex, age2 × sex, BMI, field center, sampling weight, Hispanic/Latino background 881 

groups and top five ancestry principal components as fixed-effects covariates. We rank-882 

normalized residuals after regressing the phenotype LDL cholesterol levels on fixed-effects 883 

covariates, and then used them as the phenotype in downstream null model fitting and 884 

association tests96. Three random effects representing household, census block, and kinship 885 

effects were included to account for sample relatedness. We also allowed the residual 886 

variance to be different across 6 Hispanic/Latino background groups (i.e., Central 887 

American, Cuban, Dominican, Mexican, Puerto Rican, and South American), in a 888 

heteroscedastic linear mixed model7 for both GMMAT and StocSum. The P values from 889 

StocSum were compared to those from GMMAT using individual-level data. The default 890 

value of the number of random vectors 𝐵 in StocSum was set to 1,000. To benchmark the 891 

numerical accuracy and required computational resources, the number of random vectors 892 

B changed from 10 (StocSum (B=10)), 100 (StocSum (B=100)), 1,000 (StocSum 893 

(B=1,000)), to 10,000 (StocSum (B=10,000)).  894 

 895 

To compare with fastGWA60 in single-variant analysis, we dropped household and census 896 

block random effects, and only included a kinship random effects to account for sample 897 

relatedness. We also assumed an equal residual variance across 6 Hispanic/Latino 898 

background groups in the linear mixed model for GMMAT and StocSum, to make a fair 899 

comparison with fastGWA. 900 

 901 

Conditional association tests. We performed conditional analyses for the seven regions 902 

associated with LDL at the genome-wide significance level of 5×10-8 from the single-903 

variant analysis in HCHS/SOL (Table S1). For each region, we started with a sentinel 904 

variant with the smallest P value, and computed conditional association test P values for 905 

all variants in the flanking region (1 Mb) after adjusting for the sentinel variant. If there 906 

were any variants in a region with a conditional P < 5×10-8, we then selected the variant 907 
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with the smallest conditional P value as the secondary association variant, and performed 908 

conditional analyses after adjusting for both association variants. 909 

 910 

Gene-environment interaction tests. We compared gene-environment interaction tests in 911 

StocSum with MAGEE single-variant interaction tests using individual-level data. We 912 

focused on gene-sex interaction effects on an anthropometric phenotype waist-hip ratio 913 

(WHR) which shows strong evidence of sex dimorphism, using WGS data from 914 

HCHS/SOL. We included age, age2, sex, age × sex, age2 × sex, BMI, field center, sampling 915 

weight, Hispanic/Latino background groups, top five ancestry principal components (PCs), 916 

and sex by top five ancestry PC interactions as fixed-effects covariates. After removing 917 

samples with missing values in the phenotype WHR or covariates, and variants with a 918 

genotype call rate less than 90% and monomorphic markers, a total of 122,076,760 variants 919 

from 7,636 HCHS/SOL samples were available for analysis. Similar to the single-variant 920 

analysis, we followed a two-step approach96 and used rank-normalized WHR residuals as 921 

the phenotype in null model fitting and gene-sex interaction tests. We included three 922 

random effects representing household, census block and kinship effects to account for 923 

sample relatedness, and used a heteroscedastic linear mixed model by allowing the residual 924 

variance to be different across the 12 sex by Hispanic/Latino background groups. The 925 

marginal genetic effect, gene-sex interaction, and joint test P values from StocSum were 926 

compared to corresponding test results from MAGEE single-variant interaction tests using 927 

individual-level data.  928 

 929 

Variant set tests. We compared variant set tests using StocSum versus SMMAT using 930 

individual-level data. After removing samples with missing values in the phenotype LDL 931 

cholesterol levels or covariates, and variants with a genotype call rate less than 90% and 932 

monomorphic markers, a total of 120,066,450 variants from 7,297 HCHS/SOL samples 933 

were available for analysis. We used the same null model as previously described in the 934 

single-variant tests for GMMAT and StocSum, and conducted a sliding window analysis43 935 

with 20kb non-overlapping windows. We applied a beta density function with parameters 936 

1 and 25 on the MAF as variant weights38 in both SMMAT and StocSum. SMMAT requires 937 

individual-level data to conduct variant set tests. In contrast, StocSum directly uses the 938 
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single-variant summary statistics and stochastic summary statistics previously computed 939 

for single-variant tests. 940 

 941 

To compare with fastBAT97 in variant set tests, we used the same kinship-only null model 942 

with equal residual variance as previously described in the single-variant test comparison 943 

for fastGWA, GMMAT, and StocSum. We also changed variant weights using a beta 944 

density function with parameters 0.5 and 0.5 on the MAF (also known as the Madsen-945 

Browning weights)98, equivalent to rescaling the genotypes to a unit variance in fastBAT. 946 

Four external reference panels from 1000 Genomes (Eu, EuAf, EuAm, EuAfAm), as well 947 

as an internal reference panel using the HCHS/SOL study samples, were used to estimate 948 

LD between variants in each set in fastBAT. 949 

 950 

In a second example, we also applied StocSum to variant set tests using windows defined 951 

by functional genomic units.  We collected Hi-C data generated from an in situ Hi-C 952 

protocol on human GM12878 B-lymphoblastoid cells49, in which the crosslinked DNA was 953 

pulled down followed by Illumina sequencing. The whole genome was split into non-954 

overlapping segments with a bin size of 10kb (i.e., contact matrices were generated at base 955 

pair delimited resolutions of 10kb), and a total of 17,224 pairs of contacts were defined. 956 

Each segment pair can be considered as a long-distance DNA crosslink. We grouped 957 

variants from each contact pair as a variant set, including two 10kb windows which may 958 

not be located in close proximity on the primary structure of DNA (the linear sequence), 959 

to evaluate the performance of StocSum on variant sets that are physically farther away 960 

and not typically covered using fixed-size sliding windows.  961 

 962 

Meta-analysis. We combined StocSum on LDL cholesterol levels from ARIC and 963 

HCHS/SOL in single-variant and variant set meta-analysis. For HCHS/SOL, we used 964 

single-variant summary statistics and stochastic summary statistics previously computed 965 

for single-variant tests on LDL cholesterol levels. For ARIC, we first fit two linear mixed 966 

models separately for EA and AA, treating LDL cholesterol levels from up to 6 visits as 967 

repeated measures for each participant, and then computed single-variant summary 968 

statistics and stochastic summary statistics. We included age, age2, sex, age × sex, age2 × 969 
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sex, BMI, field center, and top five ancestry principal components as fixed-effects 970 

covariates. We rank-normalized residuals after regressing the phenotype LDL cholesterol 971 

levels on fixed-effects covariates, and then used them as the phenotype96. In each ARIC 972 

dataset (EA and AA), variants with a genotype call rate less than 90% and monomorphic 973 

markers were excluded. After quality control, there were a total of 91,715,717 variants 974 

from 6,327 ARIC EA samples, and 69,958,574 variants from 2,045 ARIC AA samples.  975 

 976 

We took the union of all variants and combined ARIC EA, ARIC AA, and HCHS/SOL 977 

summary statistics in a traditional single-variant meta-analysis using GMMAT, and a 978 

traditional variant set meta-analysis using SMMAT. In StocSum meta-analysis, we 979 

combined stochastic summary statistics from ARIC EA, ARIC AA and HCHS/SOL into a 980 

single file by adding together stochastic summary statistics for the same variant across 981 

three studies. We assigned 0 to both the single-variant summary statistic and stochastic 982 

summary statistic for a variant that was not observed in a study, since it did not contribute 983 

to the test statistic. In variant set meta-analysis, we applied a beta density function with 984 

parameters 1 and 25 on the MAF as variant weights, and conducted a 20kb sliding window 985 

analysis, for both SMMAT and StocSum.  986 

 987 

LD score regression. In LD score regression, we only included common genetic variants 988 

with MAF ≥ 1% in HCHS/SOL. Following previous guidelines14,16,99,100, we excluded 989 

variants within the major histocompatibility complex (MHC; chromosome 6: 25-34Mb) 990 

and variants in regions with exceptionally long-range LD (Table S6). After quality control, 991 

11,190,311 common variants with MAF > 1% from 7,289 HCHS/SOL study samples were 992 

used in StocSum to calculate LD score. We used single-variant summary statistics from 993 

GWAS of LDL, HDL, SBP and DBP in HCHS/SOL using GMMAT. Covariates included 994 

age, age2, sex, age × sex, age2 × sex, BMI, field center, sampling weight, Hispanic/Latino 995 

background groups, and top five ancestry principal components. The same HCHS/SOL 996 

study samples were used as an internal reference panel in the LDSC program and StocSum 997 

to calculate LD scores, i.e., LDSC (Sample) and StocSum (Sample). With the same filters, 998 

four external reference panels from the 1000 Genomes Project were used in the LDSC 999 

program to calculate LD scores, i.e., LDSC (Eu), LDSC (EuAf), LDSC (EuAm), LDSC 1000 
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(EuAfAm), including 9,092,238, 14,296,986, 9,410,628, 13,819,023 common variants 1001 

with MAF > 1% (1000 Genomes Project Consortium), from 503 Eu, 894 EuAf, 682 EuAm, 1002 

and 1,073 EuAfAm samples, respectively. With the LD scores from these internal and 1003 

external references, the LDSC program was used to estimate heritability. For both LDSC 1004 

and StocSum, we used a 1 Mb window around each index variant to calculate its LD score.  1005 

 1006 

To evaluate the performance of StocSum, we also compared heritability estimates from 1007 

LDSC (Sample) and StocSum (Sample) partitioned by different MAF bins. Common 1008 

variants from HCHS/SOL and external reference panels were divided into 6 MAF bins, 1009 

i.e., 1% < MAF ≤ 5%, 5% < MAF ≤ 10%, 10% < MAF ≤ 20%, 20% < MAF ≤ 30%, 30% 1010 

< MAF ≤ 40%, and 40% < MAF ≤ 50%. Partitioned LD scores for different MAF bins 1011 

were calculated by LDSC and StocSum, i.e., LDSC (Sample), LDSC (Eu), LDSC (EuAf), 1012 

LDSC(EuAm), LDSC (EuAfAm), and StocSum (Sample). Partitioned heritability was 1013 

estimated by the LDSC program with summary statistics for the phenotype LDL and 1014 

partitioned LD scores.   1015 
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Supplementary Note 1320 

1. Approximating eigenvalues in variant set tests using singular values from StocSum. 1321 

For 𝑞  variants ( 𝑞 < 𝐵 ), the 𝑞 ×  𝑞  covariance matrix used in variant set tests is 1322 

�̃� = �̃� 𝑇𝑷�̃�. In the StocSum framework, we compute a 𝑞 × 𝐵 matrix �̃� = �̃�𝑇𝑹, where 1323 

each column 𝑹𝑏  (1 ≤ 𝑏 ≤ 𝐵) of an 𝑁 ×  𝐵 random matrix 𝑹 = (𝑹1 𝑹2  ⋯ 𝑹𝐵) is a length 1324 

𝑁  random vector generated from a multivariate normal distribution with mean 𝟎  and 1325 

covariance matrix 𝑷. Each column �̃�𝑏 = �̃�𝑇𝑹𝑏 of �̃� then follows a multivariate normal 1326 

distribution with mean 𝟎  and covariance matrix �̃� , and the 𝐵  columns of �̃�  are 1327 

independent and identically distributed. Therefore, when 𝐵 is large, 
1

𝐵
�̃��̃� 𝑇 converges to 1328 

the covariance matrix �̃�. For 𝜩𝑆𝐾𝐴𝑇 = 𝑾�̃�𝑾 in SKAT, we can use 
1

𝐵
𝑾�̃��̃� 𝑇𝑾 to estimate 1329 

𝜩𝑆𝐾𝐴𝑇. 1330 

 1331 

We compute the singular value decomposition 
1

√𝐵
𝑾�̃� = 𝑸𝐿𝑫𝑸𝑅

𝑇, where 𝑟 ≤ min(𝑞, 𝐵) 1332 

is the rank of 
1

√𝐵
𝑾�̃�, 𝑸𝐿  and 𝑸𝑅  are 𝑞 × 𝑟 and 𝐵 × 𝑟 semi-unitary matrices, respectively 1333 

(𝑸𝐿
𝑇𝑸𝐿 = 𝑸𝑅

𝑇𝑸𝑅 = 𝑰𝑟 ), and 𝑫  is an 𝑟 × 𝑟  diagonal matrix with elements being the 1334 

singular values of 
1

√𝐵
𝑾�̃�. As we use 

1

𝐵
𝑾�̃��̃� 𝑇𝑾 to estimate 𝜩𝑆𝐾𝐴𝑇, where 

1

𝐵
𝑾�̃��̃� 𝑇𝑾 =1335 

𝑸𝐿𝑫𝑸𝑅
𝑇𝑸𝑅𝑫𝑸𝐿

𝑇 = 𝑸𝐿𝑫𝑫𝑸𝐿
𝑇, elements in the 𝑟 × 𝑟 diagonal matrix 𝑫𝑫 (the square of 1336 

the singular values of 
1

√𝐵
𝑾�̃�) can be used to estimate the eigenvalues of 𝜩𝑆𝐾𝐴𝑇 when 𝑟 =1337 

𝑞. If 𝑟 < 𝑞 (for example, when testing a large genomic region with 𝑞 > 𝐵), we could only 1338 

estimate the top 𝑟 (which is usually equal to 𝐵 when 𝑞 > 𝐵) eigenvalues of 𝜩𝑆𝐾𝐴𝑇 using 1339 

the singular values of 
1

√𝐵
𝑾�̃�. 1340 

 1341 

 1342 

2. Approximating eigenvalues in the efficient hybrid variant set test using singular 1343 

values from StocSum. 1344 

 1345 
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In the efficient hybrid variant set test to combine the burden test and SKAT, the adjusted 1346 

SKAT statistic asymptotically follows a weighted sum of independent chi-square 1347 

distributions with 1 df, where the weights are the eigenvalues of 1348 

 1349 

 𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 = 𝜩𝑆𝐾𝐴𝑇 − 𝜩𝐵𝑢𝑟𝑑𝑒𝑛 = 𝜩𝑆𝐾𝐴𝑇 − 𝜩𝑆𝐾𝐴𝑇𝟏𝑞(𝟏𝑞
𝑇𝜩𝑆𝐾𝐴𝑇𝟏𝑞)−1𝟏𝑞

𝑇𝜩𝑆𝐾𝐴𝑇. 1350 

As we use 
1

𝐵
𝑾�̃��̃� 𝑇𝑾 to estimate 𝜩𝑆𝐾𝐴𝑇 (Supplementary Note 1), let �̃� = �̃�𝑇𝑾𝟏𝑞 be a 1351 

length 𝐵  vector denoting the column sum of 𝑾�̃� , and define �̃�𝐵𝑢𝑟𝑑𝑒𝑛 =1352 

𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇 , �̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 = 𝑾�̃� − �̃�𝐵𝑢𝑟𝑑𝑒𝑛 = 𝑾�̃� − 𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇  (see 1353 

Methods), it follows that 1354 

𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 ≈
1

𝐵
-

1

𝐵
𝑾�̃��̃�𝑇𝑾𝟏𝑞(𝟏𝑞

𝑇𝑾�̃��̃�𝑇𝑾𝟏𝑞)
−1

𝟏𝑞
𝑇𝑾�̃��̃�𝑇𝑾  1355 

 1356 

=
1

𝐵
𝑾�̃��̃�𝑇𝑾 −

1

𝐵
𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇�̃�𝑇𝑾 1357 

=
1

𝐵
(𝑾�̃� − 𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇)(𝑾�̃� − 𝑾�̃��̃�(�̃�𝑇�̃�)−1�̃�𝑇)𝑇 1358 

=
1

𝐵
�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛

𝑇
. 1359 

Therefore, similar to Supplementary Note 1, the eigenvalues of the 𝑞 ×  𝑞  matrix 1360 

𝜩𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛 can be estimated using the square of the single values of the 𝑞 × 𝐵 matrix 1361 

1

√𝐵
�̃�𝑆𝐾𝐴𝑇|𝐵𝑢𝑟𝑑𝑒𝑛. 1362 

 1363 

 1364 

3. Derivation of the adjusted correlation coefficient in the StocSum framework 1365 

 1366 

Let 𝑟𝑗𝑘  be the Pearson correlation coefficient between variants 𝑗  and 𝑘 , the sample 1367 

correlation coefficient �̂�𝑗𝑘  can be estimated using individual-level centered and rescaled 1368 

genotypes (with mean 0 and variance 1), namely, �̂�𝑗𝑘 =
𝑤𝑗 𝑮.𝑗

𝑇𝑳𝑮.𝑘𝑤𝑘

𝑁−1
, where 𝑮.𝑗 and 𝑮.𝑘  are 1369 

the 𝑗th and 𝑘th columns of the full genotype matrix 𝑮, representing variants 𝑗 and 𝑘, 𝑤𝑗  1370 

and 𝑤𝑘  are rescaling weights that standardize genotypes to a unit variance, and 𝑳 =1371 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

48 

 

(𝑰𝑁 − 𝟏𝑁(𝟏𝑁
𝑇𝟏𝑁)

−1
𝟏𝑁

𝑇)  is an 𝑁 × 𝑁  idempotent projection matrix that centers the 1372 

genotypes (see Methods). The asymptotic distribution of �̂�𝑗𝑘 is given by 1373 

√𝑁(�̂�𝑗𝑘 − 𝑟𝑗𝑘)  →  𝑁 (0, (1 − 𝑟𝑗𝑘
2 )

2
). 1374 

Therefore,  1375 

𝐸( �̂�𝑗𝑘
2 ) = 𝐸(�̂�𝑗𝑘)

2
+ 𝑉𝑎𝑟(�̂�𝑗𝑘) = 𝑟𝑗𝑘

2 +
(1 − 𝑟𝑗𝑘

2 )
2

𝑁
≈ 𝑟𝑗𝑘

2 +
1 − 𝑟𝑗𝑘

2

𝑁
. 1376 

In LD score regression, the higher order term is ignored and the adjusted squared 1377 

correlation coefficient is computed as �̂�𝑎𝑑𝑗𝑗𝑘

2 = �̂�𝑗𝑘
2 −

1−�̂�𝑗𝑘
2

𝑁−2
 to reduce the bias (Bulik-1378 

Sullivan et al., 2015). 1379 

 1380 

In the StocSum framework, we compute the 𝑀 × 𝐵 stochastic summary statistic matrix 1381 

𝑼 = 𝑾𝑮𝑇𝑹 , where 𝑾 = 𝑑𝑖𝑎𝑔{𝑤𝑗}  is an 𝑀 × 𝑀  diagonal weight matrix, and 𝑮  is an 1382 

𝑁 × 𝑀  genotype matrix for all 𝑀  genetic variants on the whole genome (or one 1383 

chromosome). We use 𝑼𝑗⋅ and  𝑼𝑘⋅ to denote length 𝐵 row vectors from 𝑼 for variants 𝑗 1384 

and 𝑘, respectively. Then we can use 
1

𝐵
𝑼𝑗⋅𝑼𝑘⋅

𝑇 to estimate 𝑤𝑗  𝑮.𝑗
𝑇𝑳𝑮.𝑘𝑤𝑘, and therefore 1385 

�̃�𝑗𝑘 =
�̃�𝑗⋅ �̃� 𝑘.

𝑇

𝐵(𝑁−1)
 converges to �̂�𝑗𝑘 =

𝑤𝑗 𝑮.𝑗
𝑇𝑳𝑮.𝑘𝑤𝑘

𝑁−1
 when 𝐵 is large. Given �̂�𝑗𝑘, the asymptotic 1386 

distribution of �̃�𝑗𝑘|�̂�𝑗𝑘 follows 1387 

√𝐵(�̃�𝑗𝑘 − �̂�𝑗𝑘)  →  𝑁 (0, (1 − �̂�𝑗𝑘
2)

2
). 1388 

 1389 

Therefore, 1390 

𝐸(�̃�𝑗𝑘) = 𝐸{𝐸(�̃�𝑗𝑘|�̂�𝑗𝑘)} = 𝐸(�̂�𝑗𝑘) = 𝑟𝑗𝑘, 1391 

and ignoring the higher order terms in the variance, we have 1392 

𝑉𝑎𝑟(�̃�𝑗𝑘) = 𝐸{𝑉𝑎𝑟(�̃�𝑗𝑘|�̂�𝑗𝑘)} + 𝑉𝑎𝑟{𝐸(�̃�𝑗𝑘|�̂�𝑗𝑘)} ≈ 𝐸 {
1 − �̂�𝑗𝑘

2

𝐵
} + 𝑉𝑎𝑟{�̂�𝑗𝑘}1393 

=
1 − 𝑟𝑗𝑘

2 −
1 − 𝑟𝑗𝑘

2

𝑁
𝐵

+
1 − 𝜌𝑗𝑘

2

𝑁
. 1394 
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Hence,  1395 

𝐸(�̃�𝑗𝑘
2 ) = 𝐸(�̃�𝑗𝑘)

2
+ 𝑉𝑎𝑟(�̃�𝑗𝑘) = 𝑟𝑗𝑘

2 +
1−𝑟𝑗𝑘

2 −
1−𝑟𝑗𝑘

2

𝑁

𝐵
+

1−𝑟𝑗𝑘
2

𝑁
≈ 𝑟𝑗𝑘

2 +
1−𝑟𝑗𝑘

2

𝐵
+

1−𝑟𝑗𝑘
2

𝑁
. 1396 

The term 
1−𝑟𝑗𝑘

2

𝑁𝐵
  is ignored as both 𝑁 and 𝐵 are large. Following the same adjustment in 1397 

LDSC (Bulik-Sullivan et al., 2015), we calculate adjusted correlation coefficient �̃�𝑎𝑑𝑗𝑗𝑘
 for 1398 

�̃�𝑗𝑘 from StocSum using 1399 

�̃�𝑎𝑑𝑗𝑗𝑘

2 = �̃�𝑗𝑘
2 −

1 − �̃�𝑗𝑘
2

𝐵 − 2
−

1 − �̃�𝑗𝑘
2

𝑁 − 2
. 1400 

Supplementary Tables 1401 

 1402 

Table S1. Significant association regions with LDL cholesterol levels from single-variant 1403 

tests in HCHS/SOL. Only variants with MAF > 0.5% were included. Genome coordinates 1404 

presented were based on GRCh38. 1405 

 1406 

Table S2. Regions showing suggestive evidence of gene-sex interactions or genetic 1407 

associations accounting for gene-sex interactions on WHR in HCHS/SOL. Only  variants 1408 

with P values < 5×10-7 and MAF > 0.5% were included. Previously reported marginal 1409 

genetic effects, gene-sex interactions, or joint effects within 1Mb flanking regions were 1410 

shown. Genome coordinates presented were based on GRCh38.  1411 

 1412 

Table S3. Significant association regions with LDL cholesterol levels from variant set tests 1413 

in a 20kb sliding window analysis in HCHS/SOL. Genome coordinates presented were 1414 

based on GRCh38. 1415 

 1416 

Table S4. Significant association regions with LDL cholesterol levels from single-variant 1417 

meta-analysis combining stochastic summary statistics from HCHS/SOL, ARIC EA and 1418 

ARIC AA. Only variants with MAF > 0.5% were included. Genome coordinates presented 1419 

were based on GRCh38. 1420 
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 1421 

Table S5. Significant association regions with LDL cholesterol levels from variant set 1422 

meta-analysis in a 20kb sliding window analysis after combining stochastic summary 1423 

statistics from HCHS/SOL, ARIC EA and ARIC AA. Genome coordinates presented were 1424 

based on GRCh38. 1425 

 1426 

Table S6. Regions excluded from LD score regression due to long-range LD on the human 1427 

genome. Genome coordinates presented were based on GRCh38. 1428 

 1429 

Chromosome Start Position (Mb) End Position (Mb) 

1 45.5 52 

1 72.5 73.5 

1 174 175 

1 24.61 24.63 

2 85.9 100.1 

2 133.5 137.5 

2 182 189.5 

3 47.4 51.3 

3 89 98.5 

3 162 163.6 

4 33.5 34.5 

4 97.5 98.2 

4 119 120 

4 143 144.2 

5 44.4 51.2 
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5 98.5 101.5 

5 129.6 133 

5 136.2 139.2 

6 25.3 33.5 

6 57.7 64.3 

6 139 142.5 

7 54.9 66.9 

7 119 120 

8 8 12.5 

8 42 49 

8 110 114 

10 36.5 43.2 

11 46 58 

11 88 91.2 

12 33 41.3 

12 109 111.6 

14 66.1 67.5 

17 45 47 

19 23.5 28 

20 33.9 41.3 

 1430 
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Supplementary Figures  1431 

 1432 

Figure S1 Quantile-quantile (Q-Q) plots of P values from single-variant tests on LDL 1433 

cholesterol levels using GMMAT and StocSum in HCHS/SOL. The number of random 1434 

vector replicates B in StocSum was set to 1,000. a, GMMAT P values from all variants. b, 1435 

StocSum P values from all variants. c, GMMAT P values from variants with MAF > 0.5%. 1436 

d, StocSum P values from variants with MAF > 0.5%. The gray shaded areas in the Q-Q 1437 

plots represent 95% confidence intervals under the null hypothesis of no genetic 1438 

associations. 1439 

 1440 
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 1441 

Figure S2. Quantile-quantile (Q-Q) plots of P values from single-variant tests on LDL 1442 

cholesterol levels using fastGWA, GMMAT, and StocSum in HCHS/SOL. The number of 1443 

random vector replicates B in StocSum was set to 1,000. a, fastGWA P values from all 1444 

variants. b, GMMAT P values from all variants. c, StocSum P values from all variants. d, 1445 

fastGWA P values from variants with MAF > 0.5%. e, GMMAT P values from variants 1446 

with MAF > 0.5%. f, StocSum P values from variants with MAF > 0.5%. The gray shaded 1447 

areas in the Q-Q plots represent 95% confidence intervals under the null hypothesis of no 1448 

genetic associations. 1449 

 1450 
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 1451 

Figure S3 Comparison of P values from single-variant tests on LDL cholesterol levels 1452 

using fastGWA, GMMAT, and StocSum in HCHS/SOL. a, comparison of P values from 1453 

GMMAT and fastGWA. b-e, comparisons of P values from GMMAT and StocSum with 1454 

the number of random vector replicates B being equal to 10 (b), 100 (c), 1,000 (d), and 1455 

10,000 (e). The red line denotes the reference line of equality. Spearman’s rank correlation 1456 

coefficients are shown at the bottom right. The data used in this test consisted of 120M 1457 

variants from 7,297 individuals in HCHS/SOL. 1458 

 1459 

 1460 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

55 

 

Figure S4 Comparison of CPU time and memory usage from fastGWA, GMMAT and 1461 

StocSum in single-variant tests. a, CPU time. The x axis represents the chromosome 1462 

numbers and the y axis represents the CPU time in 105 seconds. For GMMAT, the CPU 1463 

time consists of fitting the null model and conducting the association test. For StocSum, 1464 

the CPU time is the sum of four steps: fitting the null model, generating the random vectors, 1465 

computing the single-variant score statistics and the stochastic summary statistics, and 1466 

computing the P values. b, Memory usage. The x axis represents the chromosome numbers 1467 

and the y axis represents the memory footprint per thread in GB. The data used in this test 1468 

consisted of 120M variants from 7,297 individuals in HCHS/SOL. All tests were 1469 

performed on a high-performance computing server, with 64 threads running in parallel.  1470 

 1471 

 1472 

a 1473 

 1474 

 1475 

b 1476 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

56 

 

 1477 

c 1478 

 1479 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

57 

 

 1480 

d 1481 

 1482 

e 1483 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

58 

 

 1484 

 1485 

f 1486 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

59 

 

 1487 

Figure S5 Regional plots of StocSum conditional association test results. a, PCSK9 gene 1488 

region with association variants chr1:55039974 (rs28362263) and chr1:55058182 1489 

(rs28362263). b, CELSR2 gene region with the sentinel variant chr1:109274968 1490 

(rs562338). c, APOB gene region with the sentinel variant chr2:21065449 (rs562338). d, 1491 

LPA gene region with the sentinel variant chr6:160576086 (rs10455872). e, LDLR gene 1492 

region with the sentinel variant chr19:11086210 (rs8106503). f, SUGP1 gene region with 1493 

the sentinel variant chr19:19301236 (rs57915152). Association variants are highlighted in 1494 

black dots. Original single-variant test P values are shown in dots and conditional P values 1495 

are shown in triangles. Variants in four LD categories are shown in different colors based 1496 

on the maximum squared correlation to the sentinel variant and the secondary association 1497 

variant calculated in HCHS/SOL if there are two association variants (a), or the squared 1498 

correlation to the sentinel variant in HCHS/SOL if there is only one sentinel association 1499 

variant (b-f). The horizontal line indicates the genome-wide significance level on the log 1500 

scale, -log10(5 × 10−8). The blue curve shows recombination rates from all populations in 1501 

the 1000 Genome Project. 1502 
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 1504 

Figure S6 Quantile-quantile (Q-Q) plots of P values from gene-sex interaction tests on 1505 

WHR using MAGEE and StocSum in HCHS/SOL. The number of random vector 1506 

replicates B in StocSum was set to 1,000. a, Marginal P values for all variants from 1507 
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MAGEE. b, Interaction P values for all variants from MAGEE. c, Joint P values for all 1508 

variants from MAGEE. d, Marginal P values for all variants from StocSum. e, Interaction 1509 

P values for all variants from StocSum. f, Joint P values for all variants from StocSum. g, 1510 

Marginal P values for variants with MAF > 0.5% from MAGEE. h, Interaction P values 1511 

for variants with MAF > 0.5% from MAGEE. i, Joint P values for variants with MAF > 1512 

0.5% from MAGEE. j, Marginal P values for variants with MAF > 0.5% from StocSum. 1513 

k, Interaction P values for variants with MAF > 0.5% from StocSum. l, Joint P values for 1514 

variants with MAF > 0.5% from StocSum. The gray shaded areas in the Q-Q plots represent 1515 

95% confidence intervals under the null hypothesis of no genetic associations and/or gene-1516 

sex interactions. 1517 

 1518 

 1519 

Figure S7 Comparison of P values from single-variant gene-sex interaction tests on WHR 1520 

using MAGEE and StocSum in HCHS/SOL. a, comparison of marginal genetic effect test 1521 

P values. b, comparison of gene-sex interaction test P values. c, comparison of joint test P 1522 

values. The x axis and the y axis represent –log10(P) using MAGEE and StocSum, 1523 

respectively. The red line denotes the reference line of equality. Spearman’s rank 1524 

correlation coefficients are shown at the bottom right.  1525 

 1526 
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 1528 

Figure S8 A density plot showing the distribution of variant numbers in each set in a 20 kb 1529 

sliding window analysis on LDL cholesterol levels in HCHS/SOL. 1530 

 1531 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted April 7, 2023. ; https://doi.org/10.1101/2023.04.06.535886doi: bioRxiv preprint 

https://doi.org/10.1101/2023.04.06.535886
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

63 

 

 1532 

Figure S9 Comparison of P values from variant set tests in a 20 kb sliding window analysis 1533 

on LDL cholesterol levels using fastBAT, SMMAT, and StocSum in HCHS/SOL. The x 1534 

axis represents the –log10(P) from variant set tests using SMMAT on individual-level data 1535 

and the y axis represents the –log10(P) from variant set tests using StocSum or fastBAT.  1536 

a, fastBAT with an internal reference panel using the HCHS/SOL study samples (fastBAT 1537 

(Sample)). b-e, StocSum with the number of random vector replicates B being equal to 10 1538 

(b), 100 (c), 1,000 (d) and 10,000 (e). f-i, fastBAT with external reference panels from 1539 

1000 Genomes using European (fastBAT (Eu)) (f), European and African (fastBAT 1540 

(EuAf)) (g), European and American (fastBAT (EuAm)) (h), and European, African, and 1541 

American (fastBAT (EuAfAm)) (i) populations. The red line denotes the reference line of 1542 
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equality. The data used in this test consisted of 120M variants from 7,297 individuals in 1543 

HCHS/SOL. Spearman’s rank correlation coefficients are shown at the top left. 1544 

 1545 

 1546 

Figure S10 Heatmap showing Spearman’s rank correlation coefficients of P values from 1547 

variant set tests in a 20 kb sliding window analysis on LDL cholesterol levels using 1548 

fastBAT, SMMAT, and StocSum in HCHS/SOL. For fastBAT, we used an internal 1549 

reference panel using the HCHS/SOL study samples (fastBAT (Sample)), as well as four 1550 

external reference panels from 1000 Genomes (Eu, EuAf, EuAm, EuAfAm).  1551 

 1552 
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Figure S11 Comparison of CPU time and memory usage from fastBAT, SMMAT, and 1554 

StocSum in variant set tests in a 20 kb sliding window analysis on LDL cholesterol levels 1555 

in HCHS/SOL. a, CPU time. The x axis represents the chromosome numbers and the y axis 1556 

represents the CPU time on the logarithmic scale. The CPU time only includes the step of 1557 

computing the P values, assuming corresponding summary statistics have been computed 1558 

in single-variant tests. b, Memory usage. The x axis represents the chromosome numbers 1559 

and the y axis represents the memory footprint per thread in GB on the logarithmic scale. 1560 

The data used in this test consisted of 120M variants from 7,297 individuals in HCHS/SOL. 1561 

All tests were performed on a high-performance computing server, with a single thread for 1562 

each chromosome. 1563 
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Figure S12 Comparison of SMMAT and StocSum variant set tests in a non-sliding-window 1565 

analysis on LDL cholesterol levels in HCHS/SOL. The variant sets were defined by 1566 

merging chromatin loops of H3K27ac HiChIP interaction in the GM12878 cell line. There 1567 

are a total of 17,224 paired regions, each as a variant set, including two 10kb windows 1568 

which may not be located in close proximity on the primary structure of DNA and not 1569 

typically covered using fixed-size sliding windows. a, comparison of P values from 1570 

SMMAT and StocSum with the number of random vector replicates B being equal to 1,000. 1571 

The x axis and the y axis represent the –log10(P) from variant set tests using SMMAT and 1572 

StocSum, respectively. The red line denotes the reference line of equality. b, comparison 1573 

of CPU time between SMMAT and StocSum. The x axis represents the chromosome 1574 

numbers and the y axis represents the CPU time in 105 seconds. For SMMAT and StocSum, 1575 

the CPU time only includes the step of computing the P values, assuming corresponding 1576 

summary statistics have been computed in single-variant tests. c, comparison of memory 1577 

usage between SMMAT and StocSum. The x axis represents the chromosome numbers and 1578 

the y axis the memory footprint per thread in GB. d, a density plot showing the distribution 1579 

of variant numbers in each set. 1580 

 1581 

Figure S13 Comparison of P values from single-variant tests on longitudinal LDL 1582 

cholesterol levels using GMMAT and StocSum in ARIC AA (a) and ARIC EA (b). The 1583 

ARIC AA data used in this test consisted of 70M variants and 7,514 observations from 1584 

2,045 individuals. The ARIC EA data used in this test consisted of 92M variants and 26,668 1585 
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observations from 6,327 individuals. The x axis and the y axis represent the –log10(P) from 1586 

single-variant tests using GMMAT and StocSum with the number of random vector 1587 

replicates B being equal to 1,000. The red line denotes the reference line of equality. 1588 

Spearman’s rank correlation coefficients are shown at the bottom right. 1589 

 1590 

 1591 

Figure S14 LDL heritability estimates by stratified LDSC and StocSum for different MAF 1592 

bins. The error bars show point estimates ± standard errors. Negative heritability estimates 1593 

reported from stratified LDSC were truncated at 0.  LD scores for different MAF bins were 1594 

estimated from LDSC (Sample) and StocSum (Sample) using HCHS/SOL study samples, 1595 

or LDSC on external reference panels using European, African and/or American 1596 

populations from the 1000 Genomes Project: LDSC (Eu), LDSC (EuAf), LDSC (EuAm), 1597 

and LDSC (EuAfAm). 1598 
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