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Abstract: Simple sequence repeats (SSRs) are prevalent in the genomes of all organisms. They are
widely used as genetic markers, and are insertion/deletion mutation hotspots, which directly influence
genome evolution. However, little is known about such important genomic components in ciliated
protists, a large group of unicellular eukaryotes with extremely long evolutionary history and genome
diversity. With recent publications of multiple ciliate genomes, we start to get a chance to explore
perfect SSRs with motif size 1–100 bp and at least three motif repeats in nine species of two ciliate
classes, Oligohymenophorea and Spirotrichea. We found that homopolymers are the most prevalent
SSRs in these A/T-rich species, with AAA (lysine, charged amino acid; also seen as an SSR with
one-adenine motif repeated three times) being the codons repeated at the highest frequencies in
coding SSR regions, consistent with the widespread alveolin proteins rich in lysine repeats as found
in Tetrahymena. Micronuclear SSRs are universally more abundant than the macronuclear ones of the
same motif-size, except for the 8-bp-motif SSRs in extensively fragmented chromosomes. Both the
abundance and A/T content of SSRs decrease as motif-size increases, while the abundance is positively
correlated with the A/T content of the genome. Also, smaller genomes have lower proportions of
coding SSRs out of all SSRs in Paramecium species. This genome-wide and cross-species analysis
reveals the high diversity of SSRs and reflects the rapid evolution of these simple repetitive elements
in ciliate genomes.
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1. Introduction

Simple sequence repeats (SSRs), also known as tandem repeats, are abundant components
present in all known genomes. They are major contributors of genome repetivity and are associated
with transposable elements [1–4]. Homopolymer runs and microsatellites are two well-known
representatives of SSRs. These repeats are usually insertion/deletion (indel) mutation hotspots that
cause replication slippage of DNA polymerases. They could lead to high genome instability thus
causing certain diseases, for example Lynch syndrome, a hereditary non-polyposis colorectal cancer in
humans [5–8]. The high indel mutation rate of SSRs increases genetic variation between individuals in
a population, making SSRs suitable tools for developing genetic markers and for studies of population
genetics in a variety of organisms; tandem repeats of amino acids may also facilitate rapid generation
of morphological variation [9–14].

Ciliates are microbial eukaryotes with high species and genomic diversity, and are characterized
by nuclear dimorphism [15–23]. The macronucleus is transcriptionally active whereas the micronucleus
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is only active during sexual reproduction [24]. Genomes of these unicellular organisms are highly
A/T-rich and repetitive, causing difficulties in genome-sequencing. Nonetheless, genomes have been
deciphered for increasing numbers of species, thus providing the opportunity to study genome
evolution using comparative genomics methods [15,25–32].

During development of the new macronucleus, most micronuclear non-coding sequences,
including repetitive ones, are eliminated, while some long repeats are still retained in macronuclear
genomes [15,33,34]. It remains a question how the genome rearrangement process changes the shape
and span of the frequency distribution of macronuclear SSRs, compared with that of the micronucleus.

In this study, we explore the genome-wide variation of SSR characteristics using published
high-quality genomes of nine ciliates: Ichthyophthirius multifiliis, Oxytricha trifallax, Paramecium biaurelia,
P. caudatum, P. sexaurelia, P. tetraurelia, Pseudocohnilembus persalinus, Stylonychia lemnae, and Tetrahymena
thermophila (Table 1). We focus on the patterns of distribution, structure, and codons of SSRs, and the
evolutionary mechanisms that determine these patterns.

Table 1. Features of macronuclear and micronuclear genomes analyzed in this study.

Species G
(Mbp) A/T TNG n N50

(kbp) Platform Class Data
Source

Ichthyophthirius
multifiliis (MAC) 48.80 84.09 8096 49 55.11 454,

Sanger Oligohymenophorea [28]

Oxytricha trifallax
(MAC) 67.16 68.65 18500 0 3.74

Illumina,
454,

Sanger
Spirotrichea [30]

Oxytricha trifallax
(MIC) 496.29 71.56 810 a - 27.81 Illumina,

PacBio Spirotrichea [35]

Paramecium biaurelia
(MAC) 79.96 74.23 39242 0 - Illumina,

454 Oligohymenophorea [29]

P. caudatum (MAC) 30.48 71.80 18509 0 - Illumina,
454 Oligohymenophorea [29]

P. sexaurelia (MAC) 68.02 75.93 34939 0 - Illumina,
454 Oligohymenophorea [29]

P. tetraurelia (MAC) 72.09 71.95 39521 144 413 Sanger Oligohymenophorea [26]

Pseudocohnilembus
persalinus (MAC) 55.46 81.19 13186 0 368 Illumina Oligohymenophorea [32]

Stylonychia lemnae
(MAC) 50.16 68.30 20740 0 - Illumina Spirotrichea [25]

Tetrahymena
thermophila (MAC) 103.01 77.68 24725 60 521 Sanger Oligohymenophorea [36]

Tetrahymena
thermophila (MIC) 157.69 77.92 47 b - 486.55 Illumina Oligohymenophorea [37]

A/T, A/T content of the genome; Class, the taxonomic class in which the species is; G, genome size; MAC, macronucleus;
MIC, micronucleus; n, number of overlapping genes; N50, scaffold N50; Platform, genome sequencing platform;
TNG, total number of genes in the genome; a, not including internally eliminated sequences (IES)-less genes; b, genes
only predicted in non-maintained macronuclear chromosomes, which are lost after macronuclear differentiation.

2. Materials and Methods

2.1. Genome Sequences and Annotations

Genome and annotation data of the following species were downloaded from the National
Center for Biotechnology Information (NCBI) Genome database: Ichthyophthirius multifiliis
(macronucleus: GCF_000220395.1), Oxytricha trifallax (macronucleus: GCA_000295675.1; micronucleus:
GCA_000711775.1), Paramecium tetraurelia (macronucleus: GCA_000715435.1), Pseudocohnilembus
persalinus (macronucleus: GCA_001447515.1), Stylonychia lemnae (macronucleus: GCA_000751175.1),
and Tetrahymena thermophila (macronucleus: GCF_000189635.1; micronucleus: GCA_000261185.1).
Those of Paramecium biaurelia, P. caudatum, and P. sexaurelia were downloaded from the ParameciumDB
database (https://paramecium.i2bc.paris-saclay.fr/; access on 20 February 2020).

https://paramecium.i2bc.paris-saclay.fr/
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2.2. Analysis of Simple Sequence Repeats (SSRs)

Perfect SSRs with motif size 1–100 bp (each motif has ≥3 repeats; no SSR with motif size >100 bp
was detected in any genomes involved in this study) were detected with a Perl program originally
developed by Dr. Way Sung, University of North Carolina, Charlotte. This program applies a greedy
algorithm to find the maximum number of repeats. For motifs nested in one SSR, which are rare, only
the smallest motif was counted. Details are described in Sung et al. [38]. Codons in SSRs were iterated
from coding sequences of each genome, with both the strand and starting codon position taken into
account. All statistical tests were carried out in R 3.4.4 [39]. Plotting was performed using R packages
ggplot2 and ggpmisc.

3. Results

The detailed genomic features of the nine ciliate species are shown in Table 1. All genomes
are A/T-rich (A/T content: 68.30%–84.09%; Table 1) with a wide range of genome sizes and
total gene numbers. The species belong to one of two ciliate classes: Oligohymenophorea
(Ichthyophthirius multifiliis, Paramecium biaurelia, P. caudatum, P. sexaurelia, P. tetraurelia, Pseudocohnilembus
persalinus, Tetrahymena thermophila) and Spirotrichea (Oxytricha trifallax, Stylonychia lemnae).
Most macronuclear chromosomes in the two spirotricheans are extremely fragmented and amplified
during genome rearrangement.

3.1. Size Distribution and A/T Content of SSRs

SSRs are abundant in all macronuclear genomes, accounting for ~7.59% to 11.97% of the whole
genome (Table 2; Figure 1). Such abundance is strongly correlated with the genome-wide A/T content
(Pearson’s r = 0.94, p = 0.0002). This confirms that the more polarized the A/T content, the more
repetitive the genome. Here, we define a motif as the shortest repeating unit of any given SSR. SSRs
with motif sizes 1–10 bp are more abundant than those with longer motifs, especially mononucleotide
repeats as homopolymer runs, such as (A)n, (C)n, (G)n, and (T)n (Table 2; Figure 1). In addition to
these homopolymer motifs, there are another 166 motifs with sizes of 2–6 bp that are shared in all
nine species (Supplementary Table S1). These motifs form similar microsatellite sequences, but their
distribution and repeat number do not show specific relevance to each other.

Table 2. Macronuclear simple sequence repeats information.

Species A/T SSR/G H/SSR A/T-H r1(P) r2(P) CSP RPG(SEM)

Ichthyophthirius
multifiliis 97.63 11.97 91.04 97.62 −0.72(3.76× 10−6) −0.55(0.01) 17.08(20.60) 0.50(2.62× 10−4)

Oxytricha trifallax 87.74 8.02 95.12 87.76 −0.73(1.27× 10−3) −0.80(6.08 × 10−4) 63.41(70.50) 0.50(1.58× 10−4)

Paramecium biaurelia 95.18 8.22 94.52 93.95 −0.19(0.33) −0.02(0.93) 73.67(72.77) 0.51(1.41× 10−4)

P. caudatum 92.17 7.59 95.15 91.86 −0.81(4.51× 10−4) −0.79(7.10 × 10−4) 15.34(86.46) 0.51(2.01× 10−4)

P. sexaurelia 95.54 8.68 94.83 95.49 −0.31(0.09) −0.40(0.05) 69.24(73.43) 0.51(1.97× 10−4)

P. tetraurelia 91.97 7.80 94.99 92.07 −0.31(0.15) −0.08(0.74) 72.24(75.55) 0.50(1.49× 10−4)

Pseudocohnilembus
persalinus 95.91 11.38 93.75 95.95 −0.48(1.23× 10−3) −0.56(0.01) 34.59(39.34) 0.50(1.59× 10−4)

Stylonychia lemnae 87.35 7.81 94.96 87.39 −0.71(4.76× 10−3) −0.72(8.67 × 10−3) 63.70(71.39) 0.50(1.88× 10−4)

Tetrahymena
thermophila 96.69 10.09 95.29 96.61 −0.35(0.05) −0.72(8.67 × 10−3) 41.40(49.39) 0.50(1.21× 10−4)

All numbers are percentages, except for those in the r1, r2, and RPG columns. A/T, A/T content of SSRs in the
genome; SSR/G, proportion of SSR sequences in the whole genome; H/SSR, proportion of homopolymer runs in SSR
sequences; A/T-H, A or T homopolymers out of all homopolymers; r1(P), Pearson’s correlation coefficient (P value)
of motif size vs. A/T content at all sites; r2(P), Pearson’s correlation coefficient (P value) of motif size vs. A/T content
at coding sites; CSP, coding SSR proportion, proportions of SSRs in coding regions out of all SSRs, proportions of
coding sequences out of the whole-genome sequences are in the parentheses; RPG, relative position of homopolymer
SSRs in a gene, calculated by (|homopolymer median genomic coordinate-gene start position|+1)/(gene length);
SEM, standard error of the mean.
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Figure 1. Counts of simple sequence repeats (SSRs) with 1–100 bp motifs (≥three repeats) in the nine
ciliate macronuclear genomes. The y-axis is log10 transformed.

The number of repeats decreases as the motif gets larger (Figure 2). Interestingly, there are peaks at
8-bp motifs in the two spirotricheans, O. trifallax and S. lemnae, with (G)4(T)4 or (A)4(C)4 at the ends of
scaffolds being the majority (50.22% and 70.92%, respectively; Figure 1). These repeat motifs are known
telomeric sequences that are added mostly to the ends of the gene-sized chromosomes by telomerases
during macronuclear development. However, there are extremely rare internal telomeric repeats,
defined as (G)4(T)4 or (A)4(C)4 motifs repeated at least twice in contigs with telomeric repeats at both
ends and not located at the first or last 10% of the contigs. In S. lemnae, 36 possible internal telomeres
are distributed in 36 gene-sized chromosomes; in O. trifallax, 39 in 38 chromosomes (Supplementary
Table S2). However, the presence of 1000–1500 internal telomeres in the micronuclear polytene
chromosomes has been previously reported in S. lemnae [40,41]. This indicates that most internal
telomeres are eliminated or rearranged during macronuclear development, or unknown internal
telomeric sequence difference exists between the macronucleus and micronucleus, as previously
reported in T. thermophila [42]. In addition, both species have numerous extremely short, gene-sized
(i.e., <1 kbp) chromosomes. This is consistent with the assertion that extreme genome fragmentation
and amplification increases genome repetivity. By contrast, motifs larger than 10 bp are rare, especially
in the two spirotricheans, the assembly scaffolds of which are extremely short (Table 1).
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The A/T content of SSRs is significantly higher than that of the corresponding genomes (one-sided
paired t-test, t = -21.563, df = 8, p = 1.13 × 10−8; Tables 1 and 2) and they are strongly correlated (r = 0.90,
p = 0.0008). The higher A/T content of SSRs is likely due to the dominance of A/T homopolymers in
SSRs (Table 2). This domination also elevates the median A/T content of SSRs in all nine species almost
to 1.0 (Figure 2). A/T content generally decreases as motif size gets larger (Figure 2; Table 2).

3.2. Association between SSRs and Genome Architecture

It is known that repetitive elements contribute to the generation or positional rearrangement of
overlapping genes [43,44], for example, in mosquitos the overlapping events are significantly associated
with the microsatellite sequences’ amount in the overlapped genes. The microsatellite sequences
might have facilitated the crossover events, which lead to positional rearrangement of neighboring
genes [44]. Thus, we ask whether ciliate genomes with more SSRs would have more overlapping genes.
The proportion of overlapping genes and the proportion of SSRs in the genome are not correlated with
each other (Pearson’s r = 0.55; p = 0.12), giving no significant support to the assertion that SSRs elevate
the number of overlapping genes. Nonetheless, the possibility that such lack of correlation is an artifact
caused by insufficient annotation quality cannot be excluded. It is noteworthy that there are only
three species with overlapping genes and the two with the most overlapping genes, i.e., Paramecium
tetraurelia and Tetrahymena thermophila, have the best-annotated/maintained genomes (Table 1).

We also ask the question whether SSRs in the macronuclear and micronuclear genomes follow
the same size distributions. Due to the paucity of available micronuclear genomes, only O. trifallax
and T. thermophila are included in this analysis. In O. trifallax, for the same motif size, there are more
SSRs in the micronuclear genome than in the macronuclear genome, except for those with 8-bp motifs
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(Figure 3). Of these repeat motifs, 50.22% are in telomeres, probably because the chromosomes are
extensively fragmented and amplified during macronuclear development. In O. trifallax, 8-bp-motif
SSRs account for about 9.46% of all non-homopolymer SSRs in the macronuclear genome, whereas
this proportion is only 0.04% in the micronuclear genome. By contrast, in T. thermophila, a species
with low levels of genome rearrangement, micronuclear SSRs are universally more abundant than the
macronuclear SSRs, i.e., there is higher repetivity in the micronuclear than the macronuclear genome
(Figure 3).
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In order to show more specific SSR patterns, we picked two genes (MTA6, MTB6; each contains
one internally eliminated sequence (IES); NCBI accession numbers: KC405252.1, KC405257.1) in
the T. thermophila mating type gene family, which are well-studied and have clear gene structural
annotations [45]. For each gene, we ran the SSR pipelines and aligned the MDSs (Macronucleus-Destined
Sequences) in the micronuclear genome with those in the macronuclear genome (Supplementary
Table S3). Consistent with the genome-wide comparison shown in Figure 3, after taking into account all
sites of both genes, the macronuclear genes have fewer SSRs than the micronuclear ones. We also parsed
out micronuclear intronic SSRs of the two genes and aligned them with those in the macronuclear
introns. These conserved SSRs (at least in the two focal genes) do not only include homopolymers such
as 5′AAAAAAAA3′, 5′AAAAA3′, but also include microsatellites 5′AATAATAAT3′, 5′ATATAT3′,
5′TATATA3′. The specific functions for these SSRs are unclear, and they could be motifs associated
with the rearrangement process. Analyzing SSRs in MDSs shared by both MIC and MAC MTA6
and MTB6 genes, we found that ~50% of SSRs have a higher copy number in the macronucleus than
in the micronucleus, with the remaining ~50% being equal in the two nuclei. As mentioned above,
the total number of SSRs in the two genes (full length) are higher in the micronucleus than in the
macronucleus, thus implying that IESs greatly elevate the repetitiveness of the micronuclear genome.
This observation from the two genes might be extended to whole-genome-level, although a robust
test with fully-annotated macronuclear and micronuclear genomes would be needed. We also found
a few SSRs unique to the macronuclear MDSs (i.e., not present in the corresponding MIC genes),
for example, 5′CTCCTCCTC3′, 5′CTGCTGCTG3′, 5′GCTGCTGCT3′, 5′TCTCTC3′, 5′TGCTGCTGC3′

in MTA6; 5′AACAACAAC3′, 5′AGCAGCAGC3′, 5′AGTAGTAGT3′, 5′CTTCTTCTT3′, 5′GAGAGA3′,
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5′TGGTGGTGG3′ in MTB6 (Supplementary Table S3), suggesting that novel SSRs might be created
during the rearrangement process.

Since some tandem repeats with 10–20 bp repeat units are involved in the genome
rearrangement [46], we searched SSRs with repeat motifs of 10–20 bases in the micronuclear and
macronuclear genomes of both Tetrahymena thermophila and Oxytricha trifallax (Supplementary Table S4).
These SSRs are more abundant in the micronucleus than in the macronucleus (42 in the micronucleus
vs. 25 in the macronucleus of T. thermophila, and among them 10 are shared with mostly the same
sequence and length in both genomes; 368 vs. 8 in O. trifallax and 4 are shared; Supplementary Table S4)
and are distributed evenly along the scaffolds/chromosomes in both genomes. We also compared these
SSRs to those previously published. Interestingly, two identical 19mer SSRs have been detected in two
different micronuclear scaffolds (5′ATTATTTCTTTTTACATTT3′; Supplementary Table S4). These are
known tandem repeats in Tlr1 [Tetrahymena long repeat 1; a member of a gene family with 20-30 DNA
elements encoding a polynucleotide transferase; 45], which is involved in genome rearrangement of
T. thermophila [47] (Supplementary Table S4). This example and the identification of other 10-20bp
SSRs confirm the quality of the genomes, the fidelity of the analysis, as well as provide unexplored
SSR candidates possibly functioning in the genome arrangement process of both T. thermophila and
O. trifallax.

3.3. SSRs in Coding Regions

SSRs are evenly distributed in gene regions, without upstream or downstream biases (Table 2,
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Figure 4. Numbers of codons that are in SSR regions. White boxes represent 0. Ich, Ichthyophthirius
multifiliis; Oxy, Oxytricha trifallax; Pbia, Paramecium biaurelia; Pcau, P. caudatum; Psex, P. sexaurelia; Ptet,
P. tetraurelia; Pseudo, Pseudocohnilembus persalinus; Sty, Stylonychia lemnae; Tetra, Tetrahymena thermophila.
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In order to identify codons that are frequently repeated in coding regions, or possibly most tolerated
by the gene, we analyzed codons that are repeated more than 10 times. Isoleucine (hydrophobic),
asparagine (hydrophilic), leucine (hydrophobic), tyrosine (hydrophilic), and glutamic acid (charged)
codon repetitions are the most abundant in most species. Ichthyophthirius multifiliis, Paramecium biaurelia,
P. sexaurelia, and P. tetraurelia are the four species with the highest numbers of repeated codons (Table 3).
Of the oligohymenophoreans, P. caudatum seems to have extremely rare repeated codons. This result
suggests that in the four Paramecium species included in the present study, the relative abundance of
coding SSRs is strongly correlated with genome size (adjusted R2 = 0.98, p = 0.006; Tables 1 and 2).
However, when all nine species were analyzed, the correlation is not significant (adjusted R2 = 0.13,
p = 0.19).

Table 3. Total counts of SSRs with codon repeats (>=10) in the nine ciliate genomes.

Codons Amino Acid Ich Oxy Pbia Pcau Psex Ptet Pseudo Sty Tetra

GCA|GCG|GCC|GCT Alanine 0 0 0 0 0 0 0 0 0

CGA|CGG|CGC|CGT|AGA|AGG Arginine 8 0 0 0 5 0 1 0 1

AAC|AAT Asparagine 65 0 70 0 111 38 8 0 12

GAC|GAT Aspartic acid 13 0 0 0 1 3 2 0 1

TGC|TGT Cysteine 1 0 1 0 0 1 0 0 0

GGA|GGG|GGC|GGT Glycine 1 1 1 1 2 1 1 1 1

GAA|GAG Glutamic acid 16 0 1 1 6 5 7 0 3

CAA|CAG Glutamine 0 0 1 0 1 3 1 0 0

CAC|CAT Histidine 4 0 0 0 0 0 0 0 0

ATA|ATC|ATT Isoleucine 80 1 70 1 113 20 6 1 6

CTA|CTG|GTC|CTT|TTA|TTG Leucine 13 0 98 0 0 48 1 0 2

AAA|AAG Lysine 15 0 5 0 10 1 10 0 5

ATG Methionine 2 0 0 0 1 0 3 0 1

TTC|TTT Phenylalanine 2 0 5 0 0 0 2 0 0

CCA|CCG|CCC|CCT Proline 1 0 1 0 0 5 1 0 0

TCA|TCT|TCC|TCT|AGC|AGT Serine 4 0 2 0 0 0 0 0 0

ACA|ACG|ACC|ACT Threonine 10 0 1 0 4 3 2 0 1

TGG Tryptophan 2 0 0 0 0 0 0 0 1

TAC|TAT Tyrosine 17 0 60 0 0 30 0 0 0

GTA|GTG|GTC|GTT Valine 3 0 0 0 1 0 3 0 1

Ich, Ichthyophthirius multifiliis; Oxy, Oxytricha trifallax; Pbia, Paramecium biaurelia; Pcau, P. caudatum; Psex, P. sexaurelia;
Ptet, P. tetraurelia; Pseudo, Pseudocohnilembus persalinus; Sty, Stylonychia lemnae; Tetra, Tetrahymena thermophila.

4. Discussion

In this study, we investigated perfect SSRs in nine ciliate species for which high-quality genomic
data are available in order to determine their size distribution, A/T content, repeated codons, and their
association with other genomic features. Nevertheless, characterization of SSRs is not the equivalent of
a comprehensive investigation of genome repetivity since similar studies have yet to be carried out on
large repetitive elements, e.g., transposable elements.

A/T content generally decreases as motif size increases (Figure 2; Table 2), which is consistent
with the observation of minisatellites (motif size > 10 bp) being GC-rich in other organisms [48]. In the
macronuclear genomes of all the nine ciliates in this study, we also confirm that A/T content of each
single motif is also associated with A/T content of the flanking region (the two nucleotides flanking
each SSR; Pearson’s r ~1, p < 2.20 × 10−16), which indicates the origin of non-dispersal repeats.

We found that A/T content is strongly associated with SSR abundance. In comparison with other
protists, the level of SSR content in ciliates is similar to that of the malaria pathogen Plasmodium
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falciparum (~9% of the genome is SSRs; A/T content 80.67%) [49], while it is much lower than that
of Trypanosoma cruzi (~30% of the genome is SSRs; A/T content 48.30%) [50], suggesting that the
positive correlation between A/T content and SSR abundance is not a general rule in protists, and infers
diversifying mechanisms in genome repetitive elements evolution.

Amino acid repeats in proteins are known to play important roles in pathogenesis, cell
interaction, motility, cytoskeleton and morphological evolution [13,51,52]. In parasitic ciliates such as
Ichthyophthirius multifiliis and Cryptocaryon irritans, amino acid repeats are important components of
the cell surface immobilization antigens (i-ags), which are targets of host antibodies, and codons for
amino acids repeats are usually repeated also at the DNA level [53–55]. These repeats could cause
unequal crossover, creating new alleles and thus increasing antigen diversity. Such recombinogenic
expansion of surface antigens might be an adaptive strategy to increase the survival of parasitic ciliates
when facing the harsh environment of host secretions. Therefore, the unstable nature of SSRs/tandem
repeats could be partially advantageous for ciliate genome evolution, especially for parasitic species.

Across all the ciliate species in this study, the most abundant 3-bp SSRs in coding regions are
AAAs, which code for lysines. Lysine-repeats are the most abundant amino-acid repeats in the pellicle
alveolins of the alveoli, which are important cellular structures in ciliates for occupying diverse habitats
and reflect highly divergent protein evolution [51,56–58]. This finding suggests that the SSR motifs are
conserved in ciliates with different morphology and life histories. Homopolymers are prone to occur
in non-coding regions (Table 2, coding SSR proportion column). It has previously been suggested that
homopolymers in non-coding regions can be involved in protein binding, e.g., as upstream promoter
elements [59], which implies that the presence of SSRs might be a key factor in driving genome
evolution in ciliates. Besides, repeated-codons (>=10 repeats) are rare, potentially as a result of stronger
selection against gene mis/dysfunction caused by repetivity in smaller genomes.

In ciliates, the macronucleus is resorbed in each sexual cycle, and its evolution is more driven by
epigenetic mechanisms other than classical genetic mechanisms. Relating macronuclear SSRs to the
genome evolution of ciliates thus seems to be difficult; however, the macronuclear genome structurally
corresponds to the macronucleus-destined sequences in the micronucleus, and the haploid genome
sizes of the macronucleus and micronucleus do not usually differ much in most ciliates. In other
words, studying macronuclear SSRs’ roles in genome evolution is like an investigation by subsampling
the short repetitive elements in the MIC genome (as is shown in Figure 3), with the assumption that
short non-IES (internally eliminated sequences) repeats are conserved in both the MAC and MIC,
although this might not always be true especially in species with highly fragmented and scrambled
genes. Of course, a full picture of SSRs in genome evolution would definitely need the micronuclear
genome sequences well annotated in more species.

5. Conclusions

This genome-wide and cross-species analysis reveals general features of ciliate SSRs and
demonstrates the association between SSRs and the unique genome architectures of ciliates. SSRs might
thus be an important driver in genome evolution of this large, charismatic group of microbial eukaryotes.
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Table S1. The SSR motifs that are shared in all nine ciliate species in this study; Table S2. Details of internal
telomeric repeats in Stylonychia lemnae and Oxytricha trifallax. Table S3. The SSRs from the MTA6 and MTB6 genes
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micronuclear SSRs with motif size 10–20 bp in Tetrahymena thermophila and Oxytricha trifallax.
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