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In 1988 two seminal studies were published, both instigating controversy. One
concluded that “the energy needs of activated neural tissue are minimal, being
fulfilled via the glycolytic pathway alone,” a conclusion based on the observation
that neural activation increased glucose consumption, which was not accompanied
by a corresponding increase in oxygen consumption (Fox et al., 1988). The second
demonstrated that neural tissue function can be supported exclusively by lactate as
the energy substrate (Schurr et al., 1988). While both studies continue to have their
supporters and detractors, the present review attempts to clarify the issues responsible
for the persistence of the controversies they have provoked and offer a possible
rationalization. The concept that lactate rather than pyruvate, is the glycolytic end-
product, both aerobically and anaerobically, and thus the real mitochondrial oxidative
substrate, has gained a greater acceptance over the years. The idea of glycolysis as
the sole ATP supplier for neural activation (glucose → lactate + 2ATP) continues to
be controversial. Lactate oxidative utilization by activated neural tissue could explain
the mismatch between glucose and oxygen consumption and resolve the existing
disagreements among users of imaging methods to measure the metabolic rates of
the two energy metabolic substrates. The postulate that the energy necessary for
active neural tissue is supplied by glycolysis alone stems from the original aerobic
glycolysis paradigm. Accordingly, glucose consumption is accompanied by oxygen
consumption at 1–6 ratio. Since Fox et al. (1988) observed only a minimal if non-existent
oxygen consumption compared to glucose consumption, their conclusion make sense.
Nevertheless, considering (a) the shift in the paradigm of glycolysis (glucose→ lactate;
lactate + O2 + mitochondria→ pyruvate→ TCA cycle→ CO2 + H2O + 17ATP); (b)
that one mole of lactate oxidation requires only 50% of the amount of oxygen necessary
for the oxidation of one mole of glucose; and (c) that lactate, as a mitochondrial
substrate, is over eight times more efficient at ATP production than glucose as a
glycolytic substrate, suggest that future studies of cerebral metabolic rates of activated
neural tissue should include along with the measurements of CMRO2 and CMRglucose

the measurement of CMRlactate.
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INTRODUCTION

The term “glycolysis” is almost synonymous with the term
“biochemistry,” as the former is responsible for the birth of the
latter. The elucidation of the glycolytic pathway in 1940 was
such a great leap of progress in our understanding of the basic
cellular processes of life that less than a decade later it was
already being taught universally as part of every high school
biology curriculum. If there were ever a scientific dogma to
withstand the test of time, glycolysis is it. In principle, the 1940
map of the glycolytic pathway and its ten steps, as illustrated
by Gustav Embden, Otto Meyerhof, and Jakub Karol Parnas is
the same map one finds today in every biochemistry, physiology
or neuroscience textbook or any website dealing with the topic.
Surely, details have been added over the years, both in terms of
the structure of the different players at each of the pathway steps,
their mechanism of function and their regulation, but the ten
steps and their order remained unchanged (Figure 1). Also in
1940, an addendum to glycolysis was created with an eleventh
step, according to which, it takes place only under anaerobic
conditions (Figure 1). This step involves the conversion of the
(aerobic) end-product of glycolysis, pyruvate, to lactate. This
conditional step, in essence, splits the pathway into two types,
an aerobic and an anaerobic glycolysis. Curiously, despite the
great advances in our knowledge and understanding of enzyme
structure and function, no mechanism, enzymatic or other, has
been offered to explain how the presence of oxygen prevents the
conversion of pyruvate to lactate or conversely, how the absence
of oxygen “catalyzes” that conversion.

Yet, the ability of red blood cells (RBC), the richest tissue
in oxygen content, to produce lactate glycolyticly is accepted
unquestioningly. Could the absence of mitochondria in RBC
explain that production? Will adding isolated mitochondria to
RBC suspension change the glycolytic production of lactate to
pyruvate? Nevertheless, scientists in every field that deals with
energy metabolism, directly or indirectly, accept the concept
of glycolytic duality – two different outcomes, aerobic, where
pyruvate is the end-product, and anaerobic, where lactate is the
end-product. However, by arbitrarily determining that aerobic
glycolysis ends with the production of pyruvate, the need for a
renewed supply of NAD+ was ignored. This need is at the basis
of glycolysis cyclical nature and is achieved by the conversion
of pyruvate and NADH to lactate and NAD+, respectively
(Figure 1). Also, the standard free-energy (1G0 ′ ) change of
pyruvate conversion to lactate (−6 kcal/mol), means that this
conversion should ensue independently of the presence or
absence of oxygen; As can be seen in Figure 2A, the free-energy
change profile of (aerobic) glycolysis ends with the conversion
of phosphoenolpyruvate to pyruvate, even though the potential
free-energy change of pyruvate conversion to lactate (anaerobic
glycolysis, Figure 2B) dictates that this reaction should proceed
regardless of the oxygenation conditions (Figure 2C).

In addition to the requirement for glycolytic NAD+
replenishment and the free-energy change potential of the
pyruvate to lactate conversion, there are other considerations that
should lead one to question the original 10-step configuration
of glycolysis. Moreover, the high affinity of pyruvate to the

cytosolic enzyme lactate dehydrogenase (c-LDH) should not
allow for enough free pyruvate that is necessary to drive the
mitochondrial tricarboxylic acid (TCA) cycle. This high affinity
may also explain the fact that the normal lactate/pyruvate ratio
in blood and other tissues is >10 (Havel et al., 1950), a value
that cannot correspond with the proposal of pyruvate as the end-
product of glycolysis under normal (aerobic) conditions. Even
more important are the numerous studies published over the
past 30 years, experimentally pointing at lactate as the real end-
product of glycolysis. Clearly, these points do not in any way
argue against the ability of mitochondria to uptake and utilize
pyruvate as a substrate for the TCA cycle, but high cellular
lactate/pyruvate ratio indicates that it is not a major one. All
the same, despite the continuous accumulation of experimental
evidence in support of lactate as the glycolytic end-product,
aerobically and anaerobically, the paradigm of glycolytic duality
persists in textbooks, classrooms, and citations in the most recent
published papers (Yellen, 2018).

To understand this persistence, one must consider the history
of scientific paradigms and revolutions (Kuhn, 1996). Evidently,
such persistence in embracing the established, albeit flawed,
paradigm is a well described and recognized phenomenon, which
Margolis (1993) described as “habit of mind,” a term that “suggests
entrenched responses that ordinarily occur without conscious
attention, and that even if noticed are hard to change.” (See also
Schurr, 2014).

Where the glycolytic pathway is concerned, one must delve
into the literature published in the decades preceding its
decipherment in 1940. In his excellent essay, Margolis explains
how “habits of mind” can and do govern scientific beliefs. At
times, these habits form a barrier, which blocks or delays the
acceptance of a new idea that could lead to a paradigm shift.
Additionally, one may argue that at times, the scientists who
established a given scientific concept and/or their followers
actively head the efforts against the eventual shift. Nonetheless,
the established conception of glycolysis is at the basis of how we
understand and interpret glucose and oxygen CMR studies both
during rest and activation. As is detailed below, those studies are
sometime at odds with each other. It precedes by a short review
of the history of glycolysis, highlighting chronologically the key
discoveries and concepts that have led to the establishment of its
classical understanding and the more recent studies that have led
to questioning that established dogma. A more detailed review of
that history is available (Schurr, 2014; Rogatzki et al., 2015).

GLYCOLYSIS CIRCA 1940: EVIDENCE,
CONSIDERED AND OVERLOOKED,
CONJECTURE, AND BELIEF

Two major factors have been most likely responsible for
glycolysis’ “split personality.” The first was the negative
reputation assigned to lactate. From the outset, upon its discovery
in spoiled milk by Carl Wilhelm Scheele in 1780, and until
the early 1990s, as exemplified by the lactic acidosis hypothesis
(Siesjö, 1981), lactate was assumed to be a culprit. Siesjo’s
lactic acidosis hypothesis postulated lactate to be responsible for
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FIGURE 1 | The glycolytic pathway and the 10 enzymatic steps that break down one molecule of glucose into two trios molecules, ending with pyruvate (aerobically)
or, with an 11th step, lactate (anaerobically). This dogmatic configuration has guided scientists and science students ever since it was elucidated in 1940.

delayed ischemic neuronal damage, where the monocarboxylate
was portrayed as a waste product at best and poison at worse.
Recently, many of the studies published during the first four
decades of the 20th century that established and promoted the
lactate’s negative reputation were reviewed (Schurr, 2014). This
reputation has prevented any attempt to bring up a possible role
of importance for this molecule beyond it being a waste product
that must be either disposed of or be recycled. Therefore, for
glycolysis to play a key role in energy metabolism by producing
adenosine triphosphate (ATP), while simultaneously providing
the main aerobic substrate, pyruvate, for the TCA cycle, assigning
such a role to lactate was inconceivable. The most telling of
that attitude was exhibited by E. G. Holmes, B. D. Holmes, and
C. A. Ashford who, between 1925 and 1933, had demonstrated
in several outstanding studies that cerebral tissue is capable
of oxidizing lactate. Hence, the evidence regarding a possible
utilization of lactate as energy substrate was ignored by these
scientists and by the scientific community of the day (Holmes and
Holmes, 1925, 1926, 1927; Ashford and Holmes, 1929; Holmes
and Ashford, 1930; Holmes, 1930, 1932, 1933). Holmes, Holmes,
and Ashford, being members of a scientific community that
believed lactate to be a waste product, could not bring themselves
to consider the possibility that its oxidation may signal anything,
but a disposal reaction. The second factor was the assumption
laid down by Krebs and Johnson (1937) according to which
pyruvate is the substrate of the TCA cycle. Krebs and Johnson
published their seminal results 3 years prior to the decipherment

of the glycolytic sequence of reactions, where they surmised,
albeit with a question mark, that pyruvate is the substrate that
enters the TCA cycle. It is easy to imagine how the elucidators of
the glycolytic pathway, relying on Krebs and Johnson’s postulate,
made, what appears to be a conjecture, and decided that since
pyruvate is the substrate of the TCA cycle it must also be the
glycolytic aerobic end-product.

As to the barrier Holmes, Holmes, and Ashford faced during
their period, they had clearly accepted the prevailing notion
that existed in their time, i.e., that lactate is a waste product
of anaerobic glucose utilization, a notion that preceded any
clear knowledge and understanding of the glycolytic enzymatic
reactions. The two overshadowing figures of the period were A.
V. Hill and O. Meyerhof, both Nobel laureates of the 1920s and
both leaders in the field of muscular tissue energy metabolism.
These two giants and their research groups had established the
prevailing standard of the day that “lactate is a waste product
of glucose oxidation.” Lactate oxidation could have never been
perceived as a reaction that may have any other purpose than
disposal of waste. Under such circumstances the most Holmes,
Holmes, and Ashford could expect was that their findings would
be accepted as a real reaction, possibly unique to brain tissue
that is aimed at lactate elimination. Nowhere in their papers
did these authors ever consider such a reaction to be anything
else, which would explain why their elegant studies faded away
without further pursuit. H. A. Krebs received his Nobel Prize
in Physiology or Medicine in 1953 for his contribution to the
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FIGURE 2 | A Schematic presentation of potential free-energy change profile of aerobic glycolysis (A) and of anaerobic glycolysis (B). The potential free-energy
change of pyruvate conversion to lactate dictates that this reaction should proceed regardless of the oxygenation conditions (C). The conversion of pyruvate to
lactate also assures the continuous supply of NAD+, an essential component for the cyclical nature of the glycolytic pathway.

exposition of the TCA cycle, which no doubt had strengthened
the assumption that pyruvate must be the end product of aerobic
glycolysis and the substrate of the TCA cycle. However, the
original glycolytic pathway (aerobic) that ends with pyruvate
does not offer a biochemical solution for the renewal of reducing
equivalents, i.e., how NADH is oxidized back to NAD+. To
overcome this deficiency, a search for alternative processes
ensued where the malate-aspartate shuttle and the glycerol
phosphate shuttle were proposed (Berry, 1971; Safer et al., 1971;
Kauppinen et al., 1987; Ramos et al., 2003; McKenna et al., 2006;
Contreras and Satrustegui, 2009; Gellerich et al., 2012).

GLYCOLYSIS CIRCA 1990: NEW
DISCOVERIES, ENTRENCHMENT,
RESISTANCE, AND “HABIT OF MIND”

The now defunct lactic acidosis hypothesis of delayed ischemic
neuronal damage (Kalimo et al., 1981; Rehncrona et al., 1981;
Siesjö, 1981) was heavily promoted and considered to be an

excellent working hypothesis throughout the 1980s and 1990s.
Thus, for more than four decades after the glycolytic pathway
was revealed, lactate’s harmful reputation lingered, persuading
most scientists working in the field to accept it as the culprit
of delayed neuronal damage observed post-cerebral ischemia.
Brooks (1985) demonstrated that in exercising muscle lactate
is both a glycolytic product and an oxidative substrate. He
postulated the existence of an intracellular lactate shuttle between
the cytosol, where glycolytic lactate is produced, and the
mitochondrion, where lactate is oxidatively consumed as it enters
this organelle. Such mechanism would required the presence of
LDH within the mitochondrial membrane (m-LDH), the enzyme
that converts lactate to pyruvate, the monocarboxylate that
eventually, enters the TCA cycle. Several years later Brooks et al.
(1999a,b) demonstrated the presence of both a monocarboxylate
transporter 1 (MCT1) and a LDH in mitochondria. Fox
and Raichle (1986) showed a focal physiological uncoupling
between cerebral blood flow (CBF) and oxidative metabolism in
response to somatosensory stimulation in humans and in Fox
et al. (1988) demonstrated that during focal physiologic neural
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activity the consumption of glucose is non-oxidative (Warburg
effect), assuming glycolytic ATP and lactate production. Shortly
thereafter, Schurr et al. (1988) observed the ability of lactate
to maintain normal neuronal function in vitro in the absence
of glucose or any other energy substrate. As the number of
studies and reviews that support lactate role in oxidative energy
metabolism in muscle (Brooks, 1998, 2000, 2002a,b; Brooks et al.,
1999a,b) and brain (Izumi et al., 1994; Pellerin and Magistretti,
1994; Larrabee, 1995, 1996; Tsacopoulos and Magistretti, 1996;
Hu and Wilson, 1997; Schurr et al., 1997, 1999a,b; Schurr and
Rigor, 1998; Magistretti and Pellerin, 1999; Magistretti et al.,
1999; Magistretti, 2000; Qu et al., 2000; Van Hall, 2000; Bliss and
Sapolsky, 2001; Bouzier-Sore et al., 2003; Mangia et al., 2003;
Smith et al., 2003; Dalsgaard et al., 2004; de Bari et al., 2004,
2010; Kasischke et al., 2004; Aubert et al., 2005; Schurr, 2006;
Atlante et al., 2007; Schurr and Payne, 2007; Passarella et al.,
2008; Herrero-Mendez et al., 2009; Zielke et al., 2009; Schurr and
Gozal, 2011; Sotelo-Hitschfeld et al., 2012; Barros, 2013; Barros
et al., 2013; Schurr, 2014; Rogatzki et al., 2015; Mächler et al.,
2016; Barros and Weber, 2018; Barros et al., 2018) increased,
the resistance to this concept escalated. As to muscle oxidative
lactate utilization and the role of m-LDH in it, the pushback
was based on the argument that mitochondria do not contain
LDH (Rasmussen et al., 2002; Sahlin et al., 2002). Where brain
oxidative lactate utilization was concerned, the pushback relied
on the unfounded assumption that those who support the role
of lactate as an oxidative energy substrate promote the idea that
this monocarboxylate is, potentially, an alternative substrate able
to replace glucose (Chih et al., 2001; Dienel and Hertz, 2001,
2005; Chih and Roberts, 2003; Hertz, 2004; Hertz and Dienel,
2005; Hertz et al., 2007; Dienel, 2012a,b). Accordingly, lactate
was portrayed as an impossible competitor of glucose and several
studies were designed to demonstrate the obligatory role of the
latter as the energy substrate that maintains neuronal functions
(Dienel and Cruz, 2004; Fillenz, 2005; Bak et al., 2006; Cruz
et al., 2007; Gandhi et al., 2009). Throughout the 1990s, Siesjo
and his followers were at the forefront, resisting the postulated
role of lactate in energy metabolism, using the lactic acidosis
hypothesis of delayed neuronal ischemic damage as the flag of
that resistance. Where the obligatory role of glucose as the main
energy metabolic substrate is concerned, this role has never been
disputed by those who demonstrated lactate oxidative utilization
as an energy substrate. The role of lactate should have been seen
as the most plausible outcome of glucose breakdown via the
glycolytic pathway, where lactate, not pyruvate, is the substrate
of the mitochondrial TCA cycle (Schurr, 2014). That skepticism
most likely originated in “habit of mind” (Margolis, 1993) and a
possible existence of a barrier, which prevents one from accepting
the necessary shift in paradigm.

LACTATE IS ALWAYS THE
END-PRODUCT OF GLYCOLYSIS

As mentioned earlier, support for the initial discoveries of Brooks
(1985) and Schurr et al. (1988) has been provided by multiple
studies published in the 1990s and the early 2000s. Yet, the

old dogma of separated aerobic and anaerobic glycolysis has
persisted. Despite the publication of studies that appear to sway
the balance toward acceptance of a paradigm shift, it seems that
the barrier has been too high for some to overcome. Nevertheless,
in a recent review paper (Hertz et al., 2014) some acceptance of
lactate as an important energetic molecule is evident, though the
barrier for acceptance of it as the main end-product of glycolysis
still exists, as the authors chose not to cite in that review any of the
numerous studies that clearly demonstrate lactate to be the real
glycolytic end-product. Understandably, the push for changing a
scientific standard is usually being led by the very scientists who
have performed the experiments that prompted them to question
the existing one. They are the ones who would check and recheck
themselves and their experimental design over and over again,
because their original results did not fit the existing paradigm.
The first instinct of any scientist who faces an experimental
outcome that does not agree with the norm is to question the
outcome itself, not the norm. However, when such an outcome
not only repeats itself, but more importantly, is confirmed by
other scientists, then the existing standard must be questioned.
This is especially true when the support for a shift originates
from laboratories that use different experimental models and
approaches, forming a more encompassing and general concept,
which is much more difficult to reject. Eventually, once a shift has
taken place, an examination is required of additional processes
that have been neatly linked to the original paradigm, links that
could be weakened or cannot longer exist as originally described.
In the case of glycolysis with lactate as its end-product and the
traditional link via pyruvate to the mitochondrial TCA cycle,
that link cannot exist under the new concept. The existence of
m-LDH has been established by numerous studies and therefore,
the conversion of lactate to pyruvate most likely takes place in
the mitochondrion (Brooks et al., 1999a,b; Valenti et al., 2002;
de Bari et al., 2004, 2010; Atlante et al., 2007; Hashimoto and
Brooks, 2008; Hashimoto et al., 2008; Passarella et al., 2008, 2014;
Pizzuto et al., 2012; Elustondo et al., 2013). Accordingly, lactate,
the end-product of glycolysis, is also the real substrate of the
mitochondrial TCA cycle (lactate→ pyruvate→ acetyl-CoA→
TCA).

Consequently, glycolysis’ paradigm shift should compel one
to reconsider the findings of Fox et al. (1988) and their
interpretation, including those of many other ensuing studies
with similar interpretation. As to the role of the malate-aspartate
shuttle in a paradigm where lactate is always the glycolytic end-
product and the initial mitochondrial substrate for the TCA cycle,
Kane (2014) offered and elegant postulate according to which the
two mechanisms are not exclusive of each other.

GLUCOSE, LACTATE, AND OXYGEN
CONSUMPTION OF ACTIVATED NEURAL
TISSUE

Stimulation-induced increase in brain activity must be supported
by an increase in energy supply. This relationship has always
been believed to be true and assumed to be fulfilled by an
increase in supply of both glucose and oxygen through the
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elevation in CBF, glycolytic flux, and mitochondrial respiration.
In theory, this basic concept of the aerobic conversion of
glucose to energy requires, if it is to proceed to completion,
six moles of oxygen per each mole of glucose. Measurements
of both glucose and oxygen consumption in the brain in vivo
have been available for over four decades. Tracer methods
were developed for these measurements, using isotopes such
as 15O, 14C, 13C, and 18F. In practice, the oxygen to glucose
ratio under resting conditions was regularly measured to be
significantly lower than 6:1, a discrepancy believed to occur
due to glucose utilization in other metabolic activities that do
not require oxygen. Consequently, measurements of cerebral
metabolic rate of oxygen (CMRO2 ) and glucose (CMRglucose)
frequently yield ratios of <5:1. The discovery by Fox et al.
(1988) that physiological stimulation significantly increased both
CBF and CMRglucose, while CMRO2 was minimally increased
or not at all, had dumbfounded many and have challenged
investigators to provide a mechanistic explanation to such a
phenomenon. The conclusion reached by Fox et al. (1988)
was that “energy expenditures of neural activity are far less
than has been inferred from the large increases in glucose
uptake. . .” This conclusion was based on the assumption that
glucose consumption, when not accompanied by a corresponding
oxygen consumption means that glycolysis is not coupled to
mitochondrial respiration and that the minute amount of ATP
produced via the glycolytic pathway (2 mol of ATP per mol of
glucose) is sufficient to support the increased energy demands of
stimulated neural tissue. The fact that cerebral tissue is capable
of utilizing lactate as an energy substrate, as detailed in the
previous sections of this review, has presented a serious problem
to many scientists in the field, since it contradicted the prevailing
dogma, according to which, lactate is a useless end-product
of glycolysis. Consequently, where CMRglucose and CMRO2 are
concerned, multiple studies either discounted the possible role
lactate plays as energy requirements increase upon stimulation or
completely ignore such role. Consequently, misinterpretation of
CMRglucose and CMRO2 measurements could lead to the wrong
conclusions about the mechanism by which energy requirements
of the stimulated neural tissue are being fulfilled. For instance,
Fox et al. (1988) concluded from their results that physiological
stimulation requires less energy than previously believed and that
glucose consumption induced by transient increases in neural
activity is in access of that consumed by oxidative metabolism.
Others have used the term “aerobic glycolysis” to signify that
neural activity acquires its energy needs from glycolysis alone,
despite the presence of oxygen (Warburg Effect). The use of
the term “aerobic glycolysis” confused its meaning with the one
used to describe the conversion of glucose to pyruvate and the
utilization of the latter in the mitochondrial TCA cycle according
to the original paradigm of aerobic glycolysis. In contrast to
the study by Fox et al. (1988), Hyder et al. (1997) measured
CMRglucose and CMRO2 of stimulated somatosensory cortex in
anesthetized rats employing 1H, 13C NMR and the calculated
ratio of glucose to oxygen utilized in every rat used in the study
was approximately 6:1. These values and those published by Ueki
et al. (1988) disagree with the conclusions of Fox et al. (1988).

Such disagreement may arise from differences in measurement
techniques, animal or human subjects, brain area of stimulation
or unbefitting assumptions and postulations.

DIRECT AND INDIRECT
MEASUREMENTS OF CMRGLUCOSE AND
CMRO2

Fox et al. (1988) titled their study “Non-oxidative glucose
consumption during focal physiologic neural activity.”
Employing 18F-labeled 2-fluoro-2-deoxy-D-glucose to measure
CMRglucose, a method originally developed over a decade earlier
(Sokoloff et al., 1977), and 15O-labeled molecular O2 to measure
CMRO2 , the investigators stated that transient increases in neural
activity increase glucose tissue uptake in excess of that consumes
by oxidative metabolism. They concluded these findings to
indicate that neural activity consume much less energy than
previously believed. Moreover, since a corresponding increase
in CBF was also detected, they stated that the reason for this
increase is for purposes other than oxidative metabolism.
These conclusions stemmed from the prevailing postulate
that over 90% of glucose consumption of the resting brain
is oxidative and less than 5% of that consumption ends in
glycolytic lactate production. Since oxidative consumption
of 1 mol of glucose produces approximately 34 mol of ATP,
while glycolytic consumption of 2 mol of glucose produces
only 2 mol of ATP, it can be easily calculated that oxidative
consumption of glucose is responsible for almost 100% of the
resting brain ATP production. The discovery by Fox et al.
(1988) that brain stimulation increases glucose consumption
without a corresponding increase in oxygen consumption
shook the established belief according to which increased
brain activity requires increased energy supply. Nevertheless,
following the publication of this seminal paper, the laboratory
of Marcus Raichle has become a leading center for functional
brain imaging Raichle (2009). Imaging technologies, beginning
with x-ray computed tomography (CT), through positron
emission tomography (PET), near-infrared spectroscopy (NIRS),
and more recently magnetic resonance imaging (MRI), have
become the tools of choice for measuring brain metabolism
during rest and activity. Today, the most popular technology
for these purposes is the blood oxygen level dependent (BOLD)
functional magnetic resonance imaging (fMRI) developed
by Ogawa et al. (1990). In principle, BOLD fMRI measures
changes in blood oxygenation as they relate to brain activity,
however, that relationship is somewhat obscure mainly because
no direct neural activity is being measured. Electrophysiology
does allow for direct measurement of neural activity and when
combined with direct oxygen concentration measurements,
such as oxygen polarography, it also provides higher resolution
than BOLD fMRI (Bentley, 2014). Similarly to the use of
an oxygen electrode for measurements of tissue oxygen
concentration, glucose, and lactate electrodes can also be used
to measure local tissue concentrations of the hexose and the
monocarboxylate.
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Hu and Wilson (1997) published their studies on the coupling
of a temporary local energy pool to neuronal activity in the rat
brain (Figure 3). They were the first to combine the use of three
separate sensors (electrodes) with rapid response to measure
oxygen, glucose, and lactate. They used them in the dentate
gyrus of the rat hippocampus and observed their fluctuation
following ten consecutive electrical stimulations of the perforant
pathway (a 5 s duration of electric stimulation every 2 min).
As has been indicated before (Schurr and Gozal, 2011; see
Figure 3, which is reproduced here as it was presented upon
its first analysis), Hu and Wilson’s (1997) interpretation of their
findings gained both supporters (Pellerin and Magistretti, 2003;
Franconi and Merle, 2004; Kasischke et al., 2004; Aubert et al.,
2005; Medina and Tabernero, 2005; Serres et al., 2005; Schurr,
2006) and detractors (Dienel and Hertz, 2005; Fillenz, 2005;
Korf, 2006). The supporters believed the findings strengthen the
proposal that lactate is the monocarboxylate utilized aerobically
upon neuronal activation. The detractors disagreed with this
conclusion. It should be helpful, for two reasons, to revisit Hu and
Wilson’s (1997) results and reanalyze them beyond the analysis
done before (Schurr and Gozal, 2011). First, two decades have
passed since the publication of Hu and Wilson’s (1997) paper,
time in which numerous studies added much support to the idea
that lactate is a mitochondrial oxidative energy substrate. Second,
many other studies on cerebral energy metabolism continue to
conclude that neural activity is supported by “aerobic” glycolysis
and not by oxidative utilization of glucose, while ignoring the
possibility that such activity is supported by oxidative utilization
of lactate.

REVISITING CMRGLUCOSE AND CMRO2
FOLLOWING THE PARADIGM SHIFT OF
GLYCOLYSIS

Although numerous studies of CBF, CMRglucose, and CMRO2
have been published over the years, for the purpose of this review
only three studies were selected. The seminal study by Fox et al.
(1988), the study by Hyder et al. (1997), the results of which are
in disagreement with the former, and the study by Hu and Wilson
(1997), the latter mainly because it was the first study to seriously
consider the possibility that lactate is a cerebral substrate for
oxidative energy metabolism during activation.

Our earlier analysis (Schurr and Gozal, 2011) of Hu and
Wilson’s findings indicated that upon consecutive stimulation
of the rat hippocampal perforant pathway a decrease in
glucose consumption was accompanied by an increase in
lactate consumption. Moreover, if one is to use the prevailing
assumption that glycolytic ATP production is sufficient to fulfill
the necessary energy requirements (Fox et al., 1988), in this case
those of the stimulated hippocampal dentate gyrus. Apparently,
these requirements appeared to diminish with each stimulation
or stayed the same at a very low level of 0.8–0.3 mM of ATP
production. In contrast, when lactate oxidative consumption is
assumed to be the source of the ATP that supports the needs
of the stimulated tissue, as lactate consumption increased with
each stimulation, so did the ATP production, from 3 mM in

response to the first stimulation to almost 11 mM in response
to the 10th stimulation. Now, upon further analysis, it is clear
that the increased levels of tissue lactate after each stimulation,
as measured by Hu and Wilson (1997), could not originate
only from glycolytically consumed glucose (Figure 4). Clearly,
additional lactate had to be recruited from other sources, such as
from the surrounding tissue or from glycogen stores (Chambers
et al., 2014). As illustrated in Figure 3, an increased amount of
lactate was consumed during each consecutive stimulation, while
the amount of glucose consumed was decreased. Moreover, after
each stimulation, except the first one, the amount of accumulated
lactate measured was greater than the expected amount that
would have resulted from glucose glycolytic consumption, i.e.,
two moles of lactate per mole of glucose. Following the second
stimulation, the tissue ratio of lactate to glucose was 3.95 and
following the 10th stimulation this ratio rose to 8.33 (Figure 4).
Meanwhile, oxygen levels dipped and rose as expected during
and after each stimulation, respectively, indicating that the
stimulation induced an oxidative consumption of substrate.
Initially, glucose and lactate were consumed oxidatively at
equal amounts, but from the second stimulation onward more
lactate than glucose was consumed. Immediately following each
stimulation, a spike in tissue oxygen level was measured, not
only assuring that sufficient oxygen is available if needed, but
also indicating that the tissue was well oxygenated during the
duration of the experiment. It is important to point out that
1 mol of lactate consumes only one half the amount of oxygen
(3 mol) for its full oxidation as compared to the amount that
1 mol of glucose consumes (6 mol) for full oxidation. Therefore,
if lactate, rather than glucose, is the main energy substrate during
neural tissue activation, the expected ratio CMRO2 :CMRlactate
should not exceed 3:1. Thus, it is reasonable to deduce that
under conditions of neural activation, where lactate oxidation
is responsible for supplying significant part of the ATP needed
to support that activation, the ratio CMRO2 :CMRglucose would
be significantly lower than 6:1. Consequently, studies where
that ratio is calculated to approach 6 (Hyder et al., 1997),
the calculators rely on the assumption that aerobic glycolysis
produces pyruvate as its end-product, all of which enters the
mitochondrial TCA cycle. The opposing conclusions of Fox et al.
(1988) to those of Hyder et al. (1997), where the former argue
for an almost complete uncoupling between glucose and oxygen
consumption of the activated neural tissue, while the latter
contend that this coupling is fully maintained, are confusing.
Ironically both studies and the interpretation of their outcomes
rely on the original, classical paradigm of glycolysis.

While the measurements of glucose and lactate concentrations
performed by Hu and Wilson (1997) clearly support the proposed
role of lactate as a major oxidative substrate during increased
energy needs of activated neural tissue, the relatively small
fluctuations in O2 levels in response to such activation, measured
by polarography, require further consideration. For one, the
direct measurement of O2 polarographically provides better
spatial and temporal resolution and better characterization of
the time-course of oxygen responses then BOLD fMRI (Bentley,
2014). The latter method was used by Hyder et al. (1997)
and even more cumbersome measurements were employed
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FIGURE 3 | Profiles of time course and dynamic relationships of local extracellular lactate, glucose, and PO2 levels in the rat hippocampal dentate gyrus during a
series of 5 s electrical stimulations (arrows) of the perforant pathway at 2 min rest intervals (reproduced with permission from Hu and Wilson, 1997 copyright,
Blackwell, Oxford). The changes in the mean concentration of glucose were always in opposite direction to the changes in mean lactate concentration. The vertical
lines were drawn to indicate the simultaneous dip in all three analytes in response to each of the electrical stimulations. For additional details see Hu and Wilson
(1997) and Schurr and Gozal (2011) from where the figure and the legend have been reproduced with permission.

FIGURE 4 | Dynamic relationships of local extracellular glucose, lactate and O2 levels in the rat hippocampal dentate gyrus during a series of 5 s electrical
stimulations of the perforant pathway at 2 min rest intervals. The concentrations of glucose, lactate and O2 were calculated from their dips and rises as measured by
Hu and Wilson (1997) using rapid response sensors in their original study. The numerical values above the columns representing the rises in glucose and lactate
post-stimulation are the calculated ratios between the two. For additional details see Figure 3 and Schurr and Gozal (2011).

by Fox et al. (1988), involving the use of [15O]H2O, [15O]O2,
and [15O]CO2. Since BOLD fMRI estimates produced a
CMRO2 :CMRglucose ratio of 6:1, while the 15O measurements
produced a ratio of 0.4:1, one is left wondering if those
measurements and the following calculated values of CMRO2
actually reflect changes in molecular oxygen used during neural
activation. Could the direct measurements performed by Hu

and Wilson (1997) be somehow reconciled with the indirect
ones made by Fox et al. (1988) and Hyder et al. (1997),
to provide a more accurate picture of CMRO2 , CMRglucose,
and CMRlactate of activated neural tissue? Where energy
(ATP) production of the normal resting brain is concerned,
it is widely accepted that over 90% of it originates from
glucose oxidation (Siesjo, 1978; Fox et al., 1988). Moreover,
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since normal glucose concentration in the brain is approximately
2 mM and the normal lactate concentration is about half of
that of glucose, it is safe to assume that the normal resting
brain is supplied with ample amounts of oxygen to continuously
oxidize more than 90% of the brain glucose. In contrast, the
glucose supplies to the normal brain are limited (only 40% of
normal blood glucose level). The increase in the rate of CBF
along with the increase in glucose consumption upon activation
(Fox et al., 1988; Ueki et al., 1988; Hyder et al., 1997) should
provide all the oxygen necessary to catch up with the increased
demand, unlike the limited supplies of glucose. In essence,
measurements of oxygen concentrations using low resolution
methods are unable to trace local fluctuations accurately if at
all, which could explain how Fox et al. (1988) reached the
interpretation of their findings. Nevertheless, the conclusion
that energy demands of activated neural tissue are fulfilled
via glycolytic ATP production is most likely erroneous. In
other words, undetectable or slightly detectable dip in tissue
oxygen level upon activation is not necessarily an indication
that oxygen is not consumed. The higher resolution of oxygen
measurement afforded by polarography exemplifies the fact that
local oxygen levels dip upon stimulation and overshoot upon
its cessation (Hu and Wilson, 1997; Figures 3, 4). Additionally,
although local fluctuations in tissue oxygen levels were detected,
overall tissue oxygen concentration did not significantly change,
perhaps even stayed somewhat above the baseline level. In
contrast, significant changes in both glucose and lactate levels
were observed (Hu and Wilson, 1997; Schurr and Gozal, 2011;
Figures 3, 4). The synchronized fluctuations in both lactate
and oxygen clearly indicate that lactate is being oxidized upon
tissue stimulation. Interestingly, during the 20 min period that
began after the 10th stimulation, both oxygen and glucose tissue
levels appeared to increase above the baseline level, as the
high lactate levels gradually declined (Hu and Wilson, 1997;
Figure 3). If any, these shifts indicate that during recovery
post-stimulation lactate becomes the preferred oxidative energy
substrate, sparing glucose. The preference for lactate over
glucose, especially when the former is abundantly available is
understandable, since lactate oxidative utilization, contrary to
glucose, does not require any investment of ATP prior to its
utilization by mitochondria. Disappointedly, almost two decades
after the publication of their study (Hyder et al., 1997) these
investigators, with other collaborators, continue to promote
the concept that aerobic glycolysis is sufficient, where human
brain gray matter is concerned, to supply most or all the
necessary ATP for the activated neural tissue (Hyder et al.,
2016).

CONCLUSION

Whenever a scientific paradigm shift occurs it brings about
the reconsideration of hypotheses and concepts that have been
formulated according to the foundation on which the older
concept was built. Our understanding of CMRO2 and CMRglucose
of the resting and activated neural tissue, and the choice of the
best methods to measure these rates and interpret the results
have always relied on two basic postulates: (1) Cerebral energy
metabolism requires the breakdown of glucose via glycolysis and
the utilization of its end-product, pyruvate, by the mitochondrial
TCA cycle and the electron transport chain with oxygen as
its final receptor; (2) activation of cerebral tissue is supported
by an increase in ATP production and thus an increase in
glucose and oxygen consumption. Two seminal papers, published
almost simultaneously (Fox et al., 1988; Schurr et al., 1988), have
compelled scientists in the field to reconsider these two basic
postulates. The former has confounded many with its conclusion
that the energy needs of activated neural tissue are minimal and
are answered by glycolysis alone (glucose → lactate + 2ATP);
the latter also bewildered many, as it demonstrated the ability
of neural tissue to function and be activated when lactate
was the sole oxidative energy substrate (glucose → lactate;
lactate + O2 + mitochondria → pyruvate → TCA cycle →
CO2 +H2O+ 17ATP). The idea of lactate as a suitable oxidative
energy substrate has gained much support over the past three
decades. Glycolysis as a sole supplier of the energy needs of the
activated neural tissue is an idea that still divides the scientific
community. By accepting the new paradigm of glycolysis and
apply it in the interpretation of the results of the studies by Fox
et al. (1988), Hu and Wilson (1997), Hyder et al. (1997, 2016)
and many others, one can visualize a scenario where lactate plays
a major role in providing the necessary energy for the activated
neural tissue. Taking into consideration the scientific data and
the line of reasoning discussed in this review, a strong argument
can be made against the idea that the energy needs of activated
neural tissue can be solely provided by the glycolytic pathway or
via glucose oxidative metabolism alone. Therefore, it is strongly
suggested that future studies of activated cerebral metabolic rates
include along with the measurements of CMRO2 and CMRglucose
the measurement of CMRlactate.
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