
ORIGINAL RESEARCH
published: 11 December 2018
doi: 10.3389/fnut.2018.00120

Frontiers in Nutrition | www.frontiersin.org 1 December 2018 | Volume 5 | Article 120

Edited by:

Juan Aguirre,

Universidad de Chile, Chile

Reviewed by:

Brendan A. Niemira,

United States Department of

Agriculture, United States

Dana Ziuzina,

Dublin Institute of Technology, Ireland

*Correspondence:

Ankit Patras

apatras@tnstate.edu

Specialty section:

This article was submitted to

Food Microbiology,

a section of the journal

Frontiers in Nutrition

Received: 06 September 2018

Accepted: 19 November 2018

Published: 11 December 2018

Citation:

Kilonzo-Nthenge A, Liu S, Yannam S

and Patras A (2018) Atmospheric

Cold Plasma Inactivation of

Salmonella and Escherichia coli on the

Surface of Golden Delicious Apples.

Front. Nutr. 5:120.

doi: 10.3389/fnut.2018.00120

Atmospheric Cold Plasma
Inactivation of Salmonella and
Escherichia coli on the Surface of
Golden Delicious Apples
Agnes Kilonzo-Nthenge 1, Siqin Liu 2, Sudheer Yannam 2 and Ankit Patras 2*

1Department of Human Sciences, Tennessee State University, Nashville, TN, United States, 2Department of Agricultural and

Environmental Sciences, College of Agriculture, Tennessee State University, Nashville, TN, United States

The contamination of fruits with human pathogens is a reoccurring concern in the fresh

produce industry. Atmospheric cold plasma (ACP) is a potential alternate to customary

approaches for non-thermal decontamination of foods. In this study, the efficacy of a

dielectric barrier discharge ACP system against Salmonella (Salmonella Typhimurium,

ATCC 13311; SalmonellaCholeraesuis, ATCC 10708) and Escherichia coli (ATCC 25922,

ATCC 11775) was explored. For each bacteria, a two-strain mixture at 8 log10 CFU/ml

was spot inoculated on the surface of Golden Delicious apples, air dried, and exposed

to ACP at a fixed distance of 35mm, input power of 200W for 30, 60, 120, 180, and

240 s. Bacterial inactivation was achieved in all treatment times with highest reduction of

5.3 log10 CFU/cm
2 for Salmonella and 5.5 log10 CFU/cm

2 for E. coli. Our results showed

that reductions were interrelated to exposure time and ranged from 1.3 to 5.3 and 0.6

to 5.5 log10 CFU/cm2 for Salmonella and E. coli, respectively. Salmonella and E. coli

significantly decreased (>5.0 log) at 180 and 240 s as compared to 30, 60, and 120 s

exposure. Microbial inactivation data was modeled by using Weibull distribution. These

findings demonstrate the potential of ACP as a postharvest technology to effectively

reduce pathogens on apples, with reference to Salmonella and E. coli.

Keywords: atmospheric cold plasma, Salmonella, Escherichia coli, apples, modeling

INTRODUCTION

Consumer demand for nutritious, safe, and minimally treated foods has stimulated the increased
consumption of fresh produce (1). Several studies reveal that consuming more fruits and vegetables
result to a more prolific and healthier lifestyle (2, 3). However, the number of foodborne illness
outbreaks linked to fresh produce has elevated in the recent years. Between November 2010 and
November 2012, 5191 individuals were infected with foodborne pathogens from fresh produce
products and as a consequence 95 people died in European countries, USA, Canada, and Japan
(4, 5). According to Painter et al. (6), 46% of foodborne illnesses are associated with fresh produce.
Fresh produce is recognized as a highly potential vehicle for foodborne outbreaks and therefore, a
major concern to the food industry, regulatory agencies, and consumers (7, 8). The United States
and European Union have reported a total of 377 and 198 produce-associated outbreaks from
year 2004 to 2012. For the United States, the absolute number of outbreaks due to fresh produce
ranged from 23 to 60 per year. There were substantial increases in 2006 (57 outbreaks), 2008 (51
outbreaks), and 2011 (60 outbreaks) (9, 10). For the European Union, the number of outbreaks
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oscillated between 10 and 42, highlighting increases in 2006
(29 outbreaks), 2009 (34 outbreaks), and 2010 (44 outbreaks)
(11). The number of produce-associated outbreaks remains
relatively high and represents a major health and financial issue
(11, 12).

Consumer’s demand for safe, high quality and wholesome
food has contributed to the development of novel non-
thermal technologies (13). The preservation of food quality
is of paramount importance, and practice application must
be effective at destroying microorganisms while not causing
undesirable alterations in food quality (7). Atmospheric cold
plasma (ACP) is a fairly new technology being applied
for non-thermal decontamination of foods. This method
promotes a proficient inactivation of diverse microorganisms
including spores, viruses, yeasts, and fungi including biofilms
(14–23).

Plasma involves very energetic species including photons,
electrons, positive and negative ions, free radicals and excited
or non-excited molecules and atoms, which in combination
inactivate microorganisms (24–26). Cold atmospheric plasma,
grounded on ionized gases generated at room temperature
and atmospheric pressure presents the opportunity of treating
the surfaces of fresh produce tissues (27–29). Various types
of plasma generating sources are currently available. It
includes glow-discharge, radio-frequency discharge, corona
discharge, dielectric barrier discharge, atmospheric pressure
plasma jet, micro-hollow, gliding arc discharge have been
used for food processing applications, generating plasmas
by using noble gases is more beneficial as it prevents the
oxidative degradation of vitamins and other nutrients on
exposure to oxygen. The most economical operations in food
systems employ atmospheric air (14, 30) which is relatively
cheaper.

Vegetative cells such as E.coli O157:H7 and Salmonella are
often associated with fresh produce, hence remains to be a
threat to the public health (2, 31). New technologies such as
gas plasma are needed to inactivate pathogens and prevent
cross-contamination. Extensive research on the use of plasmas
at atmospheric pressure using air as a carrier gas to inactivate
microorganisms is a relatively recent phenomenon. Atmospheric
pressure cold plasma is an emerging low temperature technology
with high antimicrobial efficacy. Gas plasma technique is claimed
to be a “rapid, waterless, zero-contact, chemical-free” tool for
pathogen removal from food contact surfaces (14, 20).

Several authors reported non-thermal atmospheric plasma
treatments for decontamination of many food samples including
vegetables, meat and meat products, milk and dairy products,
fruit juice (32–34). This study fills that knowledge gap and
provides inactivation data on a range of vegetative cells. Not
much information on the effect of plasma using air as a carrier
gas on fruits is available. Therefore, using purified air as a carrier
gas for the plasma generation is the novelty of this research study.
The main objective of this study was to evaluate the efficacy of
atmospheric cold plasma in reducing Salmonella and Escherichia
coli on the surface of Golden Delicious apples. A further aim was
to evaluate the kinetic models for the inactivation of Salmonella
and Escherichia coli on apples.

MATERIALS AND METHODS

Bacterial Strain and Inoculation
Preparation
Salmonella enterica subspecies enterica serovars (Typhimurium,
Choleraesuis) and Escherichia coli (E. coli ATCC 25922; E. coli
ATCC 11775) were used in this study. Isolates were maintained at
−80◦C in tryptic soy broth (TSB; Becton, Dickinson & Company
[BD], Franklin Lakes, NJ) with 15% glycerol (Fisher Scientific,
Pittsburgh, PA). Culture from each bacterial frozen stock was
separately inoculated on tryptone soya agar (TSA) plates and
grown overnight at 37◦C to isolate pure colonies. An isolated
colony from each plate was transferred to corresponding 10
TSB tube and incubated with shaking (250 rpm) at 37◦C to
create working stock. Subsequently, bacterial cells from each tube
were harvested through centrifugation (4,000× g, 15min, 23◦C)
and suspended in 10ml of 0.1% peptone water. Approximately,
5ml of each resuspended Salmonella enterica subspecies enterica
serovars (Typhimurium, Choleraesuis) cells were combined to
make a 10ml cocktail (a two-strain cocktail mixture). The same
procedure used to make Salmonella cocktail was followed for
E. coli cocktail (E. coli ATCC 25922; E. coli ATCC 11775).
Separately, 1ml of each bacterial cocktail was re-suspended
in 9ml 0.1% peptone and there after serial dilutions mere
performed. Next, 0.1ml from each cocktail was plated on TSA
plates and a final inoculum was determined as approximately 8
log10 CFU/ml for both Salmonella and E. coli.

Inoculation of Golden Delicious Apples
The efficacy of ACP on Salmonella and E. coliwas evaluated using
apples as the test substrate. Fresh Golden Delicious apples were
randomly picked and purchased from local supermarkets and
held at 4◦C 1 day before the experiment. Prior to inoculating
the apples with Salmonella or E. coli cocktail, each apple was
dipped in 70% ethanol for 10 s, rinsed with distilled sterile water,
and allowed to air dry for 1 h in a safety hood cabinet. For
negative control (before inoculation), six apples was analyzed to
be certain there was no baseline contamination of Salmonella
or E. coli on the apples. The apples were cut in halves and
placed cut side down onto sterile petri plates. To facilitate
inoculation process, a sharpie was used to denote the area of
inoculation (12.6 cm2) on the apple halves (29). Next, 0.1ml
(100 µl) aliquots of E.coli or Salmonella cocktail were spot
inoculated on the denoted area. The inoculum was deposited in
form of droplets on several different sites within the denoted
area, to ensure that the inoculum did not flow to the side of
the apples. After inoculation, samples were then left to dry for
1 h in a laminar flow safety cabinet to allow the attachment of
bacteria on the surface of apples prior to the ACP treatment (35).
Following, inoculated apples were treated by ACP and analyzed
for microbial inactivation. Four apples were used for each set of
treatment and the entire study was accomplished in triplicates.

Indirect Corona Discharge Set-Up by
Atmospheric Cold Plasma Treatment
To treat the apples with ACP, indirect corona discharge system
was used in this study (Figure 1). It consisted of a maximum
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high voltage output of 200 Watts at a frequency of 50Hz. The
Corona T-JET enables an indirect Corona-treatment with very
low heat transfer into the surface. The corona discharge was
generated inside the head between two electrodes and conveyed
onto the surface by an air stream. A corona discharge is a
physical phenomenon characterized by a low-current electrical
discharge across a gas containing gap at a voltage gradient, which
exceeds a certain critical value. Filtered air at a pressure of 4
bar at a constant flow-rate of 17 L min−1 was used for the
plasma generation. The process parameters considered for the
treatment was plasma at a fixed distance of 35mm. Treatment
width was approximately 18mm (Figure 1). All samples were
subjected to plasma treatment under atmospheric pressure. The
plasma working gas was atmospheric air. The samples were
treated with plasma at intervals of 30, 60, 120, 180, and 240 s.
A mark was made on the surface to denote the orientation
of the apple with respect to the rectangular field of plasma.
The chemical characterization of the emission in the 220–
450 nm wavelength range (Figure 1) was carried out by an
optic fiber probe placed at about 20mm from the discharge
and connected to a spectrometer (Ocean optics, HR4000 Series,
Florida, USA).

Microbial Analysis
E. coli and Salmonella contaminated apples (positive control)
were processed individually; this was to determine the inoculum
levels before ACP treatment. After ACP treatment, the inoculated

spot (12.6 cm2) on the apple was sampled using a sterile cotton
swab immersed in sterile 0.1% buffered peptone water. The
cotton swab tip was thoroughly vortexed for 30 s in 10mL
0.1% (w/v) sterile peptone in conical tube. Subsequently, a 10-
fold serially dilutions in 0.1% peptone of the homogenate from
each sample was plated on appropriate media. Approximately,
0.1ml aliquots of an appropriate dilution were surface plated
on xylose lysine deoxycholate (XLD, Difco, Sparks, MD) agar
and Eosin Methylene Blue Lactose Agar (EMB) for Salmonella
and E. coli, respectively. All plates were incubated for 24 h at
37◦C.

Inactivation Kinetics
The GInaFiT software tool was used to perform the regression
analysis of the microbial inactivation data (36). To describe the
survival of S. Typhimurium and E. coli, different inactivation
models are available in the GInaFiT tool, namely the log-linear,
log-linear +shoulder, Weibull, Double Weibull, biphasic and
biphasic+ shoulder models (Van Boekel 2). Weibull model
fitted the experimental data. Inactivation kinetics parameters
related to scale and shape of inactivation curves for the model
was calculated. The numerical values for inactivation kinetics
parameters, time required to obtain 5-log reduction and other
similar parameters were calculated for each model. It is well-
known that microbial activation curves are not often straight
lines but have a “shoulder” or “tail” effect; thus, the Weibull
distribution model was preferred to fit microbial inactivation

FIGURE 1 | Schematic diagram of atmospheric cold plasma system.

TABLE 1 | Goodness of fit and model parameters.

Microbe R2 RMSE δ ± SE P ± SE

Salmonella Typhimurium ATCC 13311 0.92 0.48 12.73 ± 4.78 0.52 ± 0.06

Salmonella Choleraesuis ATCC 10708 0.94 0.53 22.02 ± 5.65 0.80 ± 0.1

Escherichia coli ATCC 25922 0.96 0.38 12.26 ± 2.87 0.59 ± 0.04

Escherichia coli ATCC 11775 0.99 0.17 46.70 ± 2.84 1.20 ± 0.05

SE, Standard error; RMSE, Root mean square error.
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data (36, 37). The Weibull model has been used in non-
thermal treatment studies for modeling purposes. It is primarily
based on the hypothesis that the resistance to stress of a
population follows a Weibull distribution (38, 39).The Weibull
model (eqn 1) was used to analyze the data: where Nt is
concentration of microorganisms (CFU/cm2) at time, t (0, 30,
60, 120, 180, 240 s), N0 (CFU/cm2) is the initial number of
microorganisms, δ [min] (time for the first decimal reduction)
and p [–] are parameters related to the scale and shape of
the inactivation curve, respectively. The Weibull distribution
corresponds to a concave upward survival curve if p < 1 and

FIGURE 2 | Optical emission spectrum of plasma.

FIGURE 3 | Effect of treatment time on the inactivation of Salmonella Typhimurium, ATCC 13311 (A), Salmonella Choleraesuis, ATCC 10708 (B), Escherichia coli

ATCC 25922 (C), Escherichia coli ATCC 11775 (D) on apples by the atmospheric cold plasma treatment using air as the plasma-forming gas. Error bars denote

standard deviations.

concave downward if p> 1 (40). Inactivation kinetics parameters
related to scale and shape of inactivation curves for most suitable
models were calculated. The numerical values for inactivation
kinetics parameters, time required to obtain 5-log reduction were
calculated for the model. The values of δ and p were used to
calculate a desired log reduction. The time required to obtain an
x log reduction (txd) was calculated using Equation (2).

β describes the shape of the curve (β = 1, straight line; β < 1,
concave curve; β > 1, convex curve). The parameter α modifies
the slope but it does not affect the shape (40). The Weibull
equation can be cast in the decimal logarithmic form.

Log10Nt = Log10(N0)−

(

t

δ

)p

(1)

txd = δ×(x)1/p (2)

Statistical Analysis
Statistical Analysis (SAS Institute, Cary, N.C.) program was used
to analyze the data. The surviving population of either E. coli or
Salmonella for each treatment was compared with that recovered
from its respective inoculated untreated spot (control). This
was performed to account for possible day-to-day variation in
inoculum strength over the course of the experiments. All plate
count data were converted to log CFU/cm2 values. A balanced
design with three replicates randomized in experimental order
were performed for each treatment. The concentrations of E.
coli and Salmonella spp. (Log CFU/cm2) after plasma treatment
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were analyzed in the Weibull frequency distribution model.
We used an independent set of data to validate the models.
Consequently, based on the validation statistics obtained from
using an independent set of experimental data, the predictive
results from the above model can be considered accurate. P-
values > 0.05 were considered statistically significant.

Our results showed that both the plasma exposure time as
well as the fixed gas composition played a key role regarding
the inactivation of E. coli and Salmonella on apples. Showing
dependence on the plasma exposure time, downward concave
survival curves were observed. The parameters for Weibull
models are shown in Table 1. The goodness-of-fit of the
inactivation models was compared by determining the R2 values.
The goodness-of-fit of the models is described by the root mean
square error (RMSE), which was between 0.17 and 0.53 and
which thus proved the suitability of the Weibull model.

RESULTS AND DISCUSSION

Inactivation of Bacteria on Golden
Delicious Apples
The schematic view of the ACP unit is shown in Figure 1.
Emission spectra from the plasma discharge is shown in Figure 2.
It is quite evident from the spectra (Figure 2), the major emission
lines were in the 300–450 nm regions and attributed to nitrogen
species. These bands are associated with the transition from the
second positive system of N2, the first negative system of N+

2 and
the beta and gammas system of NO. Moreover, the lines between
315 and 405 nm are linked to the second positive system of N2

whilst the bands approximately at 391 and 426.5 nm are due to

the first negative system of N+

2 (41). It was observed that a strong
emission peak in the UV range was also observed which could be
attributed to UV photons in the germicidal range.

The influence of ACP treatments on viability of Salmonella
and E. coli was investigated in our study. Atmospheric plasma,
a non-thermal surface decontamination technique is capable of
generating various groups of antimicrobial agents which includes
photons, electrons, positively and negatively charged ions, atoms,
free radicals and excited or non-excited molecules (42, 43). In
our study, plasma discharge consisted of nitrogen species and UV
photons as illustrated in Figure 2.

The initial concentration (N0) of Salmonella or E. coli
cells on each apple was approximately 107 CFU/cm2. Survival
curves showed non-linear inactivation kinetics (Figures 3A,B).
Generally, the reductions for both E. coli strains were not
significantly different at the same exposure time intervals. E. coli
populations were reduced by>1 log after 60 s. The concentration
of E. coli significantly decreased (>5.0 log) at 180 and 240 s. E.

TABLE 2 | Treatment time required for 5 log reduction (99.999%) in bacterial

population.

Microbe t5d (s)

Salmonella Typhimurium ATCC 13311 288.14

Salmonella Choleraesuis ATCC 10708 163.39

Escherichia coli ATCC 25922 186.20

Escherichia coli ATCC 11775 178.22

Data reported as means.

FIGURE 4 | Model predictions and model efficacy.
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TABLE 3 | Average mean deviation for Salmonella strains.

Experimental Predicted Error (%)

Salmonella typhimurium

6.68 6.68 0.01

6.76 6.68 0.38

6.05 6.09 0.25

6.15 6.09 0.30

5.36 5.33 0.18

5.45 5.33 0.73

3.38 3.57 1.91

3.34 3.57 2.33

1.70 1.62 1.53

1.70 1.62 1.53

1.00 0.98 0.62

Salmonella choleraesuis 10708

6.79 6.31 2.34

6.72 6.31 2.01

4.78 5.03 1.76

4.74 5.03 2.05

5.20 5.03 1.08

4.29 4.08 1.65

4.32 4.08 1.87

1.95 2.41 7.89

1.95 2.41 7.89

1.20 0.91 8.06

1.20 0.91 8.06

coli ATCC 25922 and E. coli ATCC 11775 reductions ranged
from 1.4 to 5.3 and 0.6 to 5.5 log10 CFU/cm2, respectively.
The ACP inactivation of E. coli ATCC 25922 and E. coli ATCC
11775 on apples is presented in Figures 3C,D). Our results are in
agreement of previous studies that demonstrated antimicrobial
efficiency of cold plasma treatment on E. coli cells on apples.
In an earlier study, E. coli O157:H7 populations on Golden
Delicious apples were reduced by 3.5 and 3.0 log10 CFU/cm2,
respectively after 180 s exposure at a flow rates of 30 or 40 ml/min
(29). The application of one atmosphere uniform glow discharge
plasma system (OAUGDP) has been reported to reduce E. coli
O157:H7 on Red Delicious apples by 3 log10 CFU/cm2 after 120 s
exposure (27). Ziuzina et al. (35) demonstrated that ACP reduced
E. coli on strawberries by 1.2 and 1.6 log10 CFU/sample after
60 s and 120 s exposure, respectively, with significantly different
reductions of 3.5 log10 CFU/cm2 after treatment for 300 s (p <

0.05). Recent studies have shown that plasma is a source of heat,
UV irradiation, charged particles, reactive oxygen, and nitrogen
based species (ROS and RNS, respectively) with a main role
given to the species as disinfectants (20–23, 44–47). Our findings
clearly demonstrated that increasing the treatment time caused
an increased antimicrobial efficacy of ACP against the two strains
of E. coli.

Inactivation of Salmonella Typhimurium and Salmonella
Choleraesuis on apples is presented in Figures 3A,B. Inactivation
of Salmonella strains showed a time-dependent reduction
for all treatments. Salmonella Typhimurium and Salmonella

TABLE 4 | Average mean deviation for E.coli strains.

Experimental Predicted Error (%)

Escherichia coli ATCC 25922

6.54 6.79 1.28

6.94 6.79 0.71

4.78 5.09 2.19

4.58 4.23 2.53

4.04 4.23 1.59

3.15 2.94 2.27

2.69 2.94 3.04

1.60 1.89 6.05

1.60 1.89 6.05

1.00 0.98 0.62

1.00 0.98 0.62

Escherichia coli ATCC 11775

6.39 6.68 1.52

6.68 6.68 0.01

6.05 6.09 0.25

6.16 6.09 0.35

5.20 5.33 0.84

5.45 5.33 0.73

3.38 3.57 1.91

3.38 3.57 1.91

3.76 3.57 1.65

1.60 1.62 0.46

1.70 1.62 1.53

Choleraesuis reductions ranged from 2.8 to 4.8 and 1.3 to 5.3
log10 CFU/cm2, respectively. Generally, Salmonella inactivation
followed the same trend as for E. coli where reductions for both
strains were not significantly (p < 0.05) different at the same
exposure time intervals. After 30 s and 60 s exposure, Salmonella
populations were reduced by >1 log. At higher treatment
times (180–240 s), Salmonella Typhimurium and Salmonella
Choleraesuis were reduced to 4.4 to 5.3 log10 CFU/cm2,
respectively. Salmonella Typhimurium was slightly resistant to
plasma as compared to other E.Coli and other Salmonella strain.
The detection limit in the current study was 2 log10 CFU/apple
piece.

Our findings suggest that Salmonella populations decreased
as the treatment time increased. The relationship between the
level of microbial log reduction and treatment time was observed
to be non-linear (Figures 3A,B). Our results are in agreement
of previous studies that demonstrated antimicrobial efficiency
of cold plasma treatment on E. coli and Salmonella on apples.
In an earlier study, Salmonella populations on Golden Delicious
apples were reduced by 3.5 and 3.0 log10 CFU/cm

2, respectively,
after 180 s exopause at flow rates of 30 or 40 ml/min (29). The
application of one atmosphere uniform glow discharge plasma
system (OAUGDP) has been reported to reduce Salmonella on
Red Delicious apples by 3 log10 CFU/cm2 after 120 s exposure
(27) . In the same study, correspondingly Salmonella reductions
were 1.7 and 3.8 log10 CFU/sample after exposure for 120 and
300 s, respectively. Reduction of E. coli O157:H7, Salmonella,
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and L. monocytogenes have also been reported for apples and
lettuce using gas plasma technology (48). Possible mechanism
of inactivation may be reactive species produced in plasma
which react with the amino-acid in proteins and further cause
structural changes in proteins and results in destruction of the
vegetative cells (49). In addition, OH, O, and O3 could break
structural bonds in cell wall component pedtidoglycan, like C-
O, C-N bonds, leading to cell wall destruction (50) and cell
death. Salmonella and E. coli are Gram negative bacteria with
a thinner outer membrane compared to the Gram positive L.
monocytogenes. Clearly, the cell characteristics are critical factors
for inactivation efficacy, but no clear trend is apparent from this
study and highly complex interactions with the system, process,
surface or medium may also impact on efficacy in combination
with cell type.

Modeling Inactivation Kinetics
Analysis of kinetics data showed that Weibull model was a good
fit for the experimental data obtained (Table 1). Both bacteria
studied were susceptible to plasma treatment, but experimental
inactivation data and predicted parameters indicated that
Salmonella Typhimurium ATCC 13311 was most resistant to
plasma treatment than other microbes. It was observed that
for 5 log reduction of Salmonella Typhimurium, a treatment
time of 288.14 s is required. In contrast, Salmonella Choleraesuis
required a treatment time of 163.39 s for 99.999% reduction.

Relative changes in bacterial concentration as a function of
treatment time were fitted to Weibull model (P < 0.05) with
coefficients of determination (Table 1) and a low RMSE. The
R2 values of 0.92 and above (Table 1) show that the Weibull
model was a good fit for the experimental data analyzed. P-
values > 1 indicate the susceptibility of the remaining cells to
the treatment. The parameter estimates were reported in terms
of a rate constant. The t5d (t5d–the time required for a 5 log10
reduction) for both E. coli and Salmonella strains is shown in
Table 2. The treatment time varied between 288.14 and 163.39 s.
Salmonella Typhimurium was the most resistant bacteria.

The developed models for inactivation curves of pathogens
describing the effect of plasma treatment on log reduction were
validated using predictive modeling parameters. Independent set
of experiments were conducted to validate the developed models.
Predicted values of log reduction obtained usingmodel equations
were in good agreement with the experimental values. The
experimental and predicted values were closely correlated with
the experimental data as demonstrated by regression coefficient
(R2) as shown in Figure 4. To confirm the adequacy of the fitted
models, studentised residuals vs. run order were tested and the
residuals were observed to be scattered randomly, suggesting that

the variance of the original observations were constant for all
responses. Further, the normality assumption was satisfied as the
residual plot approximated to a straight line for all responses.

The average mean deviation (E) and multiple correlation
coefficients (R2) were used to determine the fitting accuracy of
data (51).

E(%) =
1

ne

n
∑

i=1

∥

∥

∥

∥

VE − Vp

VE

∥

∥

∥

∥

× 100 (3)

where, ne is the number of experimental data, VE is the
experimental value and VP is the predicted value.

The variation between the predicted and experimental log
reduction values obtained for E. coli and Salmonella strains
were within acceptable error range as depicted by average mean
deviation (E%); therefore, the predictive performance of the
established model may be considered acceptable (Tables 3, 4). It
is indicated from the table that predicted values were in close
agreement with the experimental values. The predicted values
were found to be within the range of experimental values and
were not significant at p < 0.05 using paired t-test.

CONCLUSIONS

Our results indicate that atmospheric cold plasma inactivated E.
coli and Salmonella strains on the surface of Golden Delicious
apples. Inactivation times for a ≈ 5 log cycle reduction ranged
between 120 and 240 s. The inactivation depended significantly
on treatment time and was well explained by the Weibull
model. The results presented in the current study demonstrate
the efficacy of ACP in activation of E. coli and Salmonella
strains on apples. Overall, our results demonstrated the potential
of atmospheric cold plasma as a means of improving the
microbiological safety of fruits. Future studies are needed to
address the feasibility for scale-up of this technology to pilot and
commercial scales for decontamination pathogenic bacteria on
fresh produce.
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