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Circulating concentrations of thyrotropin (TSH) and thyroxine (T4) are tightly regulated. Each individual has setpoints for TSH and 
free T4 which are genetically determined, and subject to environmental and epigenetic influence. Pituitary-thyroid axis setpoints are 
probably established in utero, with maturation of thyroid function continuing until late gestation. From neonatal life (characterized 
by a surge of TSH and T4 secretion) through childhood and adolescence (when free triiodothyronine levels are higher than in adults), 
thyroid function tests display complex, dynamic patterns which are sexually dimorphic. In later life, TSH increases with age in 
healthy older adults without an accompanying fall in free T4, indicating alteration in TSH setpoint. In view of this, and evidence that 
mild subclinical hypothyroidism in older people has no health impact, a strong case can be made for implementation of age-related 
TSH reference ranges in adults, as is routine in children.
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INTRODUCTION

Thyroid hormones have profound and widespread physiological 
effects, including regulation of metabolism and thermogenesis. 
Thyroid hormones also play key roles in growth and develop-
ment which are phylogenetically diverse [1]. For example, over 
100 years ago, it was shown that extracts of mammalian thyroid 
induce metamorphosis in tadpoles [2], whereas thyroidectomy 
prevents metamorphosis and arrests development [3]. Not long 
afterward, thyroidectomy was shown to disrupt the seasonality 
of breeding in ducks, songbirds, and sheep, and it is now known 
that thyroid hormone action on the mediobasal hypothalamus is 
essential to seasonal reproductive cycling across vertebrate spe-
cies [4,5]. Key roles of thyroid hormones in human growth and 

development are also well established, as demonstrated by dis-
orders such as congenital hypothyroidism and thyroid hormone 
resistance alpha [6,7]. The purpose of this review is to provide 
an overview of pituitary-thyroid axis function across the human 
lifespan.

PITUITARY-THYROID AXIS SETPOINTS

In a classic study by Andersen et al. [8], it was shown that in 
healthy individuals studied repeatedly over a year, circulating 
levels of thyrotropin (TSH) and thyroxine (T4) are tightly regu-
lated, with much less variation observed within a given individ-
ual across time than between individuals. The physiological 
ranges for each individual (reflecting biological variation) are 
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therefore narrower than the population-derived laboratory refer-
ence ranges. This gives rise to the key concept that each indi-
vidual has set points (individual means) for TSH and T4, and 
what is normal for one individual may not be normal for anoth-
er, even within conventional definitions of euthyroidism [9]. 
Notably, circulating TSH exists in several different isoforms 
with varying degrees of glycosylation, sialylation, and sulfona-
tion which affect tissue availability and bioactivity [10,11]; this 
is not reflected in immunoreactive TSH concentrations deter-
mined by routine laboratory assays.

Setpoints for hypothalamo-pituitary-thyroid (HPT) axis func-
tion are probably established in utero. Evidence for this comes 
from individuals with congenital hypothyroidism in whom, de-
spite early detection and treatment of hypothyroidism, the rela-
tionship between TSH and free T4 may be altered through 
childhood and adult life. In one study, at any given TSH con-
centration, children with congenital hypothyroidism had higher 
free T4 concentrations than children with autoimmune hypothy-
roidism [12]. Similarly, when individuals with congenital hypo-
thyroidism were studied as adults, higher levothyroxine dosage 
and higher free T4 concentrations were required to achieve the 
same TSH concentration compared with patients with hypothy-
roidism from total thyroidectomy [13]. 

Pituitary-thyroid axis setpoints are to a large extent heritable 
traits. Estimates of heritability vary [14-18], but are up to 60% 
to 70% for each of TSH, free T4, and free triiodothyronine (T3) 
(Table 1). In recent years, there have been substantial advances 
in understanding the genetic architecture of pituitary-thyroid 
axis function [19]. This started with candidate gene studies, then 
genome wide association studies, initially using gene chips with 
relatively sparse coverage of the human genome in small popu-
lations, and more recently in large populations with more dense-
ly spaced genetic markers and high levels of imputation. This 
approach has been highly successful in identifying common ge-
netic variants associated with thyroid function. In the most re-
cent meta-analysis of 32 cohorts with a total sample size of 
more than 70,000 participants, 42 independent genetic loci were 

found to be associated with TSH, and 21% with free T4 [20]. 
Even with this large-scale effort, however, only 33% of genetic 
variance in TSH and 21% of variance in free T4 were accounted 
for. The “missing heritability” of thyroid function probably aris-
es from multiple (as yet unidentified) genetic variants, each with 
small effects, requiring even larger studies for detection [21]. 
Rare variants (defined as a minor allele frequency <1%) are 
also likely to be important; although individually rare, these are 
collectively quite frequent and may have greater individual ef-
fect sizes than do common variants. In a whole genome se-
quencing study, several rare variants were identified as associat-
ed with thyroid function [22], and larger studies are required to 
build on this.

Epigenetic mechanisms such as DNA methylation, phosphor-
ylation, acetylation and histone modification regulate gene ex-
pression without altering the DNA nucleotide sequence. This 
provides a potential link between environmental influences, 
gene expression and thyroid function [23]. Although non-per-
manent, epigenetic modifications can be transmitted to subse-
quent generations, and may account for some of the missing 
heritability of thyroid function [24]. Our group recently pub-
lished the first epigenome-wide association study of thyroid 
function in healthy individuals, using methylation data from 
leukocyte DNA from two cohorts of adolescent Australians 
[25]. We identified two differentially methylated positions 
(DMPs) associated with TSH, none with free T4 and six with 
free T3, including DMPs in KLF9 and DOT1L, both genes 
which are known to be induced by T3. Further research is re-
quired to explore the relevance of these loci to pituitary-thyroid 
axis physiology and thyroid hormone action. DNA methylation 
shows marked changes across the lifespan [23,24], and is likely 
to be relevant to age-related changes in HPT axis function.

ENVIRONMENTAL INFLUENCES

There are numerous environmental influences on HPT axis 
function. At the population level, the most important is iodine 

Table 1. Heritability Estimates from the Literature for TSH, Free T4, and Free T3 [14-18]

Variable Hansen et al. 
(2004) [14]

Samollow et al. 
(2004) [15]

Panicker et al. 
(2008) [16]

Alul et al. 
(2013) [17]

Nolan et al. 
(2021) [18]

TSH 0.64 0.32 0.65 0.58 0.71

Free T4 0.65 0.37 0.39 - 0.67

Free T3 0.64 0.67 0.23 - 0.60

TSH, thyrotropin; T4, thyroxine; T3, triiodothyronine.
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status [26]. The clinical impact of severe iodine deficiency is 
well-known, but even small differences in iodine status can af-
fect the population distribution of TSH and alter the relationship 
between TSH and age [27-31]. Serum TSH, and to a lesser ex-
tent free T4 and free T3, is also affected by photoperiod and 
temperature, exhibiting circadian, seasonal and circannual vari-
ation [32-37]. The magnitude of these physiological effects can 
be clinically relevant: for example, the increase in TSH during 
winter can cause seasonal variation in the diagnosis of subclini-
cal hypothyroidism [38]. Tobacco smoking affects thyroid func-
tion [39], such that current smokers have lower mean TSH con-
centrations than people who have never smoked. After smoking 
cessation, TSH levels gradually normalize over a prolonged pe-
riod of 10 years or more [40].

THYROID FUNCTION IN UTERO

Thyroid embryogenesis is largely complete by 7 weeks gesta-
tion, but terminal differentiation of the gland, characterized by 
follicle formation and thyroid hormone synthesis, does not oc-
cur until 10 to 12 weeks [41-44]. TSH, T4, and T3 are detect-
able in fetal circulation from 11 to 12 weeks onwards, but physi-
ologically relevant thyroid hormone secretion does not occur 
until the second trimester. It is often stated that the fetal HPT 
axis is functionally mature by 18 to 20 weeks gestation [45,46], 
but in fact there is good evidence that maturation continues 
through the third trimester. These data come from studies utiliz-
ing cordocentesis for fetal blood sampling in utero or cord blood 
samples from fetuses born prematurely or undergoing termina-
tion of pregnancy [41,47-49]. The data are not completely con-
sistent across studies, but it appears that fetal TSH levels are ap-
proximately 4 mU/L at 12 weeks, increase to 7 mU/L at 28 
weeks, then remain stable until term. During the third trimester, 
fetal TSH is poorly sialylated and more bioactive than in older 
children and adults [50]; whether this is true earlier in gestation 
is not known. Serum total T4 concentrations in the fetus are low 
at 12 weeks gestation (~20 nmol/L), increase to ~70 nmol/L by 
28 weeks then increase further to ~120 nmol/L at term, similar 
to levels in older children. Thyroxine-binding globulin (TBG) 
levels are low at 12 weeks, then increase progressively until 
term. Free T4 concentrations are also low (~2 pmol/L) at 12 
weeks, increase to 15 to 20 pmol/L at 28 weeks, then plateau 
until term, influenced by the increase in TBG. Fetal total T3 
levels are barely detectable at 12 weeks gestation, increase to 
~0.4 nmol/L by 28 weeks and increase further to ~0.9 nmol/L 
at term, still lower than in older children. 

Prior to maturation of the fetal thyroid, transplacental passage 
of maternal T4 occurs and plays an important role in fetal brain 
development. Transplacental transfer of T4 continues until fetal 
free T4 concentrations approximate maternal free T4 levels at 
~28 weeks gestation [51]; in fetuses with congenital hypothy-
roidism, transplacental passage of T4 continues until term [52].

EARLY LIFE AND CHILDHOOD

Immediately after birth, there is a surge in TSH secretion which 
peaks at around 30 minutes postnatally, with levels as high as 
60 to 80 mU/L. This is followed by an increase in T4 which in 
turn peaks during the first day of life, when free T4 levels which 
can be twice as high as in older children or adults [49,53]. TSH 
and free T4 levels fall during the first month of life, but can still 
be above levels seen in adults [49,54,55]. Circulating T3 con-
centrations are low at birth, increase during the first week of 
life, and remain elevated across the first neonatal month. Stud-
ies of babies who were warmed or cooled in the first few hours 
and days of life suggest that high TSH levels during the first 
month of life are a response to the temperature drop between the 
intrauterine and extrauterine environments, although this may 
not be true of the early TSH surge immediately after birth, 
which appears to be temperature-independent [53]. In prema-
ture infants, the neonatal TSH surge in the first day of life is at-
tenuated compared with term infants; the T4 surge is also atten-
uated in infants born at 28 to 34 weeks gestation and is absent in 
severely premature babies born at 23 to 27 weeks [49,56]. This, 
along with other factors, predisposes to hypothyroxinemia in 
premature infants [44], and provides further evidence that the 
fetal pituitary-thyroid axis is not fully mature until late gesta-
tion. 

After the first month of life, TSH levels remain somewhat 
higher than in adults, gradually falling and plateauing at 6 to 9 
months of age, then remaining largely stable through the rest of 
childhood, accompanied by a gradual fall in free T4 concentra-
tions across this period [54]. The predominant TSH isoforms in 
children up to 18 months of age have low sialylation and N-gly-
cosylation, resulting in high bioactivity, after which TSH glyco-
biology becomes similar to that seen in adults [57]. Circulating 
T3 levels peak at 4 to 5 months of age, then gradually decline. 
At all ages, mean TSH levels are slightly higher in boys than 
girls. 

Reference ranges for TSH, free T4, and free T3 in children 
are typically wider than in adults, but are not well-standardized 
or harmonized. In a recent review, Onsesveren et al. [58] report-
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ed considerable variation: for example, for children aged 7 days 
to 3 months, reference interval lower limits for TSH ranged 
from 0.16 to 1.80 mU/L and upper limits from 4.38 to 12.56 
mU/L; for 5 to 10 years of age the lower limits were 0.48 to 
1.30 mU/L and upper limits 3.36 to 5.66 mU/L. Likely contribu-
tors to this variation include differences between studies in as-
say methods and statistical analysis, as well as iodine status, 
ethnicity, and anthropometric factors. 

Children who develop hypothyroidism require higher doses 
of levothyroxine per kilogram (kg) of body weight than do 
adults, approximating 10 to 15 µg/kg/day in neonates, 4 to 6 µg/
kg/day from age 1 to 5 years, and 2 to 4 µg/kg/day in older chil-
dren and adolescents, whereas adults typically require 1.6 to 2.0 
µg/kg/day [59]. This indicates the high level of metabolic and 
secretory activity of the thyroid during childhood.

ADOLESCENCE

Adolescence is an important time of growth and development in 
which the thyroid plays a key role. We recently published the 
first detailed longitudinal analysis of thyroid function in an ado-
lescent cohort [60], finding complex, sexually dimorphic pat-
terns of thyroid function tests (Fig. 1). TSH was consistently 
higher in males than females with stable values from age 12 to 
14 years, then an increase from age 14 to 16 in both sexes. In 
girls, free T4 increased from age 12 to 14 while remaining un-
changed in boys, then increased from age 14 to 16 in both sexes. 
Free T3 was higher at all time points in boys than girls, and tra-
jectories showed a marked sex difference. In girls, there was 
minimal change in free T3 from age 12 to 14, then a sharp de-
cline to age 16, whereas in boys free T3 increased from age 12 
to 14 then declined by age 16. These data are broadly consistent 
with limited data from other longitudinal studies [61,62] and 
cross-sectional studies [63]. The physiological basis for these 
changes is not fully understood. The sex differences (particular-
ly for free T3) are partly explained by the earlier age of puberty 
in girls than boys, and the reciprocal changes in free T4 and free 
T3 concentrations suggest altered activity of one or more of the 
iodothyronine deiodinases, probably as a result of increased se-
cretion of sex hormones, growth hormone/insulin growth factor 
1 and other factors during puberty. 

These results are clinically relevant, because reference inter-
vals for thyroid function tests clearly differ between adolescents 
and adults. For TSH and free T4, the differences were relatively 
minor, reflecting narrower distributions in teenagers than adults. 
For free T3, however, there is an upward shift in concentrations 
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Fig. 1. Longitudinal changes in thyrotropin (TSH), free triiodothy-
ronine (T3), and free thyroxine (T4) in adolescent males and fe-
males. Results are visualized using generalized additive models fit-
ted to the unadjusted data. Mean values and 95% confidence bands 
are illustrated by solid and dotted lines respectively. Reproduced 
from Campbell et al. [60], with permission from Oxford University 
Press.
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in adolescents than adults, most evident in 12-year-old girls and 
14-year-old boys. In these age groups, use of adult reference 
ranges would misclassify 35% of girls and 58% of boys as hav-
ing abnormal free T3 levels.

THYROID FUNCTION IN ADULT LIFE

In healthy, older adults without thyroid disease, it was previous-
ly thought there was an age-related reduction in TSH levels 
[64,65], but this was based largely on studies from iodine-defi-
cient populations after exclusion of individuals with subclinical 
hypothyroidism, which biased the results. In studies of iodine-
sufficient populations, including the National Health and Nutri-
tion Examination Survey in the United States (NHANES III), it 
was shown convincingly that in healthy individuals with no evi-
dence of thyroid disease, there is in fact a progressive increase 
in TSH concentrations with increasing age which is apparent 
from the third decade of life [66,67]. A limitation of NHANES 
III was the cross-sectional design, but an age-related increase in 
TSH secretion was subsequently confirmed in two longitudinal 
studies. In a reference group of Busselton Health Study partici-
pants with no evidence of thyroid disease studied on two occa-
sions, 13 years apart (mean age at baseline 45.5 years), there 
was a significant increase in mean TSH concentrations with no 
change in mean free T4 levels [68]. In a second longitudinal 
study of older people (mean age 72 at baseline), also studied on 
two occasions, 13 years apart, there was an identical increase in 
mean TSH in a disease-free subcohort, accompanied by a small 
increase in mean free T4 [69]. These results were not replicated 
in a third study (mean age at baseline 65 years), in which mean 
TSH did not change significantly over time [70], probably be-
cause of the shorter duration of follow-up (6.5 years).

Further insight into the age-related increase in TSH comes 
from examining the relationship between TSH and free T4. A 
key feature of the TSH-free T4 relationship is that small chang-
es in circulating free T4 concentrations result in relatively large 
changes in TSH. This accounts for the high community preva-
lence of subclinical thyroid disease, since TSH is frequently out 
of range accompanied by normal free T4 rather than the other 
way around, and underpins the “TSH-first” approach in screen-
ing for thyroid disease [71,72]. It was previously thought that 
there was a simple inverse log-linear relationship between TSH 
and free T4 [73-75], but it is now known that the relationship 
between log TSH and free T4 is complex and non-linear 
[76,77]. In an analysis of over 120,000 individuals from a labo-
ratory database [72], we reported that the TSH-free T4 relation-

Fig. 2. Thyrotropin (TSH) and free thyroxine (T4) relationship ana-
lyzed by age in 120,403 patients who were not taking thyroxine 
treatment. The median TSH for each free T4 integer value (in pmol/
L) was calculated, then plotted as 20-year age bands in adults. The 
youngest age band (1 to 19 years) is not depicted because there 
were insufficient data to calculate median TSH for each free T4 val-
ue reliably; for clarity, interquartile ranges are not shown. Dotted 
horizontal and vertical lines mark the TSH reference range (0.4 to 
4.0 mU/L) and free T4 reference range (10 to 20 pmol/L), respec-
tively. Reproduced from Hadlow et al. [72], with permission from 
Oxford University Press.

9

8

7

6

5

4

3

2

1

0

TS
H

 (m
U

/L
)

Free T4 (pmol/L)

Age (years)

60–79
≥80

40–59
20–39

	 10	 15	 20	 25

ship differed across age groups, such that at any given free T4 
concentration within the reference range, older people had high-
er TSH concentrations than younger people (Fig. 2), suggesting 
an age-related alteration in TSH setpoint.

The mechanism for the age-related in TSH increase with ag-
ing is uncertain, and there are several possibilities. Firstly, it is 
possible (but largely untested) that TSH isoforms change with 
aging, resulting in reduced TSH bioactivity in older adults 
[11,78]. Secondly, there could be attenuation of the negative 
feedback effect of free T4 on TSH secretion, for example by re-
duced type 2 iodothyronine deiodinase activity in the pituitary. 
Thirdly, there could be a reduction in thyrocyte responsiveness 
to TSH, requiring higher TSH concentrations to maintain the 
same free T4 level. More research is required to address this 
question.

IMPLICATIONS OF AGE-RELATED TSH 
INCREASE

The age-related increase in TSH, occurring without an accom-
panying fall in free T4 has important clinical implications. First-
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ly, it raises the question of whether age-related reference ranges 
for TSH should be applied to older adults. Following the publi-
cation of NHANES III data discussed above, this was advocated 
[79], but has not been widely adopted. One reason for this may 
be that in the early 2000s, there was robust debate about the 
TSH reference range in general, and in particular whether the 
TSH reference upper limit should be reduced from approxi-
mately 4–4.5 to 2.5 or 3.0 mU/L [80,81]. This debate is now 
largely settled, in favor of a TSH upper limit remaining at 4.0 to 
4.5 mU/L [29,82], but may have overshadowed the important 
question of age-related ranges. 

Table 2 shows examples of age-related reference ranges from 
selected studies in the literature, using young adults aged under 
30 years as the comparator group [31,68,83-88]. A consistent 
feature is that the upper limit for TSH (defined as the 97.5th 
centile) is substantially higher in older age groups, being 0.5 to 
2.7 mU/L greater than for young adults, whereas the lower limit 
of the reference range is not affected by age. The absolute val-
ues for TSH reference range limits differ between studies, re-
flecting methodological differences (e.g., definition of disease-
free groups, availability of thyroid antibody measurements) as 
well as preanalytic and analytic factors. These include environ-
mental factors (especially iodine status and smoking, and to a 
lesser extent sex, season and temperature), ethnicity (which is 
known to impact TSH reference ranges [67,79,83]) and analytic 
factors, as TSH assays are poorly harmonized, with inter-assay 
differences of up to 1 mU/L at high-normal TSH concentrations 
[84,89]. Ideally, therefore, TSH reference ranges should be gen-

erated by laboratories from local population-based data where 
possible. 

Application of age-related reference ranges for TSH would 
reduce the number of older people regarded as abnormal on the 
basis of a mildly elevated TSH. This would be desirable, as the 
natural history of TSH elevations in older people appears favor-
able. TSH can increase as a result of nonthyroidal systemic ill-
ness, transient thyroiditis or simply biological variation, and of-
ten returns to the reference range on repeat testing [90]. For that 
reason, it is recommended that subclinical hypothyroidism be 
confirmed by repeat testing before levothyroxine treatment is 
started, but in clinical practice, patients are frequently started on 
treatment after a single measurement of TSH [91], and many 
continue treatment lifelong which may be unnecessary [92] and, 
if not adequately monitored, potentially harmful [93,94]. 

Even when confirmed on repeat testing, mild subclinical hy-
pothyroidism in older people appears to have no health impact. 
A recent combined analysis of data from participants aged ≥80 
years or more in two randomized controlled trials reported no 
benefit of levothyroxine treatment for subclinical hypothyroid-
ism [95]. This is consistent with the full results of one of the in-
cluded trials, which found no symptomatic treatment benefit in 
people aged ≥65 years or more [96]. Observational studies sug-
gest that mild TSH elevation in older people does not predict 
adverse health outcomes. In fact, higher TSH is associated with 
greater life expectancy, including extreme longevity [69,78,97-
101]. Although subclinical hypothyroidism is a risk factor for 
cardiovascular disease, a meta-analysis of individual participant 

Table 2. Age-Related Reference Ranges for Thyrotropin in Older People, with Young Adults as the Comparator Group 

Study Location Number Assay
TSH, mU/L

Age 20–30 
years

Age 60–70 
years

Age 70–80 
years

Age 80–90 
years

Boucai et al. (2011) [83] USA 13,296 Nichols 0.40–3.60 0.46–4.70 0.47–5.60 0.44–6.30

Kahapola-Arachchige et al. (2012) [84] Australia 148,938 Siemens Centaur 0.49–3.67 0.52–4.32 0.48–4.52 0.47–4.9

Bremner et al. (2012) [68] Australia 1,751 Immulite 0.51–3.54 3.48–4.70 0.52–5.28a -

Vadiveloo et al. (2013) [85] Scotland 153,127 Roche 0.52–4.15 0.48–4.59 0.40–4.96 0.36–5.49

Farrell et al. (2017) [86] Australia 604,194 Siemens Centaur 0.53–3.86 0.52–4.43 0.55–4.66 0.52–4.89

Park et al. (2018) [31] Korea 5,987 Roche 0.67–6.05 0.56–7.77 0.42–6.68a -

Mokhtar (2020) [87]b Algeria 8,838 Abbott Architect 0.46–3.90 0.42–5.10 0.36–5.30a -

Raverot et al. (2020) [88] France 156,025 Abbott Architect 0.31–4.37 0.24–4.72 0.24–4.88 0.25–4.92

Data are from selected studies of populations thought to be free of thyroid disease (disease-free or reference populations) [31,68,83-88]. In some studies, 
sex-specific reference intervals were provided for men and women which have been combined to a single range for the purposes of this table. Young 
adults are shown as age 20 to 30 years, but in some studies data are for age 18 to 30 years.
aData shown are for age >70 years; bData from Bhattacharya analysis (one of several analyses in the paper).
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data from 11 cohort studies found that this only applied to TSH 
levels ≥7.0 mU/L, with no increased risk associated with TSH 
4.5 to 7.0 mU/L [102]. More recently, a study level meta-analy-
sis of 35 cohort studies found that subclinical hypothyroidism 
was a predictor of mortality and cardiovascular outcomes only 
in cohorts which were younger (median age <65 years) and/or 
had high predicted cardiovascular risk at baseline [103]. In an 
informative community-based cohort study, stratified analysis 
showed that TSH in the highest quartile of subclinical hypothy-
roidism (TSH >6.57 mU/L) was a predictor of cardiovascular 
mortality and events (whereas TSH 4.0 to 6.57 mU/L was not), 
and that within this subgroup, participants aged ≥65 years were 
not at increased risk unless they had pre-existing cardiovascular 
risk factors [104]. Finally, in a large observational study from 
the United Kingdom, levothyroxine treatment of people with 
TSH between 5 and 10 mU/L was associated with reduced car-
diovascular risk and overall mortality in patients aged 40 to 70 
years (compared with people left untreated), but not in those 
aged over 70 years [105]. 

These data provide support a hypothesis advanced some years 
ago that subclinical hypothyroidism is a cardiovascular risk fac-
tor from middle age up to 65 or 70 years of age, but not in older 
people, whereas in the very elderly (over 85 years) it may be as-
sociated with prolonged survival [106,107]. In light of this, sev-
eral clinical guidelines now recommend against routine levo-
thyroxine treatment in older people with mild subclinical hypo-
thyroidism [108-110]. In a recent editorial, Cappola [111] sug-
gested that the upper limit of the TSH reference range be ex-
tended to 7 mU/L for people over the age of 80. This would 
probably reduce unnecessary levothyroxine prescribing for old-
er people, but this dichotomous approach is less physiological 
and intellectually less appealing than applying graduated or 
continuous age-related reference ranges to all adults.

CONCLUSIONS

This review highlights the considerable changes which occur 
physiologically in HPT axis function across the lifespan. Set-
points for thyroid function are to a large degree heritable and 
probably established in utero, but much of the underlying ge-
netic architecture remains undescribed, and an understanding of 
epigenetic influences is only beginning to emerge. There are 
complex, dynamic changes in thyroid function tests across 
childhood and adolescence and also in adulthood, such that in 
older people TSH increases with aging without an accompany-
ing fall in free T4. Age-related reference ranges for thyroid 

function tests should be routinely used for children and adoles-
cents. There is a strong case for implementing age-related refer-
ence ranges for TSH in adults to prevent inappropriate diagnosis 
of subclinical hypothyroidism in older people and to discourage 
unnecessary levothyroxine prescribing. 
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