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Abstract: The 3D vehicle trajectory in complex traffic conditions such as crossroads and heavy
traffic is practically very useful in autonomous driving. In order to accurately extract the 3D vehicle
trajectory from a perspective camera in a crossroad where the vehicle has an angular range of
360 degrees, problems such as the narrow visual angle in single-camera scene, vehicle occlusion
under conditions of low camera perspective, and lack of vehicle physical information must be solved.
In this paper, we propose a method for estimating the 3D bounding boxes of vehicles and extracting
trajectories using a deep convolutional neural network (DCNN) in an overlapping multi-camera
crossroad scene. First, traffic data were collected using overlapping multi-cameras to obtain a wide
range of trajectories around the crossroad. Then, 3D bounding boxes of vehicles were estimated and
tracked in each single-camera scene through DCNN models (YOLOv4, multi-branch CNN) combined
with camera calibration. Using the abovementioned information, the 3D vehicle trajectory could be
extracted on the ground plane of the crossroad by calculating results obtained from the overlapping
multi-camera with a homography matrix. Finally, in experiments, the errors of extracted trajectories
were corrected through a simple linear interpolation and regression, and the accuracy of the proposed
method was verified by calculating the difference with ground-truth data. Compared with other
previously reported methods, our approach is shown to be more accurate and more practical.

Keywords: camera calibration; multi-object tracking; overlapping multi-camera crossroad scene; 3D
bounding box estimation; 3D trajectory extraction

1. Introduction

With the development of intelligent transportation systems (ITS), it is possible to
obtain a large amount of vehicle trajectory data that reflect the movement of vehicles on
the road from fixed cameras [1]. These data can be used to analyze traffic behavior such
as speed, lane change, violation of the traffic rules [2], and traffic flow [3]. In addition,
it can be used not only for traffic management and control [4] and real-time traffic situ-
ation state estimation [5], but also for accident and dangerous situation recognition and
prediction [6–11]. Hence, the practicality of using vehicle trajectories has become invalu-
able. Trajectory mainly refers to a series of 2D coordinates of moving objects in 2D space.
Currently, with the development of deep convolutional neural networks (DCNNs), 2D
trajectory in video images can be obtained using excellent object detection and tracking
methods. In addition, it is possible to extract trajectories of multiple objects at the same time
(i.e., multi-object tracking) [12,13]. However, compared to 3D trajectories, 2D trajectories
do not include any physical information of objects in the real world; thus, so it is difficult
to apply them in practical applications such as collision detection and warning [14] and
traffic accident situation reconstruction [15] in autonomous driving. Therefore, accurately
quantifying 3D vehicle trajectories can be invaluable.

If only an image-based method is used to obtain 3D vehicle trajectory, it should be
based on a 2D object detector and camera calibration. Recently, various methods for 3D
vehicle trajectory extraction have been studied, according to geometric feature methods and
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road environments. Seong et al. [16] proposed a method for correcting vehicle trajectory by
extracting the center position on the basis of the geometric characteristics of the vehicle
moving according to a 2D bounding box for errors caused by lens distortion and low camera
perspective in CCTV at intersections. Kocur et al. [17] proposed a method for estimating
the 3D bounding box and velocity of vehicle through perspective transformation based
on camera calibration and a known vanishing point geometry from a single-camera scene.
The six degrees of freedom (DoF) and dimensions of the vehicle are determined according
to one vanishing point, known width, and known length (VWL), based on road edge lines.
Thus, this method can obtain a 3D bounding box that is robust to changes in orientation.
Although methods for obtaining 3D vehicle trajectories from a single camera have been
widely and maturely used, trajectory results are not accurate under conditions such as
narrow visual angle, low camera perspective, vehicle occlusion, and a lack of vehicle poses
and dimensions.

To solve these problems, there are methods to extract 3D vehicle trajectories using
multiple cameras with or without overlapping areas. Compared with single-camera
methods, these methods can resolve narrow visual angles with vehicle occlusion and
obtain continuous 3D trajectory in a whole space. They usually perform two additional
essential steps: (1) trajectory reconstruction; (2) multi-camera vehicle matching. Since
multiple camera scenes have different viewpoints, trajectories extracted from each single-
camera scene must be reconstructed into a whole space, and continuous vehicle trajectories
can be obtained through multi-camera vehicle matching and vehicle reidentification.

Peng et al. [18] proposed a method for extracting vehicle trajectories through CNN-
based multi-object tracking in a nonoverlapping multi-camera scene and visualizing them
on a satellite map through calculation with a homography matrix. In this method, vehicle
matching is performed using CNN features to obtain continuous vehicle trajectories, but
it does not contain 3D physical information of vehicles. Castaneda et al. [19] proposed
a multi-camera detection and vehicle tracking method in nonoverlapping tunnel scenes
using optical flow and Kalman filters. This method can be combined with camera-to-
camera vehicle travel time and lane position constraints to obtain continuous vehicle
trajectory, which can solve vehicle occlusion problems to some extent. However, the
physical location of vehicle trajectory in 3D space is still not available. Tang et al. [20]
proposed a method for extracting vehicle physical information and 3D trajectories using
multiple cameras on a straight road. The proposed algorithm generates a panoramic image
to unify the multi-camera scene perspective into one 3D physical space to extract continuous
3D vehicle trajectories. Then, 3D trajectories are extracted by estimating dimensions of
vehicles through camera calibration and one VWL-based geometric constraint, calculating
projection centroids of 3D boxes, and projecting them onto the panoramic image.

As mentioned in the related methods above, there are various methods for extracting
3D vehicle trajectories. However, most of these methods are limited to simple traffic
conditions or straight roads. The reason is that 3D bounding boxes of vehicles are usually
estimated using geometric feature methods such as one or two VWLs and road edge lines.
Therefore, in complex traffic conditions such as crossroads and heavy traffic, it is difficult
to accurately estimate a rotating trajectory or anomalous trajectory that does not match the
traffic flow. In this regard, our proposed method can obtain accurate 3D vehicle bounding
boxes for all moving directions of vehicles, and it is robust to narrow visual angles and
vehicle/obstacle occlusion under condition of low camera perspective. In addition, it
is superior to existing methods in that it can extract continuous 3D vehicle trajectories
regardless of road environments (highway, crossroads, etc.). A comparison of several 3D
vehicle trajectory methods to our proposed method is summarized in Table 1.

In light of the comparative analysis outlined in Table 1, we propose a DCNN-based
continuous 3D vehicle trajectory extraction method in complex traffic conditions consid-
ering the problems that exist in current multi-camera 3D trajectory methods. We select
a heavy-traffic crossroad and generate our custom dataset using overlapping multiple
cameras capable of collecting a wide range of data. Then, using trained DCNN models,
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3D trajectories for vehicles in all directions are extracted, and the results are optimized
through error corrections. By doing so, the shortcomings listed in the previously conducted
similar studies can be rectified, and our extracted data can be used for autonomous driving
applications. The remainder of this paper is organized as follows: in Section 2, we describe
the traffic data collection and the proposed method to extract 3D vehicle trajectories. The
evaluation of experimental results and their analysis are presented in Section 3. Lastly, the
conclusions and future work are given in Section 4.

Table 1. Comparison of different 3D vehicle trajectory extraction algorithms.

Method Vehicle
Orientation

Vehicle
Position

Continuous 3D
Trajectory

Multi-Camera
Scene Straight Road Crossroad

Seong et al. [16] X O O X O O

Kocur et al. [17] O O O X O X

Peng et al. [18] X O X X O O

Castaneda et al. [19] X X X O O X

Tang et al. [20] O O O O O X

Our method O O O O O O

2. Materials and Methodology
2.1. Data Collection from Heavy Traffic Flow

We selected a heavy-traffic crossroad in Seoul (the capital of South Korea) to collect
a wide range of traffic data in a congested city, and we installed multiple cameras on
a high-rise rooftop near the crossroad. The height of the building was about 120 m; thus,
it was possible to collect traffic data with a radius of about 75 m from the center of the
crossroad. As shown in Figure 1a, five mobile cameras (Samsung Galaxy A2018, Suwon,
Korea) were installed in the P position and collected images for about 20 h to obtain
a sufficient amount of data. Figure 1b presents an orthogonal crossroad satellite map,
showing that all camera images had overlapping areas. Figure 2 shows each single-camera
scene taken with five cameras at position P. The specifications of images obtained in this
paper were as follows: (1) image resolution: 1920× 1080; (2) magnification of camera lens:
linear digital zoom × 2; (3) frame speed: 30 fps.
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2.2. Framework

The overall flow of the proposed method for extracting 3D vehicle trajectories from
the overlapping multi-camera scene is shown in Figure 3. First, we generate a dataset for
training DCNN models with images obtained in Section 2.1. Then, it detects and tracks
vehicles through 2D vehicle detection and multi-object tracking (MOT) algorithms. Second,
vehicle physical information (orientation, dimensions, and viewpoint) is inferred from
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the 2D detection results obtained by a multi-branch CNN model. Then, 3D bounding
boxes are estimated by combining the physical information and the camera calibration
parameters. Third, trajectories extracted from each single-camera scene with different
viewpoints are projected onto the orthogonal crossroad map, which is the 3D ground plane,
via calculation with a homography matrix. Finally, 3D vehicle trajectories are extracted
by matching vehicles between cameras in the overlapping area. Furthermore, they are
optimized through error corrections.
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2.2.1. 2D Vehicle Detection and Multi-Object Tracking

To extract vehicle trajectories, vehicle detection and tracking are essential. The 2D
detection result contains the center point, width, and height of the 2D bounding box in the
image coordinate system, as well as the type of vehicle (car, bus, etc.) and its probability.
Currently, with the development of DCNNs, faster and more accurate models have emerged
compared to classical object detection methods [21]. Object detection is classified according
to the approach: two-stage, e.g., RCNN series [22–24], and one-stage, e.g., single-shot multi-
box detector (SSD) [25] and ‘you only look once (YOLO)’ series [26,27]. Both methods have
their own strengths and weaknesses, and the two-stage method is divided into region
proposal and classification stages. This method is not suitable for real-time detection
because the detection speed is slow compared to the one-stage method while the accuracy
is great. The one-stage method combines both stages into one step. Although the real-time
detection performance is excellent, it is relatively inaccurate compared to the two-stage
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method. In particular, the previous YOLO series did not perform well in detecting small
objects and overlapping objects in images. However, recently, YOLOv4 [28] improved
both accuracy and detection speed by addressing these problems, and it is widely used in
real-time object detection. Therefore, we choose YOLOv4 for 2D vehicle detection in the
proposed method.

Trajectories are obtained by tracking the detected vehicle in successive frames. In
order to track multiple vehicles simultaneously, multi-object tracking (MOT) algorithm
must be applied. Typically, based on SORT (simple online and real time tracking) [12],
DeepSort (simple online and real-time tracking with a deep association metric) [13] is one
of the most used MOT algorithms, along with tracking using the Kalman filter and IOU
(intersection over union) tracker with the Hungarian algorithm [29]. The Kalman filter
corrects the error of the tracking result due to missing detection or occlusion, and the
IOU tracker connects the detection result of the current frame with the trajectory set of
the tracking target. However, as shown in Section 2.1, there is almost no vehicle/obstacle
occlusion because it is a high-rise traffic scene. Moreover, when many vehicles are tracked
simultaneously, the tracker proposed in [13] using the Kalman filter results in a large
amount of computation. Therefore, in order to reduce the computation, we implemented
the MOT algorithm using only the IOU tracker without the Kalman filter. IOU denotes the
ratio where the two bounding box areas overlap. It is the value obtained by dividing the
overlapping area by the union as shown in Equation (1).

IOU(Intersection over Union) =
area of overlap
area of union

. (1)

Using Equation (1), vehicle tracking can be processed by calculating the similarity
between detection results of the current frame and the set of trajectories of the tracking
target. However, MOT can be affected by several factors that can lead to abnormal tracking,
such as missing detection, occlusion, and data association problems. Figure 4 shows
an example of an MOT scenario in which these factors appear.
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time t + 1: 1 and 2 were tracked, 3 was deleted, and 4 is a new object).

As shown in Figure 4, the red boxes 1, 2, and 3 at time t are the objects currently being
tracked. Assuming that the blue boxes are new objects detected at time t, if IOU values
are greater than the user threshold (this value ranges from 0 to 1 and usually performs
best when the value is 0.5) between red boxes and blue boxes, the same IDs are assigned,
and locations are updated next frame. For example, 1 and 2 have updated locations
1′ and 2′ at time t + 1, which are positions of the blue boxes at time t. In case 3, box 3
is removed at t + 1 due to missing detection. A blue box that does not overlap any of
the objects at time t appears at t + 1 as a new object assigned ID 4. In this way, the IOU
tracker method calculates IOU values between the existing tracked objects and the newly
detected objects in successive frames and compares whether they are the same. Then, the
ID assignment can be calculated using the Hungarian algorithm. The set of n tracked
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objects is Tn = {t1, t2, . . . , tn}, n ∈ N, and the set of m detected objects in the current
frame image Dm = {d1, d2, . . . , dm}, m ∈ N; it is possible to solve the matching degree
between the tracking objects set Tn and the detected objects set Dm in the current frame
image with the minimum allocation problem. This is a method of finding matching pairs
between objects of two sets that are most similar. First, when m and n are given for sets
D and T, respectively, the matching matrix, Mm×n, is defined as in Equation (2). Here,
ioudm ,tn corresponds to the cost of the IOU value, which is calculated between the object dm
and the tracking object tn, detected in the current frame image.

Mm×n =


ioud1,t1 ioud1,t2 · · · ioud1,tn

ioud2,t1 ioud2,t2 ioud2,tn
...

. . .
...

ioudm ,t1 ioudm ,t2 · · · ioudm ,tn

, m, n ∈ {1, 2, . . . , N}. (2)

The data association is calculated using the Hungarian algorithm. To change to the
minimum assignment problem, the IOU values of Mm×n are multiplied by a negative number.

Adindex ,tindex
= L(−Mm×n), m, n ∈ {1, 2, . . . , N}. (3)

In Equation (3), the function L is a linear assignment function that returns a matrix
Adindex ,tindex

. Here, the Adindex ,tindex
represents the matching relationship between sets D and

T as an index matrix. The tracking between the current frame and the next frame can
be identified through the matching index pair. However, as shown in Figure 4, box 3
is a case where tracking failed due to missing detection, abnormal tracking, and occlu-
sion. These causes usually depend on the performance of the 2D detector. Finally, the
Hungarian algorithm-based IOU tracker can be expressed as an index set, as shown in
Equations (4)–(6). Here, Dmatched is the index set of detected objects included in Adindex

,
and Dunmatched_det represents the newly detected ones. The index set of matching objects,
Tunmatched_trk, is the index set that failed tracking in Tn.

Dmatched =
{

dindex
∣∣dindex ∈ Tn, dindex ∈ Adindex

}
, n, index ∈ {1, 2, . . . , N}. (4)

Dunmatched_det =
{

dindex
∣∣dindex ∈ Dm, dindex /∈ Adindex

}
, m, index ∈ {1, 2, . . . , N}. (5)

Tunmatched_trk =
{

tindex
∣∣tindex ∈ Tn, tindex /∈ Atindex

}
, n, index ∈ {1, 2, . . . , N}. (6)

Dunmatched_det is added to set Tn to be tracked with newly detected objects. Tunmatched_trk
is the set of objects that failed to be tracked due to various causes such as missing detection
and occlusion. Since it is important to maintain trajectories through continuous detection
in MOT, this problem should be solved by matching the detection result and tracking set,
which can be solved by increasing the performance of the 2D object detector or by data
association with tight frame intervals.

2.2.2. 3D Bounding Box Estimation Using Multi-Branch CNN

Even though the traffic data were collected from a high-rise, there is still the problem
of displacement of the center position of the vehicle due to the camera perspective. The
center point of the 2D detection window is different from the actual center of the vehicle,
as shown in Figure 5. This issue can be solved by 3D bounding box estimation. To obtain
a 3D bounding box, we need to recover the six DoF and dimensions of the vehicle in the
real world from the image. Only monocular image-based 3D object detection problems
lack a depth information. Usually, 3D properties of a vehicle can be obtained by methods
combined with a camera calibration under conditions of one VWL (known width and
length), a feature point such as road edge lines, and zero roll and pitch angles of the vehicle.
These methods are difficult to apply in complex traffic conditions or in road environments
where vehicle movement angles are sensitive, such as crossroads or heavy-traffic conditions.
Lingtao et al. [30] proposed a method for regressing orientation, dimensions, and viewpoint
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from the detection window crop of a vehicle using multi-branch CNN and estimating a 3D
bounding box through 2D–3D correspondence constraints in the monocular single camera
of the driver’s view. Because this method uses MultiBin estimation for orientation through
training, the pose of the vehicle can be obtained regardless of the road environment.
Therefore, in this paper, 3D bounding box estimation was performed using the method
outlined in [30].

Sensors 2021, 21, x FOR PEER REVIEW 7 of 20 
 

 

2.2.2. 3D Bounding Box Estimation Using Multi-Branch CNN 
Even though the traffic data were collected from a high-rise, there is still the problem 

of displacement of the center position of the vehicle due to the camera perspective. The 
center point of the 2D detection window is different from the actual center of the vehicle, 
as shown in Figure 5. This issue can be solved by 3D bounding box estimation. To obtain 
a 3D bounding box, we need to recover the six DoF and dimensions of the vehicle in the 
real world from the image. Only monocular image-based 3D object detection problems 
lack a depth information. Usually, 3D properties of a vehicle can be obtained by methods 
combined with a camera calibration under conditions of one VWL (known width and 
length), a feature point such as road edge lines, and zero roll and pitch angles of the vehi-
cle. These methods are difficult to apply in complex traffic conditions or in road environ-
ments where vehicle movement angles are sensitive, such as crossroads or heavy-traffic 
conditions. Lingtao et al. [30] proposed a method for regressing orientation, dimensions, 
and viewpoint from the detection window crop of a vehicle using multi-branch CNN and 
estimating a 3D bounding box through 2D–3D correspondence constraints in the monoc-
ular single camera of the driver’s view. Because this method uses MultiBin estimation for 
orientation through training, the pose of the vehicle can be obtained regardless of the road 
environment. Therefore, in this paper, 3D bounding box estimation was performed using 
the method outlined in [30]. 

 
Figure 5. The blue circle is the center of the 2D detection window, and the red circle is the center of 
the bottom face of the 3D box. 

Figure 6 shows the multi-branch CNN architecture. The multi-branch CNN receives 
the 2D detection window crop from YOLOv4 as an input by resizing it to 224 × 224. 
Then, features are extracted from the backbone network, and the orientation, dimensions, 
and viewpoint of the vehicle are regressed from four branches composed of fully con-
nected layers. Since the VGG 19 was the second-place winner from the 2014 ImageNet 
challenge and shows good performance, we chose it as the backbone network [31]. 

 

Figure 6. Architecture of the multi-branch network consisting of four branches. 

Figure 5. The blue circle is the center of the 2D detection window, and the red circle is the center of
the bottom face of the 3D box.

Figure 6 shows the multi-branch CNN architecture. The multi-branch CNN receives
the 2D detection window crop from YOLOv4 as an input by resizing it to 224× 224. Then,
features are extracted from the backbone network, and the orientation, dimensions, and
viewpoint of the vehicle are regressed from four branches composed of fully connected
layers. Since the VGG 19 was the second-place winner from the 2014 ImageNet challenge
and shows good performance, we chose it as the backbone network [31].
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The orientation of the vehicle has an angular range of 360 degrees in a crossroad,
and even vehicles with the same global orientation may look different depending on the
camera view point. Therefore, it is more effective to estimate the local orientation θlocal
from the crop, which is more dependent on the shape of the vehicle, than to directly
regress the global orientation. Then, The global orientation θ∗ we need can be calculated as
2π −

(
θlocal + θray

)
using the camera ray θray and the local orientation θlocal of the vehicle

in Figure 7. Orientation regression uses the MultiBin (classification of angle bins) method
to obtain better angle estimates by decomposing a residual regression between the ground-
truth angle and the central angle of the bin [30]. In this paper, four angle bins were used to
meticulously estimate the orientation of the vehicle. As shown in Figure 7, the orientation
angle is discretized into four overlapping bins to form MultiBin. Each angle bin has a range
of 2π/nbins, including the overlap. The angle bin confidence means the probability ci that
the prediction angle is contained in the i-th bin, and the angle bin confidence loss Lcon f is
trained with a softmax loss. When the prediction angle is the required residual rotation
correction ∆θi to the center of that angle bin, the difference from the ground-truth angle is
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the angle bias. Angle bias is divided into sine and cosine, and an L2 norm layer is added at
the end of the branch for angle bias regression. Angle bias loss Lang is defined as cosine
similarity, as expressed in Equation (7).

Lang = − 1
nbins

∑ cos(θ∗ − ci − ∆θi). (7)
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MultiBin loss for orientation estimation has two branches (i.e., angle bin confi-
dence and angle bias). As a result, the following parameters are estimated for each bin:
(ci, cos(∆θi), sin(∆θi)). The loss Ldim for dimensional regression of the vehicle is trained
using a simple L2 loss for width, length, and height. The viewpoint is the corresponding
configuration in which the 3D bounding box including the vehicle is projected to fit the 2D
detection window. Therefore, four out of eight vertices of the 3D box should be projected
onto the four edges of the 2D window.

For example, as shown in Figure 8, if Arabic numbers are assigned to eight vertices
of a vehicle’s 3D box, vertices 1, 7, 2, and 5 are projected to the left, right, upper, and
lower edges of the 2D detection window. This is one configuration in which a vehicle
can be placed in a 2D window. When the roll and pitch angles of the vehicle on the road
are considered as zero, it can be classified into 16 categories according to the observation
relationship between the camera and the vehicle. Hence, the viewpoint training of the
vehicle is possible through softmax regression. Figure 9 shows some examples in the
crossroad according to the observation viewpoint.

Finally, the total loss of the multi-branch CNN is calculated as the sum of the losses
of each branch, as shown in Equation (8), where w1, w2, w3, and w4 are the weights of
each loss.

Ltotal = w1Ldim + w2Lang + w3Lcon f + w4Lview. (8)
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After obtaining the 3D properties of the vehicle through the trained multi-branch
CNN model, the next task changes to the problem of determining the location of the 3D
box. If dimensions (width, length, height) D =

[
dx, dy, dz

]T of the vehicle are known, and
the center of the vehicle is the origin, the world coordinates of the vertices of the 3D box
(right in Figure 8) can be described as shown in Table 2.

Table 2. World coordinates of eight vertices when positioned at the vehicle’s origin.

Number World Coordinate

0 (dx/2, dy/2, dz/2)
1 (dx/2, dy/2, −dz/2)
2 (dx/2, −dy/2, dz/2)
3 (dx/2, −dy/2, −dz/2)
4 (−dx/2, dy/2, dz/2)
5 (−dx/2, dy/2, −dz/2)
6 (−dx/2, −dy/2, dz/2)
7 (−dx/2, −dy/2, −dz/2)

For example, in Figure 8, if the image coordinates of vertices 1, 7, 2, and 5 fitted to the
edges of the 2D window are [xmin, xmax, ymin, ymax], then vertex 1 of the 3D box projected
to the left edge becomes X0 =

[
dx/2, dy/2,−dz/2

]T . In this way, given orientation θ and
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camera intrinsic matrix K, the 2D–3D corresponding constraint for xmin can be formulated,
as shown in Equation (9).

xmin =

(
K3×3

[
Rθ

3×3

∣∣∣T3×1

]⌈ X0
3×1
1

⌉)
x
, (9)

where (.)x refers to the image coordinate x obtained from perspective projection, Rθ is the
rotation matrix parameterized by orientation θ, and T =

[
tx, ty, tz

]T denotes the transition
from camera to the center of the bottom face of the object’s 3D box. Similar equations
can be derived for the remaining 2D box side parameters xmax, ymin, ymax. Therefore, by
solving T using the four equations, the location of the 3D box can be obtained. This
problem can be solved as follows: since there are three unknowns and four equations,
it is an overdetermined problem. In order to easily solve this by programming, it can
be changed to Equation (10), where I is the identity matrix, and M is a large dummy of
parameters. The projection matrix becomes

xmin =

(
K3×3

[
I3×3 Rθ

3×3 × X0
3×1

0 1

]⌈
T3×1

1

⌉)
x
=

(
M3×4

[
T3×1

1

])
x
. (10)

In the case of an overdetermined system of linear equations, it is possible to ap-
proximate T with the least-squares error estimation equation. Therefore, Equation (10) is
expressed as Equation (11) by dividing matrix M into blocks to facilitate matrix calculation.

xmin =

 M[0,0:3] M[0,3]
M[1,0:3] M[1,3]
M[2,0:3] M[2,3]

[ T3×1
1

]
x

=

 M[0,0:3]T3×1 + M[0,3]
M[1,0:3]T3×1 + M[1,3]
M[2,0:3]T3×1 + M[2,3]


x

. (11)

If Equation (11) is arranged as a linear expression with respect to T, it can be expressed
as Equation (12). (

M[0,0:3] − xmin M[2,0:3]

)
T3×1 = M[2,3]xmin −M[0,3]. (12)

Since there are four equations, if the left term is rewritten as a 4× 3 matrix A and the
right term is written as a 4× 1 matrix b, it can be expressed as Equation (13).

A4×3T3×1 = b4×1. (13)

As a result, the linear equation in Equation (14) can obtain the transition T of the 3D
bounding box through least-squares fitting by performing the pseudo-inverse matrix of A.

T3×1 =
(

AT A
)−1

ATb. (14)

2.2.3. Trajectory Reconstruction and Overlapping Vehicle Matching

Although the actual center position of the vehicle is calculated by 3D bounding box
estimation in Section 2.2.2, it is not the same space because the reference point is different
for each camera. Therefore, in order to complete continuous 3D vehicle trajectory extraction
in an overlapping multi-camera scene with different viewpoints, trajectories extracted in 2D
images must be reconstructed into a whole space. As shown in Figure 10a, if the orthogonal
crossroad map is a ground plane, a certain transformation relationship is established
according to the corresponding points projected between the camera image plane and the
ground plane. A matrix representing the transformation relationship can be obtained using
the homography transformation. The homography transformation only works for planar
objects. Hence, we take advantage of the fact that the bottom face of the 3D bounding box
is directly above the road. Therefore, trajectories in Section 2.2.2 are calculated using the
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homography matrix without image transformation. This can now easily be projected onto
the ground plane.
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In general, homography is expressed as a 3× 3 matrix H, and at least four correspond-
ing pairs are required to determine it. That is, in Figure 10a, if points pi(xi, yi), i = 1, 2, 3, 4
on the image plane are projected as points p′i

(
x′i , y′i

)
, i = 1, 2, 3, 4 on the ground plane,

respectively, these corresponding points can be expressed as Equation (15).

s

 x′i
y′i
1

 = H3×3

 xi
yi
1

 i = 1, 2, 3, 4. (15)

Matrix H can be applied to any point on the image plane, which can be simply
obtained. In addition, the point projected on the ground plane can be converted into the
world coordinate system units through the scale factor s. As shown in Figure 10b, all
matrices H1, H2, H3, H4, H5 between the five camera images in Section 2.1 and the ground
plane can be obtained. Then, vehicle trajectories of each single-camera scene obtained in
Section 2.2.2 are projected onto the ground plane by calculating the homography matrix.
However, an overlapping area is generated in the center of the crossroad, and overlapping
vehicle matching is required to obtain a unique vehicle trajectory.



Sensors 2021, 21, 7879 12 of 19

For example, in Figure 10b, for any vehicle moving straight from camera 5 to camera 2,
two vehicle trajectories coexist in the same position in the overlapping area without
vehicle matching. This problem can be solved by detected time interval (i.e., age) and the
distance between center points of the vehicles. The detected time interval of the vehicle
is based on how much time has elapsed. For a vehicle vi in set V of all vehicles in the
overlapping area of the crossroad, if the distance between the center of the i-th vehicle
is less than the threshold (e.g., 0.5 or 1.0 m), then it is considered the same vehicle. The
vehicle ID depends on the older detected time interval, and the remaining IDs are removed.
Finally, continuous vehicle trajectory including physical information can be obtained on
the orthogonal crossroad map. The overlapping vehicle matching algorithm is described in
detail in Algorithm 1.

Algorithm 1. Overlapping vehicle matching on the ground plane

Input: V = {v1, v2, . . . , vn}, set of all trackers in overlapping area.
Input: d, minimum distance to determine if it is the same object.
Output: O, set of trackers remaining after removing duplicate ID in overlapping area.

//v is a custom class and contains ID, camera type, and age attributes.
//id is tracking index o f vehicle.
//camera type is the recording area (center, east, west, south, north).
//age is the number o f times detected.

if n > 0 then
for all vi ∈ V do

S← Set o f those less than the distance d between vi and Vexcept i
if S is null then continue
if camera type of vi = center then //Center is the intersection.
continue
else
ID of vi ← ID of max

age
(S)

for each s in S
ID of S← ID of vi

O← removeDuplicateID(V, key = ID) //Remove trackers with duplicate ID

2.2.4. Vehicle Trajectory Correction

In order to obtain a high-accuracy 3D vehicle trajectory, the performance of DCNN-
based models is very important. However, it can lead to inaccurate results due to various
reasons such as overfitting, underfitting, incorrect labeling, lack of training data, and
vehicle/obstacle occlusion. As shown in Figure 11, inaccurate results such as vehicle
position, orientation and dimensions have a significant impact on trajectory extraction. The
accumulated errors due to these can result in 3D vehicle trajectories with outliers and noise.
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We use sampling-based linear interpolation and regression methods to remove outliers
and noise from vehicle trajectories extracted by the proposed method. Since any excessive
corrections can make the error of the original trajectory data larger, we apply the correction
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considering the dynamics of the moving object at every interval. In particular, in high-
traffic data, the movement of vehicles is slow and stable compared to highways. For
example, it is extremely difficult to change the orientation angle of a vehicle by more than
30 degrees or to move more than 10 m within 0.1 s on a crossroad. Taking these general
characteristics into consideration, a simple vehicle trajectory correction is possible. The
trajectory correction method is described in Algorithm 2. The proposed algorithm first
calculates the displacement and angular displacement between times t− 1 and t, and, if
the threshold α and β are exceeded, it is regarded as an outlier. Then, the values at time t
are predicted through previous linear and angular velocities. After that, linear regression
equations are obtained using data from both endpoints for each sampling interval γ of the
trajectory. Afterward, the noise and vibration are minimized by regressing trajectory data
through these linear equations.

Algorithm 2. Trajectory correction using linear regression and interpolation

Input: T = {t1, t2, . . . , tn}, set of all trajectories of vehicles included position, orientation.
Input: σ, orientation threshold at which the vehicle can turn for time ∆t.
Input: β, position threshold at which the vehicle can move for time ∆t.
Input: γ, interval frames to interpolate.
for all ti ∈ T do
X ← Position_X(ti)//Set of position trajectories x of ti

Y ← Position_Y(ti)//Set of position trajectories y of ti
O← Orientation(ti)//Set of orientation trajectories of ti
for all xi ∈ X, yi ∈ Y, oi ∈ O do//Remove outliers
di f f erence_o ← |oi − oi−1|
di f f erence_d← Distance(|xi − xi−1|, |yi − yi−1|)

if di f f erence_o > σ then
angular_vel ← (oi−1 − oi−k)/time i− k to i− 1

oi ← oi−1 + angular_vel ∗ ∆t
if di f f erence_d > β then

x_vel ← (xi−1 − xi−k)/time i− k to i− 1
y_vel ← (yi−1 − yi−k)/time i− k to i− 1

xi ← xi−1 + x_vel ∗ ∆t
yi ← yi−1 + y_vel ∗ ∆t

for interval γ xi ∈ X, yi ∈ Y, oi ∈ O do//Interpolation through Linear Regression
Calculate the linear equation for x, y, o on the interval i to i + γ

for i to i + γ about x, y, o
oi:i+γ ← Time−Orientation Equation

(
timei:i+γ

)
xi:i+γ ← X−Y Equation

(
yi:i+γ

)
depends on the orientation or Y–X

i← i + γ

3. Experiments and Results

We used AMD (Santa Clara, CA, USA) Ryzen 5 3600 6-Core Processor, NVIDIA
(Santa Clara, CA, USA) GeForce RTX 2080Ti, 32 GB RAM, and Window 10 operating
system for our experiments. Experiments first generated a dataset to train the two neural
networks (YOLOv4, multi-branch CNN) mentioned in Sections 2.2.1 and 2.2.2 on the basis
of high-traffic data collected in Section 2.1. Then, 3D vehicle trajectories were extracted on
the ground plane (an orthogonal crossroad map) according to the proposed method using
the trained network models. The performance of the proposed method was evaluated by
calculating the difference between extracted 3D vehicle trajectory results and ground-truth
data. Additionally, DCNN-based trained models have a significant impact on vehicle
detection and tracking. Thus, vehicle trajectories inevitably contain errors. We tried to
minimize the outliers and noise of extracted trajectories using the algorithm proposed in
Section 2.2.4 for generated errors. Then, the results before and after the error correction
were evaluated. Finally, the effectiveness of the proposed method was verified through
result analysis. This section can be divided into two aspects: (1) generation and training of
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custom dataset to train neural network models necessary for 3D bounding box estimation;
(2) 3D vehicle trajectory extraction and result analysis.

3.1. Dataset Labeling and Training Results

In this proposed method, since there is no public dataset, we generated our labeled
data necessary for training. We developed our customized 3D labeling tool and generated
a training dataset. To train the multi-branch CNN, actual measurement information
(dimensions, orientation, etc.) of vehicles included in an autonomous driving open-source
dataset such as KITTI [32] and BrnoCompSpeed [33] was required. Since it is very difficult
to collect a large amount of measured data through sensors, the physical information of
vehicles was approximated using the camera intrinsic parameters in the 3D labeling tool,
and these were used as ground-truth data. Labeled data included information such as type,
coordinates of 2D bounding box, orientation, and actual dimensions (width, length, height)
of vehicle. A total of 33,036 data (bike: 3775, car: 23,479, bus: 1772, truck: 3524, Remicon:
486) were generated for the five camera images used in this paper.

YOLOv4 was trained using the open-source framework Darknet. The multi-branch
CNN was trained in the deep learning framework Pytorch environment, and the weighting
factors in Equation (8) were set as w1:4 = [4, 8, 10, 8]. Figure 12 shows examples of 2D–3D
detection and tracking through these models trained in this paper for five single-camera
scenes. It can be seen that the 3D bounding boxes were well estimated for vehicles whose
orientation angles were sensitively changed regardless of camera viewpoints.
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3.2. 3D Vehicle Trajectory Extraction and Result Analysis

Figures 13 and 14 show examples of extracted vehicle trajectories from four cases
according to the proposed method: (1) straight (left and right); (2) straight (up and down);
(3) left turn and U turn; (4) right turn.
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Figure 14. Examples of vehicle trajectories: left turn and U turn (left); right turn (right).

As shown in Figures 13 and 14, the color of the vehicle (bike: green, car: blue, bus:
yellow, truck: red, concrete mixer: purple) is displayed differently depending on the type.
According to the proposed method, trajectories plotted on the orthogonal crossroad map
show the path and orientation similar to the movement of real vehicles in camera images.
However, when some trajectories were enlarged along the axis, it can be seen that they
were not smooth and contained noise and outliers due to cases shown in Figure 11 and
inaccurate inference of detectors. Therefore, we corrected errors of the extracted trajectory
(time, orientation, and position x–y) using the algorithm proposed in Section 2.2.4. We
selected several examples for different types of driving and corrected the trajectories
according to sampling intervals of five, 15, and 30 frames. Then, we compared them on the
graph with original trajectories in Figure 15.

Finally, for quantitative evaluation of this proposed method, we calculated the differ-
ence between 5612 ground-truth data and the derived samples. The accuracy of dimensions
(width, length, height) was very high at 97.2%, 96.1%, and 96.4% using the multi-branch
CNN. In high-traffic data, the dimensions showed slight differences for each type of vehicle,
which were very robust. Therefore, we evaluated the orientation and position of 3D vehicle
trajectories. Orientation was calculated as the average orientation similarity (AOS) [32],
and position was calculated for the x-axis and y-axis as the root-mean-square error (RMSE),
defined in Equations (16) and (17).

AOS =
1
N ∑

i ∈ N

1 + cos
∣∣∣θ(i)predicted − θ

(i)
ground−truth

∣∣∣
2

× 100%, i = 1, 2, . . . , n. (16)

RMSE =
1
N ∑

i ∈ N
‖p(i)predicted − p(i)ground−truth‖2, i = 1, 2, . . . , n. (17)

As shown in Table 3, even though the origin had the lowest accuracy (79.6%), the
remaining data, such as the accuracy of vehicle position (x and y), reached the centime-
ter level. In addition, trajectory results corrected according to intervals of five, 15, and
30 frames were very close to ground-truth data. In particular, it is shown that trajectory re-
sults with error correction applied every 15 frames (0.5 s) manifested excellent performance.
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Furthermore, the accuracy of orientation and position was greatly improved compared
to the origin. Therefore, the method proposed in this paper can effectively extract 3D
vehicle trajectories of vehicles, and its accuracy is further improved through the error
correction technique.
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Table 3. Quantitative difference between ground-truth data and 3D vehicle trajectory extracted using
proposed method.

Our Method AOS RMSE (x) RMSE (y)

Origin 79.6% (±54◦) 29.1 cm 26.5 cm
Interval = 5 frames 99.2% (±10◦) 19.5 cm 23.1 cm
Interval = 15 frames 99.8% (±5◦) 12.9 cm 15.2 cm
Interval = 30 frames 98.5% (±12◦) 26.7 cm 30.5 cm

4. Conclusions

In this paper, we proposed a method to extract 3D vehicle trajectories using deep
convolutional neural networks (DCNNs) in an overlapping multi-camera crossroad scene.
The main contributions of this paper are summarized as follows:

• A method for estimating 3D bounding boxes of vehicles through YOLOv4, MOT, and
multi-branch CNN is proposed on the basis of camera calibration and correspondence
constraints.

• A method of processing trajectory reconstruction and vehicle matching to obtain
a continuous 3D vehicle trajectory in a multi-camera crossroad scene is proposed.

Compared to existing 3D vehicle trajectory extraction methods, continuous 3D trajec-
tories can be obtained including the vehicle’s physical information, which is helpful for
applications in large-scale road scenes. In particular, the proposed method is robust to
vehicle occlusion and narrow visual angles. It is also superior to the existing methods in
that it is possible to extract 3D vehicle trajectories regardless of the road environment. In
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the future, it is necessary to develop 2D–3D detectors as a single end-to-end neural network.
By doing so, the computation time will be drastically reduced, and real-time processing
will become possible. This can be utilized in the V2I (vehicle-to-infrastructure) field. In
addition, it should be possible to accurately extract vehicle trajectories not only during
the day, but also in various climatic environments such as at night or in rainy weather.
Such research is obviously difficult, but it will be of great help to the improvement of
autonomous driving technology in the future.
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