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ABSTRACT. Diarrhea in cattle is one of the most economically costly disorders, decreasing milk production and weight gain. In the present 
study, we established a novel simultaneous detection system using TaqMan real-time PCR designed as a system for detection of microbes 
from bovine diarrhea using real-time PCR (referred to as Dembo-PCR). Dembo-PCR simultaneously detects a total of 19 diarrhea-causing 
pathogens, including viruses, bacteria and protozoa. Specific primer–probe sets were newly designed for 7 pathogens and were synthesized 
on the basis of previous reports for 12 pathogens. Assays were optimized to react under the same reaction conditions. The PCR efficiency 
and correlation coefficient (R2) of standard curves for each assay were more than 80% and 0.9766, respectively. Furthermore, the sensitivity 
of Dembo-PCR in fecal sample analysis was measured with feces spiked with target pathogens or synthesized DNA that included specific 
nucleotide target regions. The resulting limits of detection (LOD) for virus-spiked samples, bacteria and DNA fragments were 0.16–1.6 
TCID50 (PFU/reaction), 1.3–13 CFU/reaction and 10–100 copies/reaction, respectively. All reactions showed high sensitivity in pathogen 
detection. A total of 8 fecal samples, collected from 6 diarrheic cattle, 1 diarrheic calf and 1 healthy cow, were tested using Dembo-PCR to 
validate the assay’s clinical performance. The results revealed that bovine coronavirus had infected all diarrheic adult cattle and that bovine 
torovirus had infected the diarrheic calf. These results suggest that Dembo-PCR may be a powerful tool for diagnosing infectious agents in 
cattle diarrhea.
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Diarrhea in cattle is a disorder that causes economic loss 
by decreasing fertility and productivity, including milk pro-
duction and weight gain [11, 20]. In particular, young calves 
are strongly affected by diarrhea and may die from malnutri-
tion and dehydration depending on the situations [25]. The 
United States Department of Agriculture (USDA) reported 
that 57% of deaths of weaning calves in the US were because 
of diarrhea (http:// nahms.aphis.usda.gov/dairy/index.htm). 
Although the cattle industry has taken measures to prevent 
diarrhea, such as improvements in hygiene and feeding man-
agement, it still occurs throughout the world [5].

One central problem is the fact that the factors that con-

tribute to this disorder are complicated, with diarrhea attrib-
uted to both infectious and noninfectious factors. Infectious 
pathogens are particularly well-known causative agents and 
include viruses, bacteria and protozoa. Common infectious 
agents that cause diarrhea in cattle are group A rotavirus 
(RVA), bovine coronavirus (BCoV), bovine vial diarrhea 
virus (BVDV), Salmonella sp. and Mycobacterium avium 
subsp. paratuberculosis (MAP) [1, 4]. Recently, bovine 
enterovirus (BEV), mammalian orthoreovirus (MRV), group 
B rotavirus (RVB), group C rotavirus (RVC) and bovine 
torovirus (BToV) have been reported as potential pathogens 
causing diarrhea [2, 3, 12, 14, 19, 30]. In addition, Cho et 
al. reported that more than 50% of the diarrheic calves they 
tested were concurrently infected with more than one patho-
gen [5]. Besides infectious diarrhea, noninfectious agents 
also induce diarrhea due to inadequate uptake of colostrum, 
unhygienic breeding, inappropriate feeding and numerous 
other factors [6, 25]. Since several factors concurrently con-
tribute to disease development, it is difficult to identify the 
specific causative agents for any specific case of diarrhea.

Serodiagnosis, PCR and pathogen isolation are currently 
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used to screen infectious diarrhea. However, these assays are 
restricted in terms of the detectible number of agents, be-
cause they are designed as specific assays that usually detect 
single target pathogens. For rapid diagnosis, a broad-range 
detection assay is required. Toward this end, multiplex real-
time PCR using a hydrolysis probe has been mainly used to 
concurrently detect pathogens, because of the method’s high 
sensitivity, simple procedure and reduced instrumentation 
requirements compared with other methods of inspection. 
Several studies have described this method using probes 
with different fluorescent dyes applied in a single tube 
[7, 10, 15]. However, these methods can only detect at most 
5 target pathogens under the same thermal cycling condi-
tions. In terms of comprehensiveness and rapidity, multiplex 
real-time PCR is not sufficient for differential diagnosis of 
diarrhea in cattle, because numerous factors may contribute 
to this disease, including both noninfectious and infectious 
agents.

To address this issue, we developed a novel detection 
system that can simultaneously identify 19 of the known 
diarrhea-causing pathogens in cattle, including viruses, bac-
teria and protozoa, in a single reaction. Using this system, 
clinical samples from cattle with diarrhea were evaluated to 
identify the specific agents causing an individual animal’s 
diarrhea.

MATERIALS AND METHODS

Primer and probe design: A total of 19 pathogens were 
selected as targets based on their virulence and prevalence 
on cattle. New primer-probe sets were designed for RVA, 
RVB, RVC, BToV, MRV, Eimeria zuernii and Eimeria bovis 
using the PrimerQuest software (Integrated DNA Technolo-
gies, Inc., Coralville, IA, U.S.A.) on the basis of consensus 
sequences of each pathogen obtained from the GenBank 
database. Primer and probe information and their target 
pathogens are summarized in Table 1. Previously reported 
qPCR assays were used for 12 pathogen species, including 
RNA, DNA viruses and bacteria [7, 8, 10, 13, 15–17, 22, 
23, 28, 29]. Furthermore, as an internal control within the 
Dembo-PCR reaction, primer-probe sets for β-actin were 
synthesized as previously reported [28]. All hydrolysis 
probes were labeled with the reporter dye FAM (6-carboxy-
fluorecein) at the 5′ end and the fluorescent dye TAMRA 
(6-carboxytetramethylrhodamine) at the 3′ end. Primers and 
probes were purchased from Sigma-Aldrich (Sigma Aldrich, 
St. Louis, MO, U.S.A.), and probes containing a mixed base 
were produced at Integrated DNA Technologies (Integrated 
DNA Technologies, Inc.).

Dembo-PCR workflow: Figure 1 depicts the Dembo-PCR 
workflow. After pathogen RNA and DNA were extracted, the 
sample, reagents, and each primer and probe were mixed in 
individual reaction tubes. Samples were applied at 2 µl per 
tube. Cycling conditions, reagents and nucleic acid extrac-
tion procedures are described below. To verify the absence 
of nucleic acid loss during the extraction step, the extraction 
liquids used in the QIAGEN and Roche kits were analyzed 
as samples using β-actin primer-probe sets. Furthermore, 

PCR products were used as β-actin positive controls, which 
were created from Mardin-Darby bovine kidney (MDBK) 
cells using conventional PCR primers (data not shown). 
Nuclease-free water was applied as a negative control 
sample, again using β-actin primer-probe sets. To prepare 
each sample for assay, 10% fecal suspensions were made in 
PBS (−). Then, 200 µl of a suspension was used directly for 
the extraction of bacteria and protozoa nucleic acids with 
a QIAamp Fast DNA Stool Mini Kit (QIAGEN, Hilden, 
Germany). For virus detection, 200 µl of a suspension was 
centrifuged for 15 min at 10,000 rpm, and viral DNA and 
RNA were extracted from the supernatant of the 200 µl of 
suspension with a High Pure Viral Nucleic Acid Kit (Roche 
Diagnostics GmbH, Mannheim, Germany). Both nucleic 
acid extraction procedures were conducted according to the 
manufacturer’s protocol. A LightCycler Nano (Roche Diag-
nostics GmbH) was used for all qPCR reactions performed 
in this study. A one step PrimeScript RT-PCR Kit (Perfect 
Real time) (TaKaRa Bio, Otsu, Japan) was used for ampli-
fication of extracts from RNA viruses, and Premix Ex Taq 
(Perfect Real time) (TaKaRa Bio) was used for amplification 
of extracts from DNA viruses, bacteria and protozoa. All 
reactions were performed in a total volume of 20 µl, which 
contained the sample nucleic acid, primers, probes (the final 
concentration of all primers and probes was 0.2 µM) and 
all other components included in the kits, according to the 
manufacturers’ protocols. Thermal cycling conditions were 
as follows: 45°C for 5 min and 95°C for 30 sec, followed by 
40 cycles of 95°C for 10 sec, 55°C for 20 sec and 72°C for 
20 sec. Fluorescence data were analyzed automatically using 

Fig. 1. Dembo-PCR workflow. To prepare each sample for assay, 
10% fecal suspensions were made in PBS (−). The suspensions 
were then used directly for the extraction of bacteria and protozoa 
nucleic acids with a QIAamp Fast DNA Stool Mini Kit. For virus 
detection, the suspensions were centrifuged for 15 min at 10,000 
rpm, and viral DNA and RNA were extracted from the supernatants 
with a High Pure Viral Nucleic Acid Kit. After pathogen RNA and 
DNA were extracted, samples, reagents and each primer and probe 
were mixed in individual reaction tubes. Samples were applied at 
2 µl per tube. A LightCycler Nano was used for all qPCR reac-
tions performed in this study. A one step PrimeScript RT-PCR Kit 
(Perfect Real time) was used for amplification of extracts from 
RNA viruses, and Premix Ex Taq (Perfect Real time) was used for 
amplification of extracts from DNA viruses, bacteria and protozoa.
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LightCycler Nano Software 1.1 (Roche Diagnostics GmbH). 
The software excluded early cycle data up to 16, and the 
number of minimum relative amplifications was permuted 
at zero.

Evaluation of real-time PCR performance using synthe-
sized DNA: For the purpose of validation, real-time PCR 
reliability, sensitivity and linearity of standard curves were 
verified by testing tenfold serial dilutions of synthesized 
DNA, including each target genome sequence (1 × 10°–1 
× 106 or 5 × 10°–5 × 106 copies/reaction). The synthesized 
DNA was purchased from Integrated DNA Technologies 
(Integrated DNA Technologies, Inc.). Pathogen dilutions 
were repeated twice in separate runs, and a standard curve 
was constructed from the Cq values. The PCR efficiency (E) 
was calculated using the standard curve slope according to 
the following formula: E=(10-1/slope(−1)). The correlation co-
efficient (R2) was also calculated.

Sensitivity test on fecal samples: The fecal samples in-
cluded some PCR inhibitors, such as sugars and bile acid 

[9, 21]. To evaluate the PCR sensitivity of this assay in fecal 
specimens, each pathogen was spiked into feces collected 
from healthy cattle and subsequently subjected to real-time 
PCR after DNA and RNA extraction. Feces collected from 
healthy cattle were used for a spike test. Bacteria (1.0 × 105 
CFU/ml) were prepared by mixing with a fecal suspension, 
and viruses (1.0 × 105 TCID50 or PFU/ml) were prepared by 
mixing with the supernatant after centrifugation of a fecal 
suspension. Tenfold serial dilutions of fecal suspension and 
supernatant spiked with viruses or bacteria, respectively, 
were made in PBS (−) within a range of 1.0 × 101 to 105 
CFU, TCID50 or PFU/ml. Pathogens were subjected to DNA 
and RNA extraction using a total elution volume of 25 µl 
with the High Pure Viral Nucleic Acid Kit and 20 µl with the 
QIAamp fast DNA Stool Mini Kit. Extracted DNA and RNA 
were analyzed by Dembo-PCR. The amounts of viruses and 
bacteria were 1.6 × 10−1 to 103 TCID50 (PFU)/reaction and 
1.3 × 10−1 to 103 CFU/reaction, respectively.

MRV, BCoV, RVA, RVB, RVC, Salmonella Typhimurium 

Table 2. Results of sensitivity testing in feces

Type of spiked materials Pathogens LOD (/reaction) Reproducibility CV (%)
Virus Bovine viral diarrheal virus 1.6 1.6
(TCID50 or PFU) Bovine enterovirus 1.6 0.5

Bovine torovirus 1.6 0.6
Bovine adenovirus 1.6 3.0
Bovine herpes virus-1 1.6 1.1

Bacteria Salmonella Dublin 13 1.7
(CFU) Salmonella Enteritidis 1.3 2.8

MAP 1.3 1.3
Clostridium perfringens 13 1.1
Enterotoxigenic Escherichia coli 1.3 0.1

DNA Mammalian orthoreovirus 100 1.5
(copy number) *Bovine leukemia virus 10.8 0.8

Salmonella Typhimurium 100 3.1
Eimeria zuernii 100 5.2
Eimeria bovis 100 0.2
Bovine coronavirus 100 1.2
Group A rotavirus 100 0.1
Group B rotavirus 10 2.2
Group C rotavirus 100 6.4

LOD: Limit of detection. CV: Coefficient value. MAP: Mycobacterium avium Spp. Paratuberculosis.  
*For bovine leukemia virus, the provirus was spiked into the feces.

Table 3. Information about the clinical samples analyzed in this study

Sample No. Breed Age (years) Sex Symptom Sampling date Detected pathogens*
No.1 Holstein 4.3 Female Severe diarrhea, anorexia January, 2014 BCV
No.2 Holstein 2.3 Female Severe diarrhea, anorexia January, 2014 BCV
No.3 Holstein 7.0 Female Severe diarrhea, anorexia January, 2014 BCV
No.4 Holstein 3.5 Female Mild diarrhea January, 2014 BCV
No.5 Holstein 4.9 Female Severe diarrhea, anorexia January, 2014 BCV, BEV
No.6 Holstein 3.7 Female Severe diarrhea, anorexia January, 2014 BCV
No.7 Holstein 6.0 Female Healthy January, 2014 BEV
No.8 Holstein 0.1 Female Severe diarrhea, weakeness March, 2014 BToV

BCV: bovine coronavirus. BEV: bovine enterovirus; BToV: bovine torovirus. *The reults were analyzed by Dembo-PCR 
and gel-based PCR for each pathogen.
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and 2 species of protozoa could not be analyzed in regard 
to the sensitivity of fecal samples by Dembo-PCR, because 
pathogens or infectious materials were not available. In 
the case of bovine leukemia virus (BLV), provirus DNA 
extracted from BLV-infected lymphocytes was used in this 
study. To analyze the sensitivity of each primer and probe 
for these pathogens in fecal samples, synthesized DNA or 
BLV proviral DNA was spiked into nucleic acid solutions 
extracted from healthy feces. The final concentrations of 
synthesized DNA and BLV proviral DNA were 1.0 × 10° to 
106 and 1.08 × 10° to 103 copies/reaction, respectively. The 
concentration of BLV proviral DNA was equivalent to the 
Tax gene copy number calculated using a commercial kit for 
quantification of the BLV Tax gene (TaKaRa Bio).

The limit of detection (LOD) was defined as the lowest 
concentration at which a fluorescent signal could be detected 
in all reactions. Reproducibility (inter-assay variance) was 
assessed using the coefficient value (CV) calculated on the 
basis of Cq values.

Clinical samples: In January 2014, an outbreak of diar-
rhea occurred on a dairy farm in Japan. Six adult cattle were 
affected by diarrhea and weak. To identify the cause of diar-
rhea, 6 diarrheal fecal samples and 1 healthy fecal sample, 
which was collected from a healthy cow at the same farm, 
were analyzed by Dembo-PCR. In addition, 1 calf was af-
fected by diarrhea at the same farm in March 2014. A fecal 
sample was collected from this calf and was also analyzed.

RESULTS

LOD and linearity of standard curves using synthesized 
DNA: Standard curves were constructed using mean Cq 
values from duplicate 10-fold serial dilutions of synthe-
sized DNA that included the target region of amplification 
(Fig. S1). Although the PCR efficiency for Salmonella 
Enteritidis and Eimeria bovis was slightly low (81.6% and 
84.0%, respectively), the PCR efficiency in all detection as-
says was more than 80%, which was sufficient to quantify 
the target copy number. Furthermore, each assay had a wide 
dynamic range of at least 5 orders of magnitude.

Sensitivity and accuracy of Dembo-PCR: Table 2 shows 
the results for LOD numbers and CVs of run-to-run variants. 
A total of 6 bacteria and 5 viruses were used for optimiza-
tion and validation of Dembo-PCR. Isolated strains of Sal-
monella Dublin, Salmonella Enteritidis, MAP, Clostridium 
perfringens and Enterotoxigenic Escherichia coli (ETEC) 
were obtained from the National Veterinary Assay Labora-
tory in Japan. BVDV, bovine herpes virus 1 (BoHV-1) and 
BToV, which were isolated from field samples, were also 
used. The test had high sensitivity and steady reproduc-
ibility in the spike test, with an LOD of at least 1.6 TCID50 
or PFU/reaction for viruses spiked into feces. The LOD of 
bacteria was at least 13 CFU/reaction. For the BLV provirus, 
the LOD was equivalent to 10.8 copies/reaction of the Tax 
gene. The assay using synthesized DNA as a template had an 
LOD of 10–100 copies/reaction. The coefficient value was 
0.1–6.5%.

Clinical performance: Table 3 shows the information of 

clinical samples and the results of the Dembo-PCR assay. 
BCoV was detected in 6 diarrheal fecal samples. In addition, 
BEV was detected in clinically healthy cattle and in sample 
No. 5. BToV was detected only in the calf feces. To confirm 
these results, gel-based PCR assays were conducted on all 
samples for each pathogen according to previous reports 
[13, 24, 27]. The gel-based PCR products were subsequently 
subjected to direct sequencing to compare them with the cor-
responding NCBI database nucleotide sequences. Gel-based 
PCR results for BEV, BCoV and BToV were in agreement 
with the Dembo-PCR results.

DISCUSSION

In this study, a new system for simultaneous detection 
of cattle diarrhea-associated pathogens was developed. 
This novel system was designated as a detection system 
for microbes from bovine diarrhea by real-time PCR (re-
ferred to as Dembo-PCR). Dembo-PCR can detect a total 
of 19 pathogens in a single run, including 9 RNA viruses 
(BLV is targeted as a provirus), 2 DNA viruses, 6 bacteria 
and 2 protozoa, within 3 hr.

In 2014, an outbreak of severe diarrhea occurred on a 
farm in Japan in the winter, and decrease in milk production 
was observed in the affected cattle. BCoV is a pathogen that 
causes “winter dysentery” and is one of the major infectious 
agents that causes epidemic outbreaks in adult cattle [26]. 
Cattle infected with this virus occasionally present with se-
vere diarrhea and reduced milk production with weakening 
during the winter. In a previous report, BCoV was detected in 
more than 57.8% of adult cattle suffering from diarrhea [18]. 
Our results showed that BCoV was detected in all diarrheal 
samples collected in January. Judging from the results, gel-
based PCR and the clinical findings, the epidemic outbreak 
of diarrhea in January 2014 was caused by BCoV. In addi-
tion, diarrhea occurred after introducing one cow (No. 6). 
Therefore, the outbreak is thought to have been caused by 
cow No. 6.

On the other hand, both BCoV and BEV were detected 
in samples from cow No. 5 and healthy cow (No. 7). Some 
studies have claimed that BEV infection may cause diarrhea 
in cattle [2, 30]. Conversely, other studies have shown that 
BEV infection is noncritical in cattle because of its high 
prevalence in healthy cattle [1, 5]. The latter opinion agrees 
with our results showing that the healthy cow sample was 
positive for BEV. Therefore, there is a low possibility that 
BEV caused diarrhea in the cow. However, the pathogenesis 
of this virus remains to be clarified. Additional evaluation of 
BEV pathogenicity should be conducted.

One calf (No. 8) was affected by diarrhea at 2 months 
after the first incidence of diarrhea, although the outbreak 
of diarrhea in adult cattle had been stamped out. The results 
showed that only BToV was detected in this calf. Previous 
studies showed that BToV produces mild-to-moderate diar-
rhea in calves under both experimental and field conditions 
[12, 24]. The results obtained from Dembo-PCR suggested 
that diarrhea in the calf in this study was caused by BToV. 
However, diarrhea can also be caused by noninfectious 
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agents, such as environmental factors and the condition of 
cattle immunity [6]. Moreover, BToV can be detected oc-
casionally in healthy cattle. The association of BToV with 
diarrhea in this case was not obvious. A further study of how 
BToV causes diarrhea in cattle should be conducted.

In this study, we describe the development and valida-
tion of a novel tool for differential diagnosis of infectious 
diarrhea in cattle. Dembo-PCR has the advantage of being 
able to detect known and unknown diarrheal pathogens. This 
system will be a powerful tool for rapidly diagnosing the 
causes of this nuisance disease.
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