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Abstract

Root lifespan, often is estimated in landscape- and ecosystem-level carbon models using

linear approximations. In water manipulation experiments, fine root lifespan can vary with

soil water content. Soil water content is generally structured by complex topography, which

is largely unaccounted for in landscape- and ecosystem-scale carbon models. Topography

governs the range of soil water content experienced by roots which may impact their life-

span. We hypothesized that root lifespan varied nonlinearly across a temperate, mesic, for-

ested catchment due to differences in soil water content associated with topographic

position. We expected regions of the landscape that were too wet or too dry would have

soils that were not optimal for roots and thus result in shorter root lifespans. Specifically, we

hypothesized that root lifespan would be longest in areas that consistently had soil water

content in the middle of the soil water content spectrum, while in soils at either very low or

very high soil water content, root lifespan would be relatively short. We tested this hypothe-

sis by collecting and analyzing two years of minirhizotron and soil moisture data in plots

widely distributed in the Shale Hills catchment of the Susquehanna-Shale Hills Critical Zone

Observatory in Pennsylvania. We found that fine root lifespans were longer in traditionally

wetter topographic regions, but detected no short term (biweekly) effect of soil moisture on

root lifespan. Additionally, depth in soil, soil series, slope face orientation, and season of

birth strongly affected root lifespans across the catchment. In contrast, lifespan was unaf-

fected by root diameter or mycorrhizal association. Failure to account for these variables

could result in erroneous estimates of fine root lifespan and, consequentially, carbon flux in

temperate forested regions.

Introduction

Fine roots play a large role in the carbon (C) cycling of terrestrial ecosystems. For example,

fine roots have been estimated to be ~22% of the global average, annual net primary productiv-

ity [1]. However, there is a large knowledge gap as to how abiotic conditions impact the

amount of C flux that fine roots contribute to the C cycling process. An important first step to
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elucidating the role of fine roots in the C cycle is to have better estimates of fine root longevity

and to identify key drivers affecting root lifespan in temperate forests.

One way fine roots can influence terrestrial C cycling is by their respiration which is tied to

the age of the root. Root respiration, depending upon estimates, differing methods, model sys-

tem or the tree species measured, contributes 14%-77% of total soil C efflux [2–12]. Total soil

C efflux makes up around 60–88% of total terrestrial forest ecosystem respiration [13–16].

Fine root lifespan governs the length of time that fine roots respire in the soil and the rate of

root respiration. Simply put, a root must respire to live, so the longer a root is alive, the more

carbon dioxide it will respire into the soil. Root age also strongly influences root respiration.

Younger roots tend to respire at a rate much faster than older roots [17]. In areas with high

root production, high turnover, and therefore short root lifespan, the root population may

exhibit higher soil carbon efflux because the general population of roots would tend to be

younger.

Soil water is one abiotic factor that is hypothesized to strongly influence both root produc-

tion and root lifespan. Precipitation is expected to become much more variable with climate

change [18], causing an increased need to better understand how plants respond belowground

to changes in soil water. In addition, hillslope topography can accentuate shifts in rainfall

because of differences in hillslope length and steepness, curvature, and aspect. Thus, complex

topography within landscapes spatially structures soil moisture through time [19–21]. Hill-

slopes and upper slope areas with relatively limited soil depth typically have drier soils [20,21].

Valley floor regions and some concave mid-slope (swale) areas usually have deeper soils and

are generally wetter through time [20–22]. Additionally, slope in combination with soil type

impacts soil moisture content so that flatter areas will tend to be wetter than steeper areas that

share the same soil type classification [23]. Soil series itself impacts soil moisture as some soil

series tend to remain wetter longer than other soil series even when these soils are separated by

a relatively small distance [20]. Yet there are no studies to our knowledge that have examined

how spatially structured, long-term differences in soil water content in complex topography

impact fine root lifespans.

Long-term effects of soil moisture on fine root lifespan are poorly understood. Short-term

soil moisture variability, on the other hand, has non-linear impacts on fine root lifespan. Fine

roots often die faster in areas with excessively high soil water content or “waterlogged” soils

[24,25] and in areas with very low soil water content (soil water content ranged from 31–44%

in Glenz et al. and soil available water from 1–17% V/V in Huang et al.) [26,27]. Additionally,

roots have been shown over short periods of time to live longer in soil patches that are wetter

and have more nitrogen (N) [28], suggesting that localized wetter soil can support longer fine

root lifespans.

In addition to soil moisture, soil depth and temperature can affect root lifespan. Deeper

roots usually live longer than roots in shallow soil layers [29–32]. Deeper soils tend to have a

more consistent soil temperature and less microbial activity, while upper soil layers exhibit

greater diurnal fluctuation in temperatures and greater microbial activity [33,34]. Typically, as

soils warm during the growing season there is increased fine root mortality [26]. Reduced tem-

perature fluctuation, more consistent soil moisture, and lower biological activity (e.g., fewer

herbivores and pathogens) may contribute to longer root lifespans in deeper soils.

Seasonal temperature fluctuations also can affect root lifespan. Root lifespan tends to vary

based on when fine roots are produced, with roots born earlier in the year tending to live lon-

ger in temperate climates than those born later [35,36]. Temperature variation can also be

affected by aspect of a hillslope. South-facing hillslopes typically experience more radiation

than north facing hillslopes in the northern hemisphere [37,38]. This results in south-facing
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hill slopes warming faster than north-facing hillslopes, especially in spring with accelerated

snow melt, which may lead to shorter root lifespan on south- than north-facing hillslopes.

The main objective of this study was to examine patterns of root lifespan across complex

topography. We hypothesized that: fine root lifespan is non-linearly related to soil water con-

tent, such that root lifespans are shorter in areas with very wet or dry soils compared to areas

with soils in the mid-moisture range. Thus, in topographical positions with high moisture

such as valley floors and swales, we expected shorter root lifespan when soil water content was

very high. Similarly, we anticipated in topographical positions with low moisture such as mid-

slopes and ridge tops, root lifespan would be shorter when soil water content was very low. In

addition, we expected that south-facing slopes and warmer seasons would result in shorter

root lifespans due to increased soil temperature.

Materials and methods

Watershed

This study was conducted at Susquehanna-Shale Hills Critical Zone Observatory (SSHCZO),

which is located in Central Pennsylvania, USA (40˚40’N 77˚54’W). Work was done on The

Pennsylvania State University land and we received permission from the Director of Stone

Valley Forests, Joe Harding. Elevation ranges from 256 to 310 m around the catchment [20].

Soil series across the SSHCZO are Weikert (loamy-skeletal, mesic Lithic Dystrudept),

Rushtown (loamy-skeletal, mesic Typic Dystrochrept), Berks (loamy-skeletal, mesic Typic

Dystrudept), Blairton (fine-loamy, mesic Aquic Hapludult), and Ernest (fine-loamy, Aquic

Fragiudults) [23]. Weikert soils make up the majority of the midslope planar locations and all

of the ridgetop locations [20]. At the Weikert midslope locations, slope can vary widely, unlike

the other soil series in the catchment [23]. Ernest and Blairton soils are in the valley floor [20].

Swales, or concave regions present in the midslope region, are mostly Rushtown soils [20].

Select regions of the midslope planar areas and areas bordering the Rushtown and Ernest soils

are the Berks soil series [20]. The SSHCZO forest is composed of mostly deciduous trees (sev-

eral species of maple (Acer), hickory (Carya), and oaks (Quercus)) with some evergreen species

(Tsuga canadensis, Pinus strobus, and Pinus virginiana) [39]. Mean annual temperature and

precipitation for this area have been around 11˚C and 900 mm in the past [39]. Precipitation

in 2017 and 2018 from March 1st to November 30th were 1012.5 and 1319.4 mm, respectively.

Macroplot sites

Across the SSHCZO, 50 circular macroplot sites (often referred to as simply “sites”), 5 m in

diameter, were used to assess the influence of topography on root lifespan (Fig 1). Macroplot

sites were established in all topographic regions with more coverage in the midslope region to

account for more potential variability within this topographic region. Additionally, midslope

planar region occupied more area in the catchment relative to all of the other topographic

regions. Valley floor, swale, ridge top, and midslope planar regions had 9, 13, 7, and 21 sites

respectively. Two hundred fifty clear acrylic minirhizotron tubes were installed in 2015 across

the 50 macroplot sites within the SSHCZO. Five tubes were installed per macroplot site in the

formation of a cross. The formation was five meters wide and ten meters long. Two tubes were

installed at the ends of the horizontal line and three along the vertical. Tubes were installed at

30˚ from the absolute vertical. Installation depth of the tubes was 1.25 meters or to the point of

refusal because of excessive rock fragments. The end of the tube that projected out of the soil

was taped and painted white to reflect sunlight. Additionally, foam insulation was inserted

into tubes to minimize shifts in temperature from the soil at that depth. A hole was drilled on
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one side of the tube to ensure that the same soil face was measured every time images were

taken.

Data collection

Root observations. Minirhizotron images were taken using a Bartz digital camera with

ICAP version 7.0 [Bartz Technology Corp., Carpinteria, CA, USA]. An initial survey of image

quality of minirhizotron tubes and qualitative root count was taken in late spring 2016. Based

on this survey, one hundred tubes were selected based on root presence and image quality.

These 100 tubes were observed on a biweekly basis to a depth of 40 cm. Because roots typically

have shorter lifespans near the soil surface and measuring tubes to full depth more than triples

the observation and processing time, we observed surface roots more frequently than deeper

roots. Tubes were observed to full depth every other observation period from 2016 to the

beginning of the growing season of 2018, otherwise tubes were observed to 40 cm. During full

depth survey campaigns, an additional 50 tubes selected from the initial survey were followed

beginning in 2016 for a total of 150 tubes followed monthly. From 2018 through two observa-

tion times at the beginning of the growing season 2019, tubes were sampled to a depth of 40

cm during each observation session. First-order roots were then followed through time via

tracing in Rootfly version 2.0.2 [Wells and Birchfield, Clemson University, SC, USA]. Only

first-order roots were traced. First order roots were based on root branching in images. Roots

discovered to be not first order roots later in the image set were removed from the dataset.

Roots larger than 2 mm and smaller than 0.2 mm (typically grass and other herbaceous roots)

in diameter were excluded. Root diameter, length, color, and when a root disappeared were

recorded. Root disappearance or visible degradation was used as the date of root death. Num-

ber of neighbors was calculated for each time point based on the number of other individuals

within the same observation window. Tubes with any length of their acrylic surface that

became exposed to the surface (allowing light penetration) were removed from the dataset,

because it impacted the lifespan models. Root birth was assumed to be halfway between the

image where they first appeared and the image where they were not yet visible. Similarly, the

time of mortality was assumed to be the halfway point between when the root was present and

Fig 1. Susquehanna Shale Hills Critical Zone Observatory macroplot site map. Elevation map of Susquehanna

Shale Hills Critical Zone Observatory with included topographical contoured lines. White, red, green, and blue dots

represent macroplot sites that were established at ridge top, mid-slope planar, swale, and valley floor locations,

respectively. Cyan diamonds represent macroplot volumetric time domain reflectometry (TDR) sensors locations,

2–3 per plot. TDR observations were also taken at sites with previously installed soil moisture sensors termed

“GroundHOG” sites, which were represented on the map as asterisks. GroundHOG stands for ground hydrologic

observation gear. GroundHOG sites have additional gas, water and measuring sensors used by the SSHCZO that were

not used in this study.

https://doi.org/10.1371/journal.pone.0254672.g001
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when the root was gone from the minirhizotron image. Roots born in 2019 were removed.

Roots that did not have a death point were kept (right censored in survivorship analysis).

Volumetric soil water content. In 2016, time domain reflectometry (TDR) sensors were

generally measured on a biweekly basis to track soil water content at GroundHOG locations

(Fig 1). TDR waveguides at GroundHOG locations were positioned at 20, 40, 60, and 100 cm

depth in the valley floor. Midslope planar locations only had sensors measured at 20, 40, and

60 cm. Ridge top locations only had sensors measured at 20 and 40 cm. Depth of TDR sensors

at GroundHOG sites was determined by soil depth. In July of 2017, a total of 88, 20-cm TDR

probes were installed in 33 macroplot locations. Installation locations were chosen so that they

covered all topographic locations and soil series, determined based on [20]. Probes were

installed horizontally at 20, 40, and 60 cm depths where possible. Measurements from the sen-

sors were taken on a biweekly basis. Soil water content was relativized by dividing each obser-

vation by the mean of the highest three readings over the year for an individual sensor and

multiplied by the average of the top three measurements per topographic location to create a

scaled measurement. This was done to remove inherent variation in individual TDR sensor

readings due to rock presence around the sensors and inherent sensor idiosyncrasy.

Leaf litter collection. Leaf litter content was collected from litter traps that were estab-

lished at all 50 macroplots. Two litter traps were sampled per site for a total of 100 traps. The

traps were suspended at 0.5 m in height and had a collection area of 0.1472 m2. Leaf litter col-

lected was only leaf blades, petioles, and needles. No woody mass, nuts, or acorns were

included. Litter was collected weekly in 2016–2018. Litter collection began in late September

in 2016 and 2017. Litter collection began in late October in 2018. Litter was dried in a drying

oven at 60˚C for 48 hours, and then weighed.

Soil nutrient collection. From June through October 2014, 250 soil cores that were 5 cm

in diameter, were taken at a 60˚ angle from the soil surface to 165 cm depth or point of refusal

with a gas-powered coring auger [Rhino GPD-40, Giddings Machine Company, Windsor,

CO]. Cores were taken in the exact location that minrhizotron tubes were inserted into the

soil. The Oa horizon was removed from each core. Cores were divided into 0–20 cm, 20–40

cm, 40–80 cm, 80–120 cm, and 120–165 cm. All soil samples were air dried and then sieved

using a 2mm. Soil organic matter content (SOM) was determined by oven drying one-gram

soil samples at 105˚C for 24 hours, then reweighing soil samples, which was then followed by

measuring the amount of loss on ignition at 450˚C [40]. Inorganic nitrogen extraction was car-

ried out following the procedure of [41]. Briefly, 5 ± 0.2g soil samples were shaken with 50ml

of 2M KCl for one hour to extract inorganic nitrogen. Samples were then allowed to settle

overnight in a refrigerator followed by filtering through Whatman #1 filters. Finally, Vana-

dium(III) Chloride reagent and Citrate, Salicylate-nitroprusside and Hypochlorite reagents

were added to the filtered, room temperature samples for spectrophotometric determination

of nitrate and ammonium concentrations respectively in parts per million [41].

Statistical analysis

Data organization. Root observations were aligned with the closest water content read-

ings. Season of birth was split into spring (March or April—May), summer (June—July), and

fall (August—November or December). Season of birth was split in order to have linear effects

within each rank.

Models. Cox proportional hazards models or Cox models [42] were used to determine the

significance and importance of a given variable on fine root lifespan (risk of mortality). Cox

models were all run with a site cluster variable that accounted for roots within a macroplot site

of five tubes being more similar to each other than to those at other sites. The cluster variable
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groups the observations and allows the model to do robust variance, by removing the con-

founding factor of within macroplot site similarities due to distance of tubes from each other.

To treat season of birth as a second stratifying variable, the data set was split by season of birth

as well as year. Year and season of birth were examined first to determine if they had any effect

on fine root lifespan.

Testing for confounding factors. Root dynamics in 2016 did not tend to follow the same

trends of 2017 and 2018. Because roots born in 2016 were likely roots that were still under root

disturbance [43], here we only present data from 2017 and 2018. Additionally, to account for

potential collinearity between depth and topography, separate analyses were run initially for

shallow roots (0–25 cm) versus deep roots (26–97 cm). Further, the maximum depth of the

tube to refusal was included as a variable to ascertain whether soil volume in the area played a

role. Tube maximum depth was not significant across the six seasons and was subsequently

removed from final models. The separate data sets yielded similar results and so were com-

bined for final analyses. To ensure no strong, topographic region based tree species effects

were biasing the analyses, we tested the combination of fine root diameter and mycorrhizal

association for tree species effects on fine root lifespan using a neighborhood effect approxima-

tion. We used a tree species map of the catchment and known AM/EM associations with tree

species plus diameter to assign species to different groups [32,44–47]. Specific groups we used

were: thin root-AM or–EM, medium root-AM or–EM, and thick root-AM. There were no tree

species that fell within the thick root–EM category. The neighborhood effect approximation

used was tree basal area�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ðdistance

p
to tubeÞ based on the model proposed by [48].

Final models. Variables included in the final model were based on whether the variable

was significant in at least four of the six seasons across the two years. The final model account-

ing for the most variation in root survivorship consisted of soil depth where the root was

observed and either hillslope position (ridge, planar midslope, swale, or valley floor) or soil

series, with an included site cluster variable. Season of birth final models included a season of

birth variable in addition to the depth and topography variables. When we examined the rela-

tionship between soils for the midslope planar region, the final model had depth, soil type, and

north versus south slope as variables. Topography was removed as a variable, because there

was only one soil type that corresponded with swales and several that corresponded with mid-

slope planar locations, which rendered the inclusion of topography superfluous. Interactions

were initially included and their significance was tested via partial likelihood ratio tests [49].

Cox proportional hazards models were run in R using the survival package [50,51]. The data

were run in the survival package as being right censored to account for roots that did not die

over the course of the season. Survivorship curves were produced using the survfit() function

in the R package survival [50,51]. Survivorship curves are generated based on risk ratios

instead of lifespan [52]. Risk ratios refer to the risk of mortality for a root. Risk ratios larger

than 1 indicate increased risk of mortality. Risk ratios less than 1 indicate a decreased risk of

mortality. All statistical analyses were conducted via the program R 3.6.3 [R Core team 2020].

Bayesian regression kriging. Bayesian kriging with an external trend was adapted from

the methodology outlined by [39]. We summarize here briefly. We constructed a grid for Shale

Hills with points every 2 meters and assigned different grid points values for soil series, topog-

raphy, and north versus south slope. We utilized the krige.bayes function from the geoR pack-

age version 1.8–1 [53]. Variables found significant during Cox proportional hazards model

testing were used as variables for an external trend model, which is where our model differed

from Bennie et al. [39]. We used diffuse, flat uniform priors for all priors in the model. For

each season within 2017 and 2018, we mapped the posterior mean values that were calculated

from the Bayesian kriging process. Data used in the kriging process were only from sites that
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had ten or more root observations during the kriging period. For more on this method, see

[39] and [54].

Results

There was substantial variation in soil nutrients, litter content, and root variables among sites.

There was a wide range in values of nitrate, ammonium, soil organic matter, leaf litter, tube

depth, unscaled volumetric water content and root parameters across the catchment (S1

Table in S1 File). Year 2017 (Risk = 1.88, p =<0.001), 2018 (Risk = 5.26, p =<0.001), and sea-

son of birth (Risk = 1.004, p =<0.001) were found to have significant effects on fine root life-

span. Utilizing cut point testing and smoothed added variable plotting, as suggested by [49],

season of birth, depth, number of root neighbors and leaf litter content were not found to

exhibit linear trends. The interaction between depth and topographic location was generally

found to be an important variable based on partial likelihood ratio tests; however, when exam-

ining the significance of the variables within the model, despite the partial likelihood ratio

tests, the interaction terms tended to be not significant (S2 Table in S1 File), so the interaction

term was not included in the final model. When looking at midslope sites specifically, slope

aspect was also included in the final model. In addition, we did not observe significant effects

of either tube maximum depth or the combination of mycorrhizal association and root diame-

ter associated with different species.

Topography

Wet topographical regions generally had longer root lifespans than drier regions. Generally,

valley floor and swale locations had longer root lifespans and reduced risk of mortality than

other topographic locations (Table 1 and Fig 2). As an example, median root lifespan was

approximately 125 days longer in the valley floor and 45 days longer in the swales than that of

planar midslope and ridgetop positions in the spring of 2017. Ridgetop sites were generally not

significantly different than the midslope planar sites during the different years and seasons.

When ridgetop sites were significantly different from the midslope planar sites, the risk ratios

(0.50 and 1.87) did not show a consistent directional impact (i.e., sometimes roots lived longer

on the ridge, other times shorter).

Depth

Increasing depth resulted in increased fine root lifespan across all seasons and years of this

study (S3 Table in S1 File and Fig 3a). For example, roots at a 40 cm depth lived approximately

180 days longer than those at a 10 cm depth. There were generally no consistent interactive

effects on lifespan from topography and depth (Fig 3b). Thus, we did not observe greater risk

of mortality in the deeper, valley floor roots born in the spring, despite the saturated soils at

this time of year at these sites. For the few periods where different topographic locations

showed significant interactive effects with depth, patterns were inconsistent (S2 Table in S1

File).

Soil series, slope face, and season

Soil series. Across the midslope region of the catchment, differences in root lifespans

were split between two groups of soil series. Wetter soils, Rushtown and flatter Weikert, had

longer root lifespans than drier, steeper Weikert and Berks soils (Table 2 and Fig 4). There was

largely only one soil type in the other topographic regions of the catchment.
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Slope aspect. The influence of slope aspect on root survivorship shifted from year to year.

In 2017, north-facing slopes had shorter root lifespans than south-facing slopes (Table 3). In

2018, there was generally no effect of aspect on root lifespan. However, for roots born in the

spring of 2018, north-facing slopes had longer root lifespans than south-facing slopes. These

trends were reflected in the regression kriging of fine root lifespan across the SSHCZO (Fig 5).

Season. Summer-born roots had the shortest lifespans and had the highest associated risk

ratios across years (Table 4). Spring-born roots had the next highest risk. Seasonal effects were

shown across the SSHCZO via regression kriging of median lifespans of fine roots (Fig 5). The

kriged map supported the Cox models in showing that fine root lifespan across the catchment

tended to be shorter if the roots were born in the summer relative to other seasons.

Discussion

Topography

Over 2017 and 2018, in 3 of 6 and 4 of 6 seasons, respectively, swale and valley floor locations

had significantly longer root lifespans than the drier ridge top and midslope planar locations.

This generally supported our hypothesis that wetter sites would have longer lifespans if the

soils were not too wet. Swale and valley floor locations generally have greater average seasonal

soil moisture content. They also tend to have deeper soils [23] and often had greater leaf litter

accumulation [22] and consequentially, greater nutrient inputs. This makes these sites more

favorable for plant growth not only because of greater average water content, but also other

aspects that improve soil fertility. Despite differences in species distribution across the

Table 1. Topographic proportional hazards table for different years and seasons.

Year Season Cohort (n) Variable Risk Ratio Robust SE P-value

2017 Spring 81 Ridgetop 0.88 0.18 0.48

2017 Spring 218 Swale 0.65 0.21 0.04

2017 Spring 315 Valley Floor 0.37 0.21 <0.01

2017 Summer 220 Ridgetop 0.91 0.18 0.60

2017 Summer 519 Swale 0.66 0.17 0.01

2017 Summer 236 Valley Floor 0.47 0.12 <0.01

2017 Fall 119 Ridgetop 0.86 0.34 0.66

2017 Fall 328 Swale 0.63 0.26 0.07

2017 Fall 281 Valley Floor 0.74 0.19 0.12

2018 Spring 74 Ridgetop 1.87 0.22 <0.01

2018 Spring 186 Swale 1.03 0.19 0.86

2018 Spring 85 Valley Floor 0.45 0.34 0.02

2018 Summer 314 Ridgetop 0.50 0.15 <0.01

2018 Summer 410 Swale 0.66 0.18 0.02

2018 Summer 201 Valley Floor 0.64 0.21 0.03

2018 Fall 186 Ridgetop 0.53 0.39 0.11

2018 Fall 429 Swale 1.07 0.26 0.81

2018 Fall 219 Valley Floor 0.69 0.25 0.14

Risk ratios for roots present at the different topographic regions relative to midslope planar locations for roots born in spring, summer, and fall seasons in 2017 and

2018. Risk ratios are for the full depth of the tubes, but depth is accounted for within the model. Risk ratios > 1 shows that risk of mortality was increased at the location,

suggesting that lifespan was shorter. Risk ratios < 1 shows that risk was decreased at the location, suggesting that lifespans were generally longer. Bolded lines were

statistically significant (P<0.05). Cohort sizes for midslope planar locations in spring (256), summer (669) and fall (509) for 2017 and 136, 629, and 608 for 2018,

respectively.

https://doi.org/10.1371/journal.pone.0254672.t001
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catchment [22], our analyses did not indicate that a functional tree group (i.e., trees with thin

fine root diameters that associate with AM mycorrhizal fungi, etc.) exerted a strong influence

on community estimates of root lifespan. Our findings differ from others suggesting a species

or root diameter effect [32,36].

Contrary to our hypotheses, we did not find that excessively wet locations that might induce

anoxic effects, such as deeper soil valley floor locations in the spring, resulted in shortened fine

root lifespans. This is contrary to what others have shown [24,25], likely because while these

areas did experience flooding events, flooding did not persist long and occurred when soil

Fig 2. Survivorship of roots at different topographic locations. Survivorship curve of first-order roots in the top 10 cm of soil born in the spring of

2017 at different topographic regions, specifically ridge top (RT), midslope planar (MSP), swale (SW), and valley floor (VF) locations.

https://doi.org/10.1371/journal.pone.0254672.g002
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temperatures were low and when root metabolic activity is expected to be low. Certain mini-

rhizotron tubes and sites experienced more saturated soil conditions that could be seen by the

water level visible in the minirhizotron tube (personal observation). Even though in the spring

there would often be tubes where a water level could be seen near the surface, roots below this

level did not seem to suffer anoxic effects leading to their death. Instead, swale and valley floor

sites supported longer fine root lifespans similar to other studies examining increased water

effects on lifespan [28].

Fig 3. Survivorship of roots at different depths and topographic locations. (a) Survivorship curves of first-order roots at different soil depths born

in the fall of 2017 at swale locations. (b) Survivorship curves of first-order roots at different soil depths at valley floor (VF) and midslope planar (MSP)

locations.

https://doi.org/10.1371/journal.pone.0254672.g003
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Our hypothesis that root lifespans would be impacted by soil water content, while sup-

ported in the topographic regions, was not supported when we tested for the effect of short

term water content variation impacts on fine root lifespan. We found no effect of biweekly soil

water content changes, regardless of magnitude, on fine root lifespan. This is contrary to what

has been shown previously [28]. It could be that trees in swales and valley floor regions main-

tained roots in flooded soils by limiting their metabolism and relying on roots in drier soils

during flooded periods. Ridge top locations, the driest sites, generally did not show significant

differences in root lifespan from the midslope planar locations, suggesting that the long-term

differences in soil moisture between the two topographic locations did not seriously impact

root lifespan. Alternatively, tree root systems could have spread out wide enough from the

ridgetop region into the midslope or swale regions that the drier soils along the ridgetop could

be remediated via hydraulic redistribution [55]. Distances ranged from 5–10 meters at most

between the ridgetop sites and the midslope planar or swale locations. Tree roots have been

shown to be able to spread their roots up to 50 m away from their trunks and average around 8

meters away [56]. It was unclear what processes resulted in increased mortality risk on the

ridgetops for roots born in the spring of 2018.

Our results suggest that landscape- and ecosystem-scale models utilizing aboveground attri-

butes to estimate average annual fine root lifespan could yield incorrect estimates when aver-

aging over complex topography. Others have suggested that prediction of belowground

attributes by aboveground attributes is too simplified [57]. If one calculated the median annual

fine root lifespan for the SSHCZO using this data set, based on a “representative” location such

as the midslope planar location, the median lifespan would be 136 days in 2017 and 123 days

in 2018. Using a weighted median of the SSHCZO based on estimated contributing area of

Table 2. Mid-slope soil series proportional hazards table for different years and seasons.

Year Season Cohort (n) Soil Series Risk Ratio Robust SE P-value

2017 Spring 39 Flatter Weikert 0.86 0.12 0.20

2017 Spring 187 Rushtown 0.59 0.18 < 0.01

2017 Spring 188 Steeper Weikert 1.13 0.20 0.55

2017 Summer 111 Flatter Weikert 0.67 0.16 0.01

2017 Summer 364 Rushtown 0.59 0.21 0.01

2017 Summer 432 Steeper Weikert 1.31 0.20 0.18

2017 Fall 122 Flatter Weikert 0.35 0.14 < 0.01

2017 Fall 276 Rushtown 0.37 0.17 < 0.01

2017 Fall 331 Steeper Weikert 0.93 0.19 0.70

2018 Spring 29 Flatter Weikert 0.42 0.26 < 0.01

2018 Spring 124 Rushtown 0.58 0.20 < 0.01

2018 Spring 98 Steeper Weikert 0.60 0.23 0.03

2018 Summer 75 Flatter Weikert 0.66 0.22 0.06

2018 Summer 318 Rushtown 0.45 0.17 < 0.01

2018 Summer 453 Steeper Weikert 0.75 0.18 0.11

2018 Fall 31 Flatter Weikert 0.50 0.25 < 0.01

2018 Fall 339 Rushtown 1.08 0.29 0.79

2018 Fall 548 Steeper Weikert 1.09 0.26 0.75

Risk ratios of roots along the mid-slope. Different soil series were compared to the Berks soil series for roots born in spring, summer, and fall seasons in 2017 and 2018.

Risk ratios > 1 shows that risk of mortality was increased at the location, suggesting that lifespan was shorter. Risk ratios < 1 shows that risk of mortality was decreased

at the location. Bolded lines were statistically significant (P<0.05). Cohort sizes for Berks soil series in spring (56), summer (249) and fall (102) for 2017 and 46, 165, and

64 for 2018, respectively.

https://doi.org/10.1371/journal.pone.0254672.t002
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contributing regions in the catchment, the median lifespan is closer to 201 days and 179 days

in 2017 and 2018, respectively. This suggests that ignoring complex topography when estimat-

ing catchment-level fine root lifespan could result in estimates being off by roughly two

months, or approximately 46%. This level of error is present prior to accounting for season of

birth effects in addition to topographical variables. Errors in estimating fine root lifespan

across landscapes could result in the misestimation of the impact of fine roots on soil C flux

and ultimately, temperate forest ecosystem C flux. A caveat to this finding is that landscapes

Fig 4. Influence of soil series on root survivorship in midslope locations. Survivorship curves of first-order roots in the top 10 cm of soil born in

the spring of 2018 across soils on the north slope with different slope steepness, specifically: Steep Weikert (Steeper (MSP)), flatter Weikert (Flatter

(MSP)), and Rushtown (Swales).

https://doi.org/10.1371/journal.pone.0254672.g004
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that consist of mainly one type of topographic variable, such as a landscape with mostly mid-

slope planar type topography, then potentially one representative location could be acceptable.

Due to the heterogeneity in root presence from tube to tube, we recommend never using one

site for minirhizotron data when describing a hilly landscape. Moreover, our data suggest that

models which are based on short-term changes in soil water content and temperature will not

be particularly useful for estimating root lifespan.

Table 3. Proportional hazards table for the effect of aspect (south or north facing) on root survivorship in different years and seasons.

Year Season Cohort of N-facing (n) Cohort of S-facing (n) Variable Risk Ratio Robust SE P-value

2017 Spring 222 248 Aspect 1.40 0.11 < 0.01

2017 Summer 507 649 Aspect 2.03 0.14 < 0.01

2017 Fall 369 462 Aspect 1.44 0.16 0.02

2018 Spring 138 159 Aspect 0.71 0.15 0.02

2018 Summer 565 446 Aspect 1.03 0.14 0.81

2018 Fall 669 313 Aspect 1.47 0.27 0.16

Risk ratios for roots on the S-facing slopes when compared to N-facing slopes for roots born in the spring, summer, and fall seasons in 2017 and 2018. Risk ratios > 1

indicate that risk of mortality was greater at N-facing than S-facing slopes, suggesting that lifespan was shorter at the N-facing slope. Risk ratios < 1 show that risk of

mortality was decreased at N-facing slopes compared to S-facing slopes. Bolded text was statistically significant (P<0.05).

https://doi.org/10.1371/journal.pone.0254672.t003

Fig 5. Seasonal trends in first-order root lifespan across the Susquehanna Shale Hills Critical Zone Observatory. Bayesian regression models were used

in kriging. Maps displayed are posterior means of days since first appearance of a root in the upper 10 cm of soil. Number of plots with at least ten roots

produced (n�10) that were used in kriging were as follows: Spring 2017 (13 plots), summer 2017 (35), fall 2017 (25), spring 2018 (9), summer 2018 (38),

and fall 2018 (27).

https://doi.org/10.1371/journal.pone.0254672.g005
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Depth

Across seasons and years, deeper roots consistently had longer root lifespans than shallow

roots, as shown previously [29–32]. Increasing soil depth is correlated to many variables that

have been shown to increase fine root lifespan, such as increased soil water content [28] and

decreased temperature fluctuations [58]. The effect of depth on fine roots was such that fine

root lifespan tripled from roughly a year to beyond three years when comparing roots living in

upper centimeters of the soil to roughly a meter.

Soil series

For topographic locations where there were more than one soil series present, we found soil

classification type was useful in accounting for variation in fine root lifespan. Baldwin et al.,

[23] suggested that utilizing a combined soil-terrain-unit map would be better at predicting

soil moisture content over time. Based on their map of this catchment, we classified our

macroplot locations into their own soil series class based on a combination of slope class and

soil series. Macroplot locations with flatter slopes and Weikert soils showed similar risk ratios

to swale locations. Additionally, Weikert soils with steeper slopes had higher associated risk

ratios and performed more similarly to Berks soils within the SSHCZO. Nonetheless, slope

alone nor depth to tube refusal or maximum tube depth in the midslope region could account

for significant variation in root lifespan. Perhaps these soil series classifications capture an

unmeasured variable in addition to slope and soil depth that significantly contributed to the

influence of soil series on root lifespan.

Aspect

North-facing slopes had shorter root lifespans in 2017, but not in 2018, with the exclusion of

spring 2018. Trees on the S-facing slope had access to three swales and gentler slopes along this

face, which may have allowed trees to sustain their roots for a longer period of time than trees

on the steeper, N-facing slopes. Wetter years may have diminished the influence of swale num-

ber and slope steepness leading to the observed lifespan differences observed in 2017 and 2018

lifespan. In 2017, the median root lifespan was 330 d for the S-facing slope and only 89 d for

the N-facing slope, a considerable difference. Such differences in fine root lifespan on different

aspects could substantially affect estimates of root lifespan in temperate forests with complex

topography. No other studies to our knowledge have shown an effect of aspect on root lifespan.

Season

We found that season had a strong impact on root lifespan, with roots born in fall having the

longest lifespan and roots born in the summer having the shortest. Other studies have also

Table 4. Season of birth proportional hazards table for different years.

Year Cohort (n) Season Risk Ratio Robust SE P-value

2017 870 Spring 1.32 0.12 0.02

2017 1644 Summer 1.61 0.09 < 0.01

2018 481 Spring 1.15 0.18 0.43

2018 1554 Summer 1.37 0.13 0.01

Risk ratios for roots born in the spring and summer seasons relative to the fall season in 2017 and 2018. Risk ratios > 1 show that risk of mortality was increased at that

time of year compared to the fall season of birth, suggesting that lifespan was shorter. Risk ratios < 1 show that risk of mortality was decreased at that season of birth.

Bolded text was statistically significant (P<0.05). Cohort sizes for fall seasons in 2017 (1237) and 2018 (1442).

https://doi.org/10.1371/journal.pone.0254672.t004
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shown that the season a root was produced impacted fine root lifespan [7,35,36,59]. The differ-

ences in fine root lifespan between summer and the other seasons could be related to increased

photosynthesis rates and heat during the summer. More metabolically active roots or roots

that are taking up nutrients at a faster rate tend to have shorter fine root lifespans [60]. Thus,

roots born in the summer may need to be replaced more often than roots born in other seasons

if they are more metabolically active. Conversely, some studies have shown that fine roots tend

to have shorter lifespans when exposed to soil frost [61]. We generally did not see a substantial

increase in the risk ratio for roots born in the fall relative to the other seasons, suggesting that

in our system we did not have strong, soil-frost effects. This could be due to generally strong

litter cover in the fall and usually a snow cover across the study area (personal observation).

Soil water content and root related variables

Soil water content. We found our hypothesis that volumetric water content changes over

time would have a consistent influence on root lifespan to be unsupported, in contrast to acute

or short-term studies [28]. We found that wetter topographic regions tended to have longer

fine root lifespans; however, this was unrelated to the short-term changes in the soil water con-

tent. This likely indicates that either tree root systems have spread enough to be able to support

fine roots in dry conditions [55] or trees have altered the morphological and physiological

traits of their roots to allow them to be acclimated to the range of water conditions present

around them [62], or there are other, more limiting variables affecting root lifespan than soil

water content conditions.

Root related variables. Number of root neighbors was not found to consistently influence

root lifespan. Nor was fine root diameter found to significantly impact root lifespan. This con-

trasts with other studies looking at fine root diameter [31,32,59] and root neighbors [52,59].

This could be due to our observations being taken from a mixed forest compared to more con-

trolled environments in previous studies. One group has suggested that thinner diameter roots

may be able to modulate their lifespans under more optimal conditions [59], which may

explain why we saw no effect of root diameter. Alternatively, we used root disappearance or

visible root degradation as an indication of root mortality. It is possible that some of the fine

roots at deeper depths and at different sites degraded at a slower rate relative to other locations,

which would give the appearance of longer fine root lifespans, even though they may no longer

be viable. Decomposition tends to be slower at dry sites [63], which would suggest that ridge

top locations could have slightly shorter lifespans than reported here, which only accentuates

our findings that the wetter locations had longer fine root lifespans.

Conclusions

Root lifespans were substantially longer in topographic regions that tend to be wetter and have

deeper soils like swales and valley floor. This could lead to erroneous catchment-scale esti-

mates if, for example a planar hillslope was taken as a “representative” location. We also found

strong depth, soil series, slope-facing aspect, and seasonal effects on root lifespan. Complex

topography, which may include changing soil series type and slope aspect can shift root life-

span in temperate forest, depending on the year. Our work suggests that accounting for com-

plex topography in models may improve prediction of root survivorship.
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33. Šnajdr J, Valášková V, Merhautová V, Herinková J, Cajthaml T, Baldrian P. Spatial variability of enzyme

activities and microbial biomass in the upper layers of Quercus petraea forest soil. Soil Biology and Bio-

chemistry. 2008 Sep 1; 40(9):2068–75.

34. Campbell GS, Norman J. An introduction to environmental biophysics. Springer Science & Business

Media; 2012 Dec 6.

35. Hendrick RL, Pregitzer KS. The demography of fine roots in a northern hardwood forest. Ecology. 1992

Jun; 73(3):1094–104.

36. Espeleta JF, West JB, Donovan LA. Tree species fine-root demography parallels habitat specialization

across a sandhill soil resource gradient. Ecology. 2009 Jul; 90(7):1773–87. https://doi.org/10.1890/08-

0056.1 PMID: 19694127

37. Warren RJ. Mechanisms driving understory evergreen herb distributions across slope aspects: as

derived from landscape position. Plant Ecology. 2008 Oct 1; 198(2):297–308.

38. Bennie J, Huntley B, Wiltshire A, Hill MO, Baxter R. Slope, aspect and climate: spatially explicit and

implicit models of topographic microclimate in chalk grassland. Ecological modelling. 2008 Aug 10;

216(1):47–59.

39. Naithani KJ, Baldwin DC, Gaines KP, Lin H, Eissenstat DM. Spatial distribution of tree species governs

the spatio-temporal interaction of leaf area index and soil moisture across a forested landscape. PLoS

One. 2013 Mar 12; 8(3):e58704. https://doi.org/10.1371/journal.pone.0058704 PMID: 23554915

40. Nelson DW, Sommers LE. Total carbon, organic carbon, and organic matter. Methods of soil analysis:

Part 3 Chemical methods. 1996 Jan 1; 5:961–1010.
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