

ISSN 2056-9890

Crystal structure of S-(4-methylbenzyl) piperidinedithiocarbamate

Z. A. Rahima,^a Siti Nadiah Abdul Halim^b and Fiona N.-F. How^a*

^aDepartment of Chemistry, Kulliyyah of Science, International Islamic University Malaysia, 25200 Kuantan, Malaysia, and ^bDepartment of Chemistry, Faculty of Science, Universiti Malaya, Kuala Lumpur 50603, Malaysia. *Correspondence e-mail: howfiona@iium.edu.my

Received 28 July 2015; accepted 31 July 2015

Edited by A. J. Lough, University of Toronto, Canada

The title compound, C₁₄H₁₉NS₂, crystallizes in the thione form with the presence of a C=S bond. The piperidine ring adopts a chair conformation. The dihedral angle between the essentially planar dithiocarbamate and p-tolyl fragments is 74.46 (10)°

Keywords: crystal structure; dithiocarbamate; substituted dithiocarbamate; piperidine dithiocarbamate.

CCDC reference: 975555

1. Related literature

For the synthesis and related structures, see: Nabipour (2011); Kumar et al. (2013); Kotresh et al. (2012). For the various applications of dithiocarbamates, see: Hogarth (2005).

2. Experimental

OPEN a ACCESS

2.1. Crystal data

β

$C_{14}H_{19}NS_2$	
$M_r = 265.42$	
Monoclinic, $P2_1/c$	
a = 6.3081 (4) Å	
b = 11.2191 (7) Å	
c = 19.8399 (13) Å	
$\beta = 96.133(5)^{\circ}$	

2.2. Data collection

```
Bruker APEXII CCD
  diffractometer
Absorption correction: multi-scan
  (SADABS; Bruker, 2012)
  T_{\rm min}=0.666,\;T_{\rm max}=0.746
```

2.3. Refinement $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.114$ S = 1.013278 reflections

 $V = 1396.06 (15) \text{ Å}^3$ Z = 4Mo $K\alpha$ radiation $\mu = 0.36 \text{ mm}^{-1}$ T = 100 K $0.4 \times 0.2 \times 0.1 \text{ mm}$

13322 measured reflections 3278 independent reflections 1866 reflections with $I > 2\sigma(I)$ $R_{\rm int} = 0.105$

155 parameters H-atom parameters constrained $\Delta \rho_{\rm max} = 0.32 \text{ e } \text{\AA}^ \Delta \rho_{\rm min} = -0.34 \text{ e } \text{\AA}^{-3}$

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SIR2004 (Burla et al., 2007); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: Mercury (Macrae et al., 2008); software used to prepare material for publication: pubICIF (Westrip, 2010).

Acknowledgements

The authors gratefully acknowledge The Ministry of Higher Education (MOHE), Malaysia for funding this research under the Fundemental Research Grant Scheme (FRGS12-064-0213) and the Universiti Malaya Postgraduate Research Grant PG056-2013B. ZAR thanks IIUM for an IIUM Niche Area Scholarship.

Supporting information for this paper is available from the IUCr electronic archives (Reference: LH5777).

References

- Bruker (2009). APEX2 and SAINT. Bruker AXS Inc., Madison, Wisconsin, USA.
- Bruker (2012). SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.
- Burla, M. C., Caliandro, R., Camalli, M., Carrozzini, B., Cascarano, G. L., De Caro, L., Giacovazzo, C., Polidori, G., Siliqi, D. & Spagna, R. (2007). J. Appl. Crvst. 40, 609-613.
- Hogarth, G. (2005). Prog. Inorg. Chem. 53, 71-561.
- Kotresh, O., Kumar, K. M., Mahabaleshwaraiah, N. M., Arunkashi, H. K. & Devarajegowda, H. C. (2012). Acta Cryst. E68, o3167.
- Kumar, K. M., Vinduvahini, M., Mahabhaleshwaraiah, N. M., Kotresh, O. & Devarajegowda, H. C. (2013). Acta Cryst. E69, 01683.
- Macrae, C. F., Bruno, I. J., Chisholm, J. A., Edgington, P. R., McCabe, P., Pidcock, E., Rodriguez-Monge, L., Taylor, R., van de Streek, J. & Wood, P. A. (2008). J. Appl. Cryst. 41, 466-470.
- Nabipour, H. (2011). Int. J. Nano Dimens. 1, 225-232.
- Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.
- Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

Acta Cryst. (2015). E71, o647 [doi:10.1107/S2056989015014462]

Crystal structure of S-(4-methylbenzyl) piperidinedithiocarbamate

Z. A. Rahima, Siti Nadiah Abdul Halim and Fiona N.-F. How

S1. Comment

Dithiocarbamates are well known to possess various properties with a wide range of applications (Hogarth, 2005). In our attempt to modify the substituents of piperidine dithiocarbamate we have formed the title compound. It is likely that this compound is bioactive and will be an interest for further research.

The C6—S2 bond is 1.664 (3) Å, which is an intermediate of the standard value for C=S (1.56 Å) and shorter than a C —S single bond (1.82 Å). This is attributed to a slight delocalization of negative charge over the C—N—C—S chain.

The piperidine ring shows a chair conformation with Cremer-Pople puckering parameters Q= 0.583 (3) Å, θ = 2.9 (3)°, φ = 355 (6)°. The dihedral angle between the planar dithiocarbamate moiety S1/S2/N1/C6 and the planar *p*-tolyl frgament C7/C8/C9/C10/C11/C12/C13/C14 is 74.46 (10)°. The C7–S1–C6–S2 fragment adopts a *cis* conformation with the torsion angle of -6.6 (2)° comparable to previous literature (Kumar *et al.*, 2013; Kotresh *et al.*, 2012). The arrangement of the molecules in the crystal are dominated by the presence of the crystallographic 2-fold rotation axis. There are no significant pi–pi interactions or other specific intermolecular interactions in the crystal structure.

S2. Experimental

Sodium piperidine dithiocarbamate was pre-synthesized in accordance to the method of Nabipour (2011). Sodium piperidine dithiocarbamate (5.5 mmol) in absolute ethanol (30 ml) was stirred continuously with dropwise addition of equimolar amounts of 4-methylbenzyl chloride until a precipitation occurred. The precipitate (sodium chloride) was filtered off and the filtrate was reduced to half the volume and left to stand at room temperature to give colourless crystals. Yield= 63.11%, m.p.= 348.15–349.15 K. IR (KBr pellets, cm⁻¹): 1477 (s, v N–CSS), 1224 (s, v C=S) and 978 (s, v C–S). UV–Vis in CH₃OH [λ_{max} /nm, with ε (L mol⁻¹ cm⁻¹)]: 277 (2.05), 255 (4.09), 245 (4.20). ¹H–NMR [DMSO–d₆]: δ (ppm) = 4.46 (s, 2H, S–CH₂–Bz); 4.22 (s, 2H, N–CH₂), 3.85 (s, 2H, N–CH₂); 7.11–7.27 (m, 4H, C₆H₄); 2.27 (s, 3H, CH₃). ¹³C–NMR [DMSO–d₆]: δ (ppm) = 193.82 (NCSS); 41.17 (S–CH₂–Bz); 52.77, 51.33 (N–CH₂); 129.49–137.03 (C aromatic); 21.18 (CH₃).

S2.1. Refinement

H-atoms were placed in calculated positions (C—H 0.93–0.97 Å) and were included in the refinement in a riding-model approximation with $U_{iso}(H) = 1.2U_{eq}(C)$ or $1.2U_{eq}(C_{methyl})$.

Figure 1

The molecular structure of the title compound with displacement ellipsoids drawn at the 50% probability level. H atoms are shown as spheres of arbitrary radius.

S-(4-Methylbenzyl) piperidinedithiocarbamate

Crystal data $C_{14}H_{19}NS_2$ $M_r = 265.42$ Monoclinic, $P2_1/c$ a = 6.3081 (4) Å b = 11.2191 (7) Å c = 19.8399 (13) Å $\beta = 96.133$ (5)° V = 1396.06 (15) Å³ Z = 4

Data collection

Bruker APEXII CCD diffractometer Radiation source: sealed tube Graphite monochromator Detector resolution: 8 pixels mm⁻¹ φ and ω scans Absorption correction: multi-scan *SADABS* (Bruker, 2012) $T_{\min} = 0.666, T_{\max} = 0.746$

Refinement

Refinement on F^2 Least-squares matrix: full $R[F^2 > 2\sigma(F^2)] = 0.053$ $wR(F^2) = 0.114$ S = 1.013278 reflections F(000) = 568 $D_x = 1.263 \text{ Mg m}^{-3}$ Mo K\alpha radiation, $\lambda = 0.71073 \text{ Å}$ Cell parameters from 883 reflections $\theta = 3.6-20.8^{\circ}$ $\mu = 0.36 \text{ mm}^{-1}$ T = 100 KBlock, colourless $0.4 \times 0.2 \times 0.1 \text{ mm}$

13322 measured reflections 3278 independent reflections 1866 reflections with $I > 2\sigma(I)$ $R_{int} = 0.105$ $\theta_{max} = 27.9^{\circ}, \ \theta_{min} = 2.1^{\circ}$ $h = -8 \rightarrow 8$ $k = -14 \rightarrow 14$ $l = -25 \rightarrow 25$

155 parameters0 restraintsPrimary atom site location: iterativeSecondary atom site location: difference Fourier map

Hydrogen site location: inferred from	$w = 1/[\sigma^2(F_o^2) + (0.036P)^2 + 0.1195P]$
neighbouring sites	where $P = (F_o^2 + 2F_c^2)/3$
H-atom parameters constrained	$(\Delta/\sigma)_{\rm max} < 0.001$
	$\Delta \rho_{\rm max} = 0.32 \text{ e} \text{ Å}^{-3}$
	$\Delta \rho_{\rm min} = -0.34 \text{ e} \text{ Å}^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving l.s. planes. **Refinement**. Refinement of F^2 against ALL reflections. The weighted *R*-factor *wR* and goodness of fit *S* are based on F^2 , conventional *R*-factors *R* are based on *F*, with *F* set to zero for negative F^2 . The threshold expression of $F^2 > \sigma(F^2)$ is used only for calculating *R*-factors(gt) *etc.* and is not relevant to the choice of reflections for refinement. *R*-factors based on F^2 are statistically about twice as large as those based on *F*, and *R*-factors based on ALL data will be even larger.

	x	У	Ζ	$U_{\rm iso}$ */ $U_{\rm eq}$
S1	0.60407 (11)	0.46509 (6)	0.32887 (4)	0.0264 (2)
S2	0.40927 (14)	0.70252 (7)	0.35563 (4)	0.0347 (2)
N1	0.3416 (3)	0.5804 (2)	0.24001 (12)	0.0255 (6)
C7	0.7321 (5)	0.5087 (3)	0.41139 (15)	0.0339 (8)
H7A	0.8107	0.5824	0.4080	0.041*
H7B	0.6267	0.5204	0.4430	0.041*
C13	1.0788 (5)	0.3979 (3)	0.41109 (14)	0.0297 (7)
H13	1.1215	0.4545	0.3811	0.036*
C8	0.8810 (5)	0.4086 (2)	0.43476 (14)	0.0266 (7)
C6	0.4390 (4)	0.5890 (2)	0.30345 (14)	0.0240 (7)
C12	1.2139 (5)	0.3046 (3)	0.43127 (14)	0.0298 (7)
H12	1.3454	0.2991	0.4143	0.036*
C3	-0.0478 (5)	0.4953 (3)	0.16795 (17)	0.0382 (8)
H3A	-0.1839	0.4561	0.1702	0.046*
H3B	-0.0354	0.5148	0.1209	0.046*
C9	0.8232 (5)	0.3239 (3)	0.48066 (15)	0.0305 (7)
H9	0.6921	0.3301	0.4979	0.037*
C14	1.3055 (5)	0.1182 (3)	0.49932 (17)	0.0429 (9)
H14A	1.3890	0.0976	0.4633	0.064*
H14B	1.2243	0.0502	0.5108	0.064*
H14C	1.3983	0.1429	0.5383	0.064*
C5	0.1796 (4)	0.6661 (3)	0.21235 (15)	0.0299 (7)
H5A	0.2074	0.6898	0.1671	0.036*
H5B	0.1853	0.7368	0.2407	0.036*
C1	0.3454 (5)	0.4735 (3)	0.19726 (15)	0.0305 (7)
H1A	0.4574	0.4201	0.2160	0.037*
H1B	0.3747	0.4960	0.1520	0.037*
C2	0.1319 (5)	0.4110 (3)	0.19406 (16)	0.0345 (8)
H2A	0.1086	0.3829	0.2389	0.041*
H2B	0.1320	0.3425	0.1643	0.041*

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (\hat{A}^2)

supporting information

C11	1.1563 (5)	0.2185 (3)	0.47668 (14)	0.0283 (7)	
C10	0.9587 (5)	0.2306 (3)	0.50101 (14)	0.0307 (7)	
H10	0.9166	0.1748	0.5316	0.037*	
C4	-0.0398 (5)	0.6094 (3)	0.20983 (16)	0.0344 (8)	
H4A	-0.1466	0.6648	0.1899	0.041*	
H4B	-0.0716	0.5913	0.2555	0.041*	

Atomic displacement parameters (\mathring{A}^2)

	U^{11}	<i>U</i> ²²	U^{33}	U^{12}	U^{13}	U^{23}
<u>S1</u>	0.0309 (4)	0.0220 (4)	0.0259 (4)	0.0032 (3)	0.0012 (3)	-0.0015 (3)
S2	0.0515 (5)	0.0223 (4)	0.0299 (5)	0.0053 (4)	0.0030 (4)	-0.0025 (3)
N1	0.0258 (13)	0.0230 (13)	0.0272 (14)	0.0022 (11)	0.0009 (11)	-0.0022 (11)
C7	0.0435 (19)	0.0309 (18)	0.0250 (17)	0.0050 (15)	-0.0067 (14)	-0.0050 (14)
C13	0.0354 (18)	0.0271 (17)	0.0255 (17)	-0.0063 (14)	-0.0015 (14)	0.0020 (13)
C8	0.0323 (17)	0.0218 (16)	0.0247 (16)	-0.0006 (14)	-0.0019 (13)	-0.0047 (13)
C6	0.0267 (16)	0.0218 (15)	0.0243 (16)	-0.0014 (13)	0.0066 (13)	0.0020 (12)
C12	0.0280 (16)	0.0341 (18)	0.0271 (17)	-0.0025 (15)	0.0023 (13)	-0.0009 (14)
C3	0.0307 (17)	0.0354 (19)	0.047 (2)	-0.0068 (14)	-0.0010 (15)	0.0049 (16)
C9	0.0315 (17)	0.0338 (18)	0.0260 (17)	-0.0003 (15)	0.0016 (13)	-0.0018 (14)
C14	0.048 (2)	0.0357 (19)	0.041 (2)	0.0072 (17)	-0.0157 (17)	-0.0013 (16)
C5	0.0329 (17)	0.0254 (16)	0.0306 (18)	0.0045 (14)	-0.0009 (14)	0.0040 (14)
C1	0.0332 (17)	0.0306 (17)	0.0264 (17)	0.0035 (15)	-0.0022 (13)	-0.0069 (14)
C2	0.0395 (19)	0.0282 (17)	0.0341 (19)	-0.0037 (15)	-0.0041 (15)	-0.0013 (14)
C11	0.0303 (17)	0.0277 (16)	0.0247 (17)	-0.0011 (14)	-0.0073 (13)	-0.0037 (13)
C10	0.0408 (19)	0.0262 (17)	0.0240 (17)	-0.0052 (15)	-0.0017 (14)	0.0056 (13)
C4	0.0304 (17)	0.0333 (18)	0.039 (2)	0.0040 (15)	0.0025 (14)	0.0084 (15)

Geometric parameters (Å, °)

S1—C7	1.814 (3)	С9—Н9	0.9300
S1—C6	1.778 (3)	C9—C10	1.384 (4)
S2—C6	1.664 (3)	C14—H14A	0.9600
N1-C6	1.344 (3)	C14—H14B	0.9600
N1—C5	1.466 (3)	C14—H14C	0.9600
N1—C1	1.471 (3)	C14—C11	1.504 (4)
C7—H7A	0.9700	C5—H5A	0.9700
С7—Н7В	0.9700	С5—Н5В	0.9700
С7—С8	1.505 (4)	C5—C4	1.519 (4)
С13—Н13	0.9300	C1—H1A	0.9700
С13—С8	1.384 (4)	C1—H1B	0.9700
C13—C12	1.382 (4)	C1—C2	1.513 (4)
С8—С9	1.392 (4)	C2—H2A	0.9700
С12—Н12	0.9300	C2—H2B	0.9700
C12—C11	1.395 (4)	C11—C10	1.391 (4)
С3—НЗА	0.9700	C10—H10	0.9300
С3—Н3В	0.9700	C4—H4A	0.9700
С3—С2	1.523 (4)	C4—H4B	0.9700

C3—C4	1.524 (4)		
C6—S1—C7	103.63 (13)	C11—C14—H14A	109.5
C6—N1—C5	122.3 (2)	C11—C14—H14B	109.5
C6—N1—C1	124.4 (2)	C11—C14—H14C	109.5
C5—N1—C1	111.9 (2)	N1—C5—H5A	109.8
S1—C7—H7A	110.5	N1—C5—H5B	109.8
S1—C7—H7B	110.5	N1—C5—C4	109.5 (2)
H7A—C7—H7B	108.7	H5A—C5—H5B	108.2
C8—C7—S1	106.24 (19)	C4—C5—H5A	109.8
С8—С7—Н7А	110.5	C4—C5—H5B	109.8
С8—С7—Н7В	110.5	N1—C1—H1A	109.8
C8—C13—H13	119.4	N1—C1—H1B	109.8
C12—C13—H13	119.4	N1—C1—C2	109.4 (2)
C12—C13—C8	121.2 (3)	H1A—C1—H1B	108.2
C13—C8—C7	121.1 (3)	C2—C1—H1A	109.8
C13—C8—C9	118.1 (3)	C2—C1—H1B	109.8
C9—C8—C7	120.8 (3)	C3—C2—H2A	109.5
S2—C6—S1	121.57 (17)	C3—C2—H2B	109.5
N1—C6—S1	113.9 (2)	C1—C2—C3	110.7 (2)
N1—C6—S2	124.6 (2)	C1—C2—H2A	109.5
C13—C12—H12	119.4	C1—C2—H2B	109.5
C13—C12—C11	121.1 (3)	H2A—C2—H2B	108.1
C11—C12—H12	119.4	C12—C11—C14	120.9 (3)
НЗА—СЗ—НЗВ	108.1	C10—C11—C12	117.5 (3)
С2—С3—НЗА	109.5	C10-C11-C14	121.6 (3)
С2—С3—Н3В	109.5	C9—C10—C11	121.4 (3)
C2—C3—C4	110.8 (3)	C9—C10—H10	119.3
С4—С3—НЗА	109.5	C11—C10—H10	119.3
C4—C3—H3B	109.5	C3—C4—H4A	109.6
С8—С9—Н9	119.6	C3—C4—H4B	109.6
C10—C9—C8	120.7 (3)	C5—C4—C3	110.3 (3)
С10—С9—Н9	119.6	C5—C4—H4A	109.6
H14A—C14—H14B	109.5	C5—C4—H4B	109.6
H14A—C14—H14C	109.5	H4A—C4—H4B	108.1
H14B—C14—H14C	109.5		
S1—C7—C8—C13	79.9 (3)	C6—N1—C1—C2	104.9 (3)
S1—C7—C8—C9	-99.8 (3)	C12—C13—C8—C7	-178.5(3)
N1—C5—C4—C3	-57.0 (3)	C12—C13—C8—C9	1.3 (4)
N1—C1—C2—C3	56.7 (3)	C12—C11—C10—C9	0.5 (4)
C7—S1—C6—S2	-6.6 (2)	C14—C11—C10—C9	179.1 (3)
C7—S1—C6—N1	174.4 (2)	C5—N1—C6—S1	172.6 (2)
C7—C8—C9—C10	178.7 (3)	C5—N1—C6—S2	-6.4 (4)
C13—C8—C9—C10	-1.1 (4)	C5—N1—C1—C2	-61.5 (3)
C13—C12—C11—C14	-179.0 (3)	C1—N1—C6—S1	7.5 (3)
C13—C12—C11—C10	-0.3 (4)	C1—N1—C6—S2	-171.5 (2)
C8-C13-C12-C11	-0.6 (4)	C1—N1—C5—C4	61.8 (3)

C8—C9—C10—C11	0.3 (4)	C2—C3—C4—C5	53.9 (3)
C6—S1—C7—C8	-178.0 (2)	C4—C3—C2—C1	-53.9 (3)
C6—N1—C5—C4	-105.1 (3)		