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Background and Objective: Within-person variability in cognitive performance has

emerged as a promising indicator of cognitive health with potential to distinguish

normative and pathological cognitive aging. We use a smartphone-based digital health

approach with ecological momentary assessments (EMA) to examine differences in

variability in performance among older adults with mild cognitive impairment (MCI) and

those who were cognitively unimpaired (CU).

Method: A sample of 311 systematically recruited, community-dwelling older

adults from the Einstein Aging Study (Mean age = 77.46 years, SD = 4.86,

Range = 70–90; 67% Female; 45% Non-Hispanic White, 40% Non-Hispanic Black)

completed neuropsychological testing, neurological assessments, and self-reported

questionnaires. One hundred individuals met Jak/Bondi criteria for MCI. All participants

performedmobile cognitive tests of processing speed, visual short-termmemory binding,

and spatial working memory on a smartphone device up to six times daily for 16

days, yielding up to 96 assessments per person. We employed heterogeneous variance

multilevel models using log-linear prediction of residual variance to simultaneously assess

cognitive status differences in mean performance, within-day variability, and day-to-day

variability. We further tested whether these differences were robust to the influence of

environmental contexts under which assessments were performed.

Results: Individuals with MCI exhibited greater within-day variability than

those who were CU on ambulatory assessments that measure processing

speed (p < 0.001) and visual short-term memory binding (p < 0.001)

performance but not spatial working memory. Cognitive status differences in

day-to-day variability were present only for the measure of processing speed.

Associations between cognitive status and within-day variability in performance

were robust to adjustment for sociodemographic and contextual variables.
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Conclusion: Our smartphone-based digital health approach facilitates the ambulatory

assessment of cognitive performance in older adults and the capacity to differentiate

individuals with MCI from those who were CU. Results suggest variability in mobile

cognitive performance is sensitive to MCI and exhibits dissociative patterns by

timescale and cognitive domain. Variability in processing speed and visual short-term

memory binding performance may provide specific detection of MCI. The 16-day

smartphone-based EMA measurement burst offers novel opportunity to leverage digital

technology to measure performance variability across frequent assessments for studying

cognitive health and identifying early clinical manifestations of cognitive impairment.

Keywords: cognitive performance variability, cognitive health, mild cognitive impairment–MCI, mobile cognitive

assessment, technology, ecological momentary assessment (EMA), intraindividual variability (IIV), Alzheimer’s

disease and related dementias (ADRD)

INTRODUCTION

Alzheimer’s disease is the sixth leading cause of death in America,
impeding health and well-being for an estimated 6.2 million
Americans currently living with the dementia stages of the illness
(1). Alzheimer’s disease and related dementias (ADRD) also
impact caregivers, families, and communities responsible for over
15 billion h of unpaid care and $350 billion in annual health care
costs (1). Older adults with mild cognitive impairment (MCI),
conceptualized as an intermediary stage between normative
cognitive aging and dementia, have more memory and thinking
problems than their age and education-level peers (2, 3).
Individuals with MCI may be targeted for secondary prevention
efforts. The present study describes a digital approach to
the measurement of ebbs and flows in cognitive performance
in everyday life through intensive repeated measurement.
Specifically, we assess variability in test performance on mobile
devices that may inform subtle differences in everyday cognitive
performance between individuals with MCI and those who were
cognitively unimpaired (CU).

Conventional approaches to distinguishing cognitive
impairment typically involve evaluating the level of cognitive
performance using single administrations of one or several
cognitive tests [e.g., (4, 5)]. This approach ignores within-
person variability in cognitive performance–a promising
behavioral signature with potential to distinguish normative
and pathological cognitive aging [e.g., (6, 7)]. Further, MCI
is an unstable marker of cognitive pathology; recent reports
and meta-analyses show that from 14 to 58% of individuals
classified as MCI revert to being CU at a follow-up evaluation
[e.g., (8–11)]. Several factors may contribute to reversion. First,
cut-scores used to define MCI are usually developed solely
based on the distribution of scores in the CU group, without
considering the distribution of scores among individuals with
impairment; we have recommended the use of diagnostic norms
that differentiate groups rather than comparative norms which
consider only the distribution of scores in the CU group (12).
Second, the single shot cognitive assessments used to diagnose
MCI have modest reliabilities resulting in random measurement
error that may contribute to misclassification. Third, cognitive
performance systematically varies within person in daily life,

often in relation to known risk factors [e.g., (13–15)]. Indeed,
variability in cognitive performance within a day and across days
is theorized to reflect, at least in part, environmental influences
and psychosocial processes that also vary throughout the day
and from day-to-day (16, 17). In this context, reversion may
result from accurate measurement of MCI status that falls
below a cut-score at the time of the assessment on a bad day.
“Bad day” effects may lead to false positive MCI classification.
“Good day” effects may lead to false negative classification. We
hypothesize that individuals with MCI exhibit greater variability
in cognitive performance; the variability in performance in
everyday life, then, could contribute to unreliability in diagnosis
and reversion.

Measuring cognitive function with ecological momentary
assessments (EMA) is ideal for monitoring these patterns of
variability from assessment-to-assessment within a day and from
day-to-day. In the present study, we use a smartphone-based
digital health approach with EMA to address these issues by
repeatedly measuring cognitive performance in people’s natural
environments, multiple times per day, across multiple days.
Using this digital health approach, we aim to identify those at
increased risk ofMCI by examining not just level of performance,
but variability in performance. We also control for the role of
everyday contexts that may impact performance variation within
and across study days.

Variability in Cognitive Performance as an
Indicator of Cognitive Impairment
Over the past 20 years, research shows that adults with cognitive
impairment are more variable in their cognitive test performance
[e.g., (6, 7, 18)], with the majority of this research measuring
variability across trials within a testing session [e.g., (19–
21)]. Trial-level variability has been associated with cognitive
decline [e.g., (22)], mild impairments [i.e., MCI classification,
(6); cognitively impaired-not-dementia (CIND) classifications,
(7)], and dementia [e.g., (18)], identifying its potential utility
as an important behavioral indicator of cognitive impairment.
Indeed, greater trial-level variability has been associated with
neurological mechanisms of cognitive impairment such as
decreases in dopamine activity measured by positron emission
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tomography (23) and other systematic changes to central
nervous system integrity [e.g., white matter hyperintensities
(24, 25)]. Performance variability across timescales longer than
trial-to-trial fluctuations, however, are relatively untapped as
indices useful in the measurement of cognitive impairment in
everyday life.

Measuring individuals multiple times per day across multiple
days unlocks the capacity to assess performance variability across
longer timescales than the trial-level. Recent advancements in
digital technology can be leveraged for this pursuit by using
ecological momentary assessment (EMA) designs [e.g., (26–
28)]. EMA features frequent, brief assessments of psychosocial
health and behavior in naturalistic settings. EMA protocols that
embed ultra-brief mobile cognitive tests facilitate measurement
of multiple “snapshots” of an individual’s cognitive performance
both within study days (i.e., within-day variability across
assessments) as well as across days (i.e., day-to-day variability).

Characterizing both timescales of within-day variability
and day-to-day variability will inform future digital health
approaches. For example, determining the differences in
within-day and day-to-day variability in performance between
individuals with MCI and those who are CU could inform
future data collection strategies. Schmiedek et al. (29) showed
reliable, systematic day-to-day variability that differed across age
groups (i.e., older adults exhibited less day-to-day variability
than younger adults) and across cognitive domains (i.e., greater
proportions of day-to-day variability were found in perceptual
tasks compared to working memory and episodic memory tasks).
It may be that older adults exhibited less day-to-day variability
in cognitive performance than younger adults because older
participants lead more routinized lives than younger participants
and thus had fewer differences in context to drive ebbs and
flows in performance. Measuring both cognitive performance
multiple times per day along with information on context before
and during performance in naturalistic settings will facilitate
an understanding of variability and the contextual factors that
contribute to it. The present study extends this analysis of single
assessments completed each day in a research office by evaluating
cognitive status (0 = CU, 1 = MCI) differences in the variability
in mobile cognitive performance both within-day and from day-
to-day in everyday life.

EMA introduces naturalistic and uncontrolled settings to
the digital measurement of cognitive performance. While
context factors such as distractions, who is around you
while completing a test, and where you are located are
commonly controlled for in a laboratory setting (e.g., individual
testing sessions in a quiet research office with minimized
external distractions), these factors are key aspects of EMA
designs that take place across a variety of physical and
social settings. Contextual factors such as distractions, social
company, and location may influence variability in cognitive
performance and obfuscate variability’s sensitivity to cognitive
impairment. The present study formally tests whether possible
relationships between cognitive status and variability in
mobile cognitive performance are driven by environmental
context by controlling for the influence of distraction, social
company, and location.

Digital Health Approach
Advances in smartphone-based digital health approaches with
mobile cognitive tests have enabled reliable and valid repeated
assessments of cognitive function in naturalistic settings (26–
28). Earlier work by our team has shown the feasibility of
integrating mobile cognitive assessments in an EMA protocol
among a diverse adult lifespan sample (ages 25–65) in the
Bronx, NY (27). In the Effects of Stress on Cognitive Aging,
Physiology and Emotion [ESCAPE; (30)] project, participants
completed smartphone-based cognitive tests up to 5 times per
day for 14 consecutive days. Reliability for average scores on
these mobile cognitive tests of working memory (Grid Memory)
and processing speed (Symbol Match) ranged from 0.97 to 0.98.
Both tasks demonstrated construct validity with factor loadings
exceeding 0.60 on relevant cognitive constructs and criterion
validity with significant correlations between in-lab assessments
and Symbol Match and Grid Memory (rs ranged from −0.39
to −0.45). High adherence, reliability, and validity of cognitive
assessments in adults within the ESCAPE study informed the
extension of these digital health approaches to a sample over the
age of 70 in the Einstein Aging Study (EAS). In the present study
we leverage the Mobile Monitoring of Cognitive Change (M2C2)
platform, an innovative mobile platform funded by the NIH
for EMA-based delivery of ultra-brief mobile cognitive testing.
M2C2, currently in the development, validation, and norming
phase [e.g., (27, 31)], enables our digital health approach to assess
cognitive performance under naturalistic circumstances multiple
times per day, across multiple days.

Past research has found greater trial-level variability in
laboratory settings to be a promising indicator of cognitive
impairment [e.g., (7)]. Critical gaps in this literature, however,
include the open questions of whether estimates of variability
operationalized at longer timescales than the trial-level and
obtained via mobile devices distinguish individuals with MCI
from individuals who are CU. To our knowledge, the present
study is the first EMA study to explore the potential utility
of variability in mobile cognitive performance within-day and
across days as sensitive markers to distinguish MCI from CU.

Within-Day vs. Day-to-Day Variability Timescales
Evaluating whether cognitive status differences emerge at both
within-day and day-to-day variability timescales (or if differences
emerge in one timescale but not the other) has important
implications for the design of future digital health approaches
for intensive repeated measurement of cognitive performance.
For example, if cognitive status differences emerge in within-day
variability, but not in day-to-day variability, studies interested in
quantifying variability in cognitive performance sensitive to MCI
should prioritize collecting more assessments within a day rather
than across days. We simultaneously assess cognitive status
differences in within-day variability and day-to-day variability in
three domains of cognitive function.

Multiple Domains of Cognitive Performance
Most research on variability in cognitive performance focuses
on processing speed [e.g., (20)]. Cognitive variability in other
domains of cognitive performance remain to be explored.
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Tasks requiring memory binding, for example, are sensitive
to Alzheimer’s disease (32–34), whereas less is known about
the sensitivity of tasks requiring spatial working memory
to pathological cognitive aging outcomes. We evaluate
three domains of cognitive function in the present study:
processing speed, visual short-term memory binding, and spatial
working memory.

The Present Study
Research Questions
To address these gaps in the understanding of variability in EMA
cognitive performance in relation to cognitive status (0 = CU,
1 = MCI), we use baseline data from the EAS, a longitudinal
study of community dwelling older adults in Bronx County,
NY. Past research suggests that individuals with MCI perform
worse on mobile cognitive tests in terms of level of performance
[e.g., (35)]. The purpose of the current study is to determine
whether individuals with MCI also exhibit greater variability in
performance within intensive repeatedmeasurements within and
across study days. We ask two research questions.

First, does variability in performance onmobile cognitive tests
differ for individuals with MCI and those who are CU? We
hypothesize individuals with MCI will exhibit greater variability
in performance compared to those who were CU, where MCI
is defined independent of performance on the mobile cognitive
tests. For each mobile cognitive test, we evaluate cognitive status
(0 = CU, 1 = MCI) differences in the variability in mobile
cognitive performance across sessions within a day as well as
across study days to examine if differences in variability emerge
at the within-day level vs. the across-day-level timescales or both.
We further examine whether findings differ across cognitive
domains to evaluate whether mobile tests requiring speeded
responses or memory binding are particularly sensitive to MCI
based on past research on trial-level variability’s established
sensitivity to MCI and performance on memory binding tasks
being sensitive to ADRD (32, 33, 36). The extent to which
cognitive status is related to performance variability in mobile
cognitive tests requiring spatial working memory compared

to speeded responses and memory binding were evaluated in
exploratory fashion due to limited prior research attention.

Addressing research question 1 will clarify if there are
significant differences in the variability in mobile cognitive
test performance across sessions within a day and across
study days between the MCI and CU groups. However, it
does not account for the potential influence of contextual
factors. Differences in participants’ contexts before and during
completion of the cognitive tests may relate to their performance
on the tests. To formally test these possible confounders, the
second research question asks to what extent is cognitive status
related to variability in mobile cognitive performance after
controlling for EMA contextual factors? We test the effects
of distraction, location, and social company as key contextual
factors that may influence the relationship of cognitive status
with cognitive variability.

MATERIALS AND METHODS

Study Design and Procedure
We utilized baseline data from the Einstein Aging Study (EAS),
a longitudinal study of early detection of cognitive impairment
in community-dwelling older adults from Bronx County, NY.
Recruitment involved systematic sampling from registered voter
lists in the Bronx, NY. Exclusion criteria for enrollment included:
age younger than 70 years; baseline diagnosis of dementia defined
by application of standard criteria (37); alcohol/substance abuse
within the past 6months; sensory, motor, or other conditions that
may interfere with participation; chemotherapy within the past
year. Following recruitment and obtaining informed consent,
participants visited the EAS clinic to complete a full battery
of neuropsychological testing and neurological assessment.
Participants attended a second clinic visit at which they were
trained to complete the EMA protocol of self-report items
followed by brief cognitive tests on study-provided smartphone
mobile devices. Participants completed a self-initiated morning
and end-of-day survey (2–3min each/survey) and four semi-
random beeped assessment occasions during the day (4–5min

FIGURE 1 | Study design for EAS digital health approach.
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each/day), taking about 20–25min total/day (Figure 1). Each
participant was asked to complete up to 96 measurement
occasions across 16 days (16 morning, 64 beeped, 16 end-of-
day assessments).

Sample Demographics
The sample consisted of 311 systematically recruited community-
dwelling older adults (Mean age = 77, SD = 5, Range = 70–
90) from Bronx County, NY, a racially and ethnically diverse
urban setting with a population of 1.4million [11.8% older adults;
(38)]. Women comprised 67% of the sample, and average years
of education was 15 years (SD = 3.6). The sample was 45%
Non-Hispanic White, 40% Non-Hispanic Black, and 15% other
races/ethnicities (10% Hispanic White, 3% Hispanic Black, 1%
Asian,<1% other,<1%more than one race). Of the 311 recruited
participants, 100 were classified with MCI and 211 were CU.

Cognitive Status: Mild Cognitive
Impairment and Cognitively Unimpaired
Classifications
Participants were classified as having MCI or being CU
based on the Jak/Bondi algorithmic criteria (2, 39) of global
neuropsychological test performance in the EAS clinic [see (40)
for additional information]. The following 10 neuropsychological
instruments covering five cognitive domains were considered for
this classification: (1) Memory: Free recall from the Free and
Cued Selective Reminding Test (41), Benson Complex Figure
[Delayed (42)]; (2) Executive Function: Trail Making Test Part B
[limit time 300 s (43)], Phonemic Verbal Fluency [Letters F, and
L for 1min each (44)]; (3) Attention: Trail Making Test Part A
[limit 150 s (43)], Number Span [forward and backward (45)];
(4) Language:Multilingual Naming Test [MINT, total score (46)],
Category Fluency [Animals, Vegetables: 1min each (47)]; (5)
Visual-spatial: Benson Complex Figure [Immediate (42)], WAIS
III Block Design (45). The following actuarial formula was used:
(1) impaired scores, defined as >1 SD below the age, gender,
and education adjusted normative means, on both measures
within at least one cognitive domain (i.e., memory, language, or
speed/executive function); or (2) one impaired score, defined as
>1 SD below the age, gender, and education adjusted normative
mean, in each of three of the five cognitive domains measured; or
(3) a score of 4 on the Lawton Brody scale, indicating dependency
on all four instrumental activities items (48). Otherwise, an
individual was classified as being CU.

Mobile Cognitive Tests
Three mobile cognitive tests were administered to evaluate
processing speed, visual short-term memory binding, and spatial
working memory domains of cognitive function (Figure 2). Each
test took approximately 45 s to complete on average.

Processing Speed
Symbol Match was used to measure processing speed (27).
Participants were asked to compare three symbol pairs at the
top of the screen with two symbol pairs at the bottom of the
screen and decide as quickly and accurately as possible which
of the bottom-screen pairs matches a top-screen pair. The task

FIGURE 2 | Screenshots of mobile cognitive tests.

comprised of 11 trials. Mean response time of correct trials
was used to operationalize performance. Higher values reflected
slower processing speed.

Visual Short-Term Memory Binding
Color Shapes is a change detection paradigm used to measure
visual short-term memory binding (34, 36). Participants are
asked to memorize the shapes and colors of three different
polygons for 3 s. The three polygons are then removed from
the screen and re-displayed at different locations, either having
the same or different colors. Participants are then asked to
decide whether the combination of colors and shapes are the
“Same” or “Different” between the study and test phases. The task
comprised of 5 trials. A corrected recognition score calculated
as hits (# of correct “Different” responses)–false alarms (#
of incorrect “Different” responses) was used to operationalize
performance and correct for the potential of selecting the
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“Same” response at every trial. Higher values reflected better
binding performance.

Spatial Working Memory
Grid Memory was used to measure spatial working memory
(27). In an initial brief study phase, participants are asked to
memorize the location of 3 dots presented at random locations
on a 5 x 5 grid for 3 s. After an 8-s letter-cancellation visual
distractor phase, participants are then asked to recall the location
of each dot during the study phase. The free recall phase requires
participants to touch the locations in an empty 5 x 5 grid in which
the 3 dots were initially presented. The task comprised of 2 trials.
A Euclidean distance error score giving partial credit based on
the deviation of recalled locations compared to correct locations
was used to operationalize performance. Higher values reflected
worse spatial working memory performance.

EMA Contextual Variables
Three time-varying binary contextual variables that could
influence variability in cognitive performance were examined:
location, social company, and distraction. Prior to the mobile
cognitive tests, single items were asked pertaining to the
participants’ current location (at home vs. elsewhere) and social
company (alone vs. with others). Following the mobile cognitive
tests, a single item was asked pertaining to whether anything
distracted them while performing the mobile cognitive tests
(distracted vs. undistracted).

Operationalizing Mean and Variability in
Cognitive Performance
Heterogenous variance multilevel models (HV-MLM) were
used to simultaneously model mean and variability [e.g., (49–
51)]. Within the HV-MLM, mean performance was modeled
with fixed effects and variability in performance was modeled
using random effects at person and day levels with variance
allowed to depend on cognitive status, and with log-linear
prediction of the residual variance ([see Equation (1) below]. This
computationally efficient approach is suitable for determining
correlates of variability while accounting for mean performance
and serves as our operationalizations of both mean performance
and variability in cognitive performance across assessments.
Specific parameterization and details on log-linear prediction of
the residual variance are provided below.

Adherence to EMA Protocol
Adherence rate for each participant was calculated as the
proportion of complete EMA sessions out of 96 sessions. A
complete EMA session was defined as a session where the
participant completed 11 trials, 2 trials, and 5 trials for the Symbol
Match, Grid Memory, and Color Shapes tests, respectively. The
analytic sample comprised of 24,755 complete mobile cognitive
assessments. We excluded 341 EMA sessions (<1.5% of available
EMA sessions) due to incompleteness. Median adherence rate
to the 16-day EMA protocol was 82% for individuals with MCI
(Interquartile Range: 68–92%) and 90% for individuals who were
CU (Interquartile Range: 79–95%). Figure 3 provides a line plot

FIGURE 3 | Mean adherence to EMA protocol.

displaying the mean adherence rate within each day across the
16-day EMA protocol.

Analytic Strategy
We utilized multilevel modeling [PROC MIXED (52)]] given
the three-level nested structure of the data (i.e., up to 6
assessments nested within up to 16 days nested within 311
participants; yielding up to 96 assessments per person). To
first understand the variance decomposition in mobile cognitive
test performance, unconditional three-level linear mixed models
were used to estimate the proportion of total variance attributable
to each of the three components: between-person, within-person
across days, and within-person within days. To address the two
research questions, we utilized three-level heterogenous variance
multilevel models (HV-MLM). Equation (1) below expresses
the heterogeneous variance modeling approach that predicts
short-term variability in mobile cognitive test performance for
individual i on day d at assessment session s as a function of
cognitive status (0 = CU, 1 = MCI). For Research Question 1,
we controlled for linear and quadratic trends across assessment
sessions and study days to account for practice-related/learning
effects [e.g., (53)]. Preliminary analyses examining potential
cognitive status differences in these practice-related/learning
curves indicated that the linear and quadratic trends did not
vary as a function of cognitive status (ps > 0.05). As such,
interaction terms of cognitive status with the linear and quadratic
trends across sessions and days were dropped from analyses. For
Research Question 2, we further controlled for sociodemographic
and contextual variables. Sociodemographic covariates included
grand-mean-centered age and years of education (centered at
the sample averages to facilitate meaningful interpretations of
intercept and slope parameter estimates), as well as sex and
race/ethnicity. Dichotomous variables were used to capture
three time-varying EMA contextual influences on variability in
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cognitive performance: location (at home vs. elsewhere), social
company (alone vs. with others), and distraction (distracted vs.
undistracted). To separate within-person and between-person
effects, person-mean scores on each variable (i.e., proportion
of occasions on which a participant was at home, alone,
and/or distracted; “mn” appended to variable names in equation
below) were included along with the time-varying dichotomous
context variables.

HV-MLMs for Mean and Variability in Mobile Cognitive Test Performance (1)

Level-1 (session): CognitiveTestPerformancesdi = β0di (Intercept) +

β1(Sessionsdi ) + β2(Sessionsdi∗Sessionsdi ) +

β3(Distractionsdi ) + β4(Locationsdi ) +

β5(SocialCompanysdi ) + esdi

Variance of residual: Var(esdi ) = exp[z0(Intercept)+ z1 (Sessionsdi ) +

z2(Sessionsdi∗Sessionsdi ) + z3(Daydi ) +

z4(Daydi∗Daydi ) + z5(CognitiveStatusi ) + z6(Agei ) +

z7(Educationi ) + z8 (Sexi ) + z9(Race/Ethnicityi ) +

z10(Distractionsdi ) + z11(Distractionmni ) +

z12(Locationsdi ) + z13(Locationmni ) +

z14(SocialCompanysdi ) + z15 (SocialCompanymni )]

Level-2 (day): β0di = δ00i + δ01(Daydi ) + δ02(Daydi∗Daydi ) + U0di

Level-3 (person): δ00i = γ000 + γ001(CognitiveStatusi ) + γ002(Agei) +

γ003(Educationi ) + γ004(Sexi) + γ005(Race/Ethnicityi )

+ γ006(Distractionmni ) + γ007(Locationmni ) +

γ008(SocialCompanymni ) + V00i

Research Question 1 examined potential cognitive status
differences in variability in mobile cognitive test performance
across assessment sessions (z5). Research Question 2 required
additional within-person and between-person sociodemographic
and EMA contextual terms to be added to the model to assess the
extent to which a possible relationship between cognitive status
and variability in cognitive performance is robust to the influence
of EMA context. At level-1 (session-level), cognitive performance
for person i on day d at assessment session s was defined as a
function of an intercept (β0di), linear (β1), and quadratic (β2)
trends across sessions, within-person distraction (β3), within-
person location (β4), within-person social company (β5), and
residual (esdi). Since within-person variability in performance
across assessment sessions is of primary interest, especially in
its association with cognitive status, the residual variance was
allowed to depend on cognitive status and some additional

factors. Specifically, the log of the residual variance is a linear
combination of an intercept (z0), linear and quadratic trends
across assessments sessions (z1, z2, respectively), linear and

quadratic trends across days (z3, z4, respectively), cognitive

status (z5), age (z6), education (z7), sex (z8), race/ethnicity

(z9), within-person and between-person distraction (z10, z11,
respectively), within-person and between-person location (z12,

z13, respectively), and within-person and between-person social
company (z14, z15, respectively). At level-2 (day-level), cognitive
performance for person i on day d was defined as a function
of an intercept (δ00i), linear (δ01) and quadratic (δ02) trends
across days, and a random effect for the intercept to allow for
within-person variation across days (U0di), of which the variance
is allowed to differ between MCI and CU groups. At level-3
(person-level), mean cognitive performance was defined as a
function of cognitive status (γ001), age (γ002), education (γ003),

sex (γ004), race/ethnicity (γ005), between-person distraction
(γ006), between-person location (γ007), between-person social
company (γ008), and a random effect for the intercept to allow for
variation across persons (V00i), of which the variance is allowed
to differ between MCI and CU groups.

Z-tests were conducted to test the difference in level-2 (day-
level) variability in cognitive performance (U0di in Equation 1)
between two independent groups, CU and MCI. To compare the
estimates of day-level variability for the CU and MCI groups (b1
and b2), the test statistic Z was calculated as:

Z =
b1 − b2

√

σ 2
1 + σ 2

2

Where σ1 and σ2 were the standard errors of b1 and
b2, respectively.

RESULTS

Descriptive Statistics
Table 1 includes all descriptive statistics for mobile cognitive
tests, sociodemographic variables, and EMA context variables
within the cohort. Compared to participants who were CU,
individuals with MCI were significantly older, completed fewer
years of education, were more likely to be Non-Hispanic Black
and less likely to be Non-Hispanic White, and performed worse
on all three mobile cognitive tests (ps < 0.05). Unconditional
MLMs showed significant variation in all three mobile cognitive
tests (Figure 4). For Symbol Match, 66.1% of the variance
reflected between-person differences, with 9.3% of the variance
reflecting within-person variation across days, and the remaining
24.6% reflected within-person variation across sessions. For
Color Shapes, 43.2% of the variance reflected between-person
differences, with 8.5% of the variance reflecting within-person
variation across days, and the remaining 48.3% reflected within-
person variation across sessions. For Grid Memory, 36.8% of
the variance reflected between-person differences, with 3.6%
of the variance reflecting within-person variation across days,
and the remaining 59.6% reflected within-person variation
across sessions.

Heterogenous Variance Models Assessing
Cognitive Status Differences in Mean and
Variability in Mobile Cognitive Test
Performance
Mean Performance
Individuals with MCI exhibited significantly worse mean
performance on all three mobile cognitive tests (Tables 2–4,
Model 1; Figure 5). Compared to participants who were CU,
individuals withMCIwere 0.88 s slower on the SymbolMatch test
of processing speed (Est.= 0.88, SE= 0.11, p < 0.001), exhibited
a 24% lower hit/false alarm percentage score on the Color Shapes
test of visual short-term memory binding (Est. = −0.24, SE =

0.03, p < 0.001), and committed 1.03 more errors on the Grid
Memory test of spatial working memory (Est. = 1.03, SE = 0.18,
p < 0.001). All associations between MCI status and worse mean
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TABLE 1 | Descriptive statistics for sociodemographic variables, contextual variables, and mobile cognitive tests.

Full sample (N = 311) CU (N = 211) MCI (N = 100)

Variable Mean (SD) Range Mean (SD) Range Mean (SD) Range P

Adherence Rate to EMA Protocol – – – – – – <0.01

Mean adherence (%) 82.90 (16.20) 21.90, 106.20 85.20 (14.20) 21.90, 103.10 78.10 (19.00) 24.00, 106.20

Median adherence (%) 88.50 75.00, 94.80 89.60 79.20, 94.80 81.80 67.70, 91.70

Age 77.46 (4.86) 70.40, 90.60 77.06 (4.80) 70.40, 90.60 78.30 (4.90) 70.70, 90.60 <0.05

Education (in years) 14.98 (3.56) 2, 25 15.35 (3.46) 5, 25 14.20 (3.66) 2, 20 <0.01

Female (%) 67.20 – 67.30 – 67.00 – 0.96

Race/ethnicity – – – – – – –

Non-hispanic white (%) 45.34 – 50.71 – 34.00 – <0.01

Non-hispanic black (%) 40.19 – 36.49 – 48.00 – <0.05

Other (%) 14.47 – 12.80 – 18.00 – 0.14

EMA contexts (proportion of assessments)

Distracted 0.17 (0.16) 0, 0.96 0.17 (0.14) 0, 0.68 0.17 (0.19) 0, 0.96 0.93

Alone 0.44 (0.35) 0, 0.99 0.43 (0.35) 0, 0.97 0.45 (0.36) 0, 0.99 0.63

At home 0.78 (0.16) 0.08, 1.00 0.77 (0.16) 0.08, 0.98 0.80 (0.14) 0.44, 1.00 0.08

Mobile cognitive tests (person means)

Processing speed: response time (sec) 3.37 (0.90) 1.41, 7.00 3.08 (0.72) 1.87, 5.67 3.96 (0.96) 1.41, 7.00 <0.001

Relational binding: hit/false alarm (%) 0.60 (0.28) −0.06, 0.98 0.68 (0.24) −0.06, 0.99 0.43 (0.29) −0.05, 0.97 <0.001

Spatial working memory: sum of errors 4.62 (1.61) 0.28, 8.31 4.29 (1.59) 0.28, 8.31 5.30 (1.44) 0.87, 8.06 <0.001

CU = cognitively unimpaired; MCI = Classification of mild cognitive impairment (MCI) defined by Jak/Bondi criteria; Range = full range of data for each variable; P, p-values from

evaluation of cognitive status group differences in study variables using chi-square tests for categorical variables and independent t-tests for continuous variables; Median adherence,

values under the “Mean (SD)” columns reflect median adherence rates and values under the “Range” columns reflect interquartile ranges. Upper bounds of range values for Mean

Adherence (%) exceed 100% because participants were able to self-initiate additional assessment sessions that resulted in some participants completing more than 96 assessments

sessions. Other: Category including Hispanic White (9.63%), Hispanic Black (2.94%), Asian (1.28%), other (0.41%), and more than one race (0.40%). Response Time = higher values

indicate slower/worse performance in Symbol Match test of processing speed. Hit/False Alarm (%) = higher values indicate better performance in Color Shapes test of visual short-term

memory binding. Sum of Errors = higher values indicate worse performance in Grid Memory test of spatial working memory.

performance were robust to adjustment for sociodemographic
and EMA contextual variables (see Tables 2–4, Model 2).

Variability Within-Day Across Assessment Sessions
Individuals with MCI exhibited significantly greater within-day
variability on two of the three mobile cognitive tests (Tables 2–
4, Model 1; Figure 5). Specifically, compared to CU participants,
the residual variance (on log scale) for individuals with MCI
was 0.53 units higher in the Symbol Match test of processing
speed (Est. = 0.53, SE = 0.02, p < 0.001; or 70% higher
residual variance among MCI vs. CU), 0.32 units higher in the
Color Shapes test of visual short-term memory binding (Est. =
0.32, SE = 0.02, p < 0.001; or 38% higher residual variance
among MCI vs. CU), but not significantly different in the Grid
Memory test of spatial working memory (Est. = −0.01, SE =

0.02, p = 0.63). Thus, compared to participants who were CU,
individuals with MCI were more variable within-days across
assessments in processing speed and visual short-term memory
binding performance. Variability in spatial working memory
performance did not differ between individuals with MCI and
those who were CU.

Associations between MCI status and variability in
performance across EMA assessment sessions were robust to
adjustment for sociodemographic and EMA contextual variables
(see Tables 2–4; Model 2). Compared to CU participants, the
residual variance (on log scale) for individuals with MCI was

0.52 units higher in the Symbol Match test of processing speed
(Est. = 0.52, SE = 0.03, p < 0.001; or 68% higher residual
variance among MCI vs. CU), 0.26 units higher in the Color
Shapes test of visual short-term memory binding (Est.= 0.26, SE
= 0.03, p < 0.001; or 30% higher residual variance among MCI
vs. CU), but not significantly different in the Grid Memory test
of spatial working memory (Est. = 0.01, SE = 0.03, p = 0.61).
Thus, MCI differences in the variability in mobile cognitive
performance within-days across assessments of processing speed
and visual short-term memory binding were not a byproduct of
within-person fluctuations or between-person differences due to
EMA contextual factors.

Variability Across Study Days
The variance of a level-2 (day-level) random intercept was
estimated for both CU and MCI participants to examine
cognitive status differences in the variability in mobile cognitive
performance across study days (in addition to within-day
variability modeled at level-1). Individuals with MCI exhibited
greater variability across study days on the Symbol Match test of
processing speed (Table 2, Model 1: MCI: Est.= 0.06, SE= 0.01,
p < 0.001; CU: Est.= 0.04, SE= 0.003, p < 0.001), but exhibited
similar or slightly smaller amounts of day-level variability on the
Color Shapes test of visual short-term memory binding (MCI:
Est. = 0.01, SE = 0.01, p < 0.001; CU: Est. = 0.01, SE = 0.003,
p < 0.001) and Grid Memory test of spatial working memory
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FIGURE 4 | Variance decompositions for mobile cognitive tests.

(MCI: Est. = 0.14, SE = 0.04, p < 0.001; CU: Est. = 0.18, SE
= 0.03, p < 0.001). Z tests of these point estimates revealed the
only statistically significant cognitive status difference in day-
level variability was in the Symbol Match test (Z = 2.88, p <

0.01). Variability across study days was not significantly different
between MCI and CU participants for Color Shapes (Z = −0.15,
p= 0.88) and Grid Memory (Z =−0.80, p= 0.42) tests.

EMA Contextual Influences on Within-Day
Variability in Mobile Cognitive Performance
Within-Person Associations
Within-day variability in performance on all three mobile
cognitive tests was higher when participants were distracted
vs. when participants were not distracted (Symbol Match: Est.
= 0.20, SE = 0.04, p < 0.001; Color Shapes: Est. = 0.21, SE
= 0.03, p < 0.001; Grid Memory: Est. = 0.08, SE = 0.03, p
< 0.05). Within-day variability in Symbol Match performance
was lower when participants were alone vs. when participants
were with others (Est. = −0.10, SE = 0.04, p < 0.01). No
within-person association emerged between social company and
variability for Color Shapes (Est. = −0.02, SE = 0.03, p = 0.61)
and Grid Memory (Est. = −0.02, SE = 0.03, p = 0.50). Within-
day variability in Symbol Match performance was lower (Est. =
−0.12, SE = 0.04, p < 0.001) when participants were home vs.
when participants were elsewhere. No within-person association
emerged between location and variability for Color Shapes (Est.
= −0.06, SE = 0.03, p = 0.07) and Grid Memory (Est. = −0.03,
SE= 0.03, p= 0.38).

Between-Person Associations
Individual differences in the proportion of distracted sessions
were not associated with within-day variability in any of the 3
mobile tests (Symbol Match: Est. = −0.13, SE = 0.09, p = 0.15;
Color Shapes: Est. = −0.03, SE = 0.09, p = 0.72; Grid Memory:
Est. = −0.01, SE = 0.09, p = 0.87). Individual differences in the
proportion of sessions completed alone was associated with Color
Shapes performance (Est. = −0.24, SE = 0.05, p < 0.001) such
that participants who were alone more often had less within-
day variability in performance. No between-person association
between social company and variability emerged for Symbol
Match (Est. = −0.09, SE = 0.05, p = 0.06) and Grid Memory
(Est. = −0.03, SE = 0.05, p = 0.57). Individual differences in
the proportion of sessions completed at home was not associated
with within-day variability in any of the 3 mobile tests (Symbol
Match: Est. = 0.15, SE = 0.09, p = 0.09; Color Shapes: Est.
= −0.05, SE = 0.09, p = 0.55; Grid Memory: Est. = 0.10,
SE= 0.09, p= 0.26).

DISCUSSION

In a diverse sample of community-dwelling older adults,
we explored the potential utility of variability in mobile
cognitive performance as a sensitive marker of MCI. With
heterogeneous variance multilevel models, we simultaneously
assessed differences in mean performance and within-person
variability between CU and MCI groups. We evaluated
differences in within-day variability and day-to-day variability
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TABLE 2 | Heterogeneous variance models examining cognitive status differences

in mean and variability in symbol match performance.

Symbol match test of processing speed

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and EMA context

adjusted

Parameter Estimate (SE) Estimate (SE)

Fixed effects

Model Mean

Intercept (γ001) 3.57 (0.05)*** 3.00 (0.25)***

Session linear trend (β1) −0.05 (0.01)*** −0.001 (0.01)

Session quadratic trend (β2) 0.01(0.001)*** 0.004 (0.003)
†

Day linear trend (δ01) −0.12 (0.004)*** −0.10 (0.01)***

Day quadratic trend (δ02) 0.01 (0.001)*** 0.004 (0.001)***

Cognitive status (0 = CU, 1 = MCI) 0.88 (0.11)*** 0.79 (0.11)***

(γ001)

Age (centered at mean 77 years) 0.02 (0.01)*

(γ002)

Education (centered at mean 15 −0.02 (0.01)
†

years) (γ003)

Sex (0 = Male, 1 = Female) (γ004) −0.07 (0.10)

Race/ethnicity–non-hispanic black 0.17 (0.10)
†

(ref: non-hispanic white) (γ005)

Race/ethnicity–other (ref: 0.19 (0.14)

non-hispanic white) (γ005)

Within-person distracted (β3) 0.11 (0.01)***

Within-person alone (β5) −0.01 (0.01)

Within-person home (β4) 0.02 (0.01)

Between-person distracted (γ006) 0.35 (0.30)

Between-person alone (γ008) 0.04 (0.13)

Between-person home (γ007) 0.41 (0.28)

Model within-person variability

(residual variance)

Exp(Intercept) (Exp(z0)) 0.42 (0.01)*** 0.39 (0.03)***

Session linear trend (z1) −0.09 (0.02)*** −0.11 (0.03)***

Session quadratic trend (z2) 0.02 (0.003)*** 0.02 (0.01)**

Day linear trend (z3) −0.12 (0.01)*** −0.12 (0.01)***

Day quadratic trend (z4) 0.01 (0.001)*** 0.01 (0.001)***

Cognitive status (0 = CU, 1 = MCI) 0.53 (0.02)*** 0.52 (0.03)***

(z5)

Age (centered at mean 77 years) 0.001 (0.003)

(z6)

Education (centered at mean 15 −0.03 (0.004)***

years) (z7)

Sex (0 = Male, 1 = Female) (z8) 0.03 (0.03)

Race/ethnicity–non-hispanic black 0.19 (0.03)***

(ref: non-hispanic white) (z9)

Race/ethnicity–other (ref: 0.12 (0.04)**

non-hispanic white) (z9)

Within-person distracted (z10) 0.20 (0.04)***

Within-person alone (z14) −0.10 (0.04)**

Within-person home (z12) −0.12 (0.04)***

(Continued)

TABLE 2 | Continued

Symbol match test of processing speed

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and EMA context

adjusted

Parameter Estimate (SE) Estimate (SE)

Between-person distracted (z11) −0.13 (0.09)

Between-person alone (z15) −0.09 (0.05)
†

Between-person home (z13) 0.15 (0.09)
†

Random effects

Level-3 (Person) (V00i)

Intercept (CU) 0.50 (0.05)*** 0.45 (0.05)***

Intercept (MCI) 0.89 (0.13)*** 0.86 (0.13)***

Level-2 (Day) (U0di)

Intercept (CU) 0.04 (0.003)*** 0.04 (0.003)***

Intercept (MCI) 0.06 (0.01)*** 0.05 (0.01)***

−2LL 43745.0 28203.8

N = 311. ref = reference group; CU = cognitively unimpaired; Cognitive status,

Classification of mild cognitive impairment (MCI) scored as 0 = CU, 1 = MCI. The level-2

and level-3 random intercepts are allowed to have different variance between CU and MCI

participants. Parameters under Model Within-Person Variability (Residual Variance)= fixed

effects predicting variability in cognitive performance across assessment sessions using

log-linear prediction of the residual variance. Coefficients from Equation (1) appended to

parameter labels to align table contents with the analytic plan.
†p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.

in mobile cognitive performance to assess which timescale
of variability is most sensitive to MCI. We included mobile
cognitive tests of processing speed, visual short-term memory
binding, and spatial working memory to ensure broad evaluation
of findings across multiple domains of cognitive function.
Overall, results suggest variability in cognitive performance
distinguishes MCI and exhibits dissociative patterns by timescale
and cognitive domain. All findings were robust to adjustment for
distraction, location, and social company, providing additional
support for the hypothesis that differences in variability between
the MCI and CU groups is not a byproduct of within-person and
between-person contextual factors. We discuss the findings in
comparison and extension of prior research evaluating variability
in cognitive performance as a promising indicator of normative
and pathological cognitive aging [e.g., (6, 7, 22)]. Considerations
for monitoring and identifying individuals at increased risk
of cognitive impairment with smartphone-based digital health
approaches are discussed in the context of measurement burst
designs with EMA protocols.

Variability in Mobile Cognitive Performance
Is Sensitive to MCI
Consistent with expectations and previous work [e.g., (6, 7)],
both mean and variability in performance differed between the
MCI and CU groups. Compared to older adults who were CU,
participants with MCI exhibited worse mean performance on
all three mobile cognitive tests–slower average processing speed,
worse average visual short-term memory binding performance,
and worse average spatial working memory performance. These
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TABLE 3 | Heterogeneous variance models examining cognitive status differences

in mean and variability in color shapes performance.

Color shapes test of visual short-term memory binding

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and context adjusted

Parameter Estimate (SE) Estimate (SE)

Fixed effects

Model mean

Intercept (γ001) 0.50 (0.02)*** 0.49 (0.08)***

Session linear trend (β1) 0.004 (0.003) 0.002 (0.01)

Session quadratic trend (β2) −0.001 (0.001) −0.001 (0.001)

Day linear trend (δ01) 0.04 (0.002)*** 0.03 (0.002)***

Day quadratic trend (δ02) −0.002 (0.001)*** −0.001 (0.001)***

Cognitive status (0 = CU, 1 = MCI) −0.24 (0.03)*** −0.21 (0.03)***

(γ001)

Age (centered at mean 77 years) −0.01 (0.003)*

(γ002)

Education (centered at mean 15 0.02 (0.004)***

years) (γ003)

Sex (0 = Male, 1 = Female) (γ004) −0.01 (0.03)

Race/ethnicity–non-hispanic black −0.08 (0.03)*

(ref: non-hispanic white) (γ005)

Race/ethnicity–other (ref: 0.004 (0.04)

non-hispanic white) (γ005)

Within-person distracted (β3) −0.04 (0.01)***

Within-person alone (β5) 0.003 (0.01)

Within-person home (β4) 0.04 (0.01)***

Between-person distracted (γ006) 0.02 (0.09)

Between-person alone (γ008) 0.05 (0.04)

Between-person home (γ007) 0.01 (0.09)

Model within-person variability

(residual variance)

Exp(Intercept) (Exp(z0)) 0.12 (0.004)*** 0.14 (0.01)***

Session linear trend (z1) −0.02 (0.02) 0.01 (0.03)

Session quadratic trend (z2) −0.001 (0.003) −0.01 (0.01)

Day linear trend (z3) −0.11 (0.01)*** −0.12 (0.01)***

Day quadratic trend (z4) 0.01 (0.001)*** 0.01 (0.001)***

Cognitive status (0 = CU, 1 = MCI) 0.32 (0.02)*** 0.26 (0.03)***

(z5)

Age (centered at mean 77 years) 0.02 (0.003)***

(z6)

Education (centered at mean 15 −0.02 (0.03)

years) (z7)

Sex (0 = Male, 1 = Female) 0.14 (0.03)***

(z8)

Race/ethnicity–non-hispanic black 0.13 (0.03)***

(ref: non-hispanic white) (z9)

Race/ethnicity–other (ref: 0.18 (0.04)***

non-hispanic white) (z9)

Within-person distracted (z10) 0.21 (0.03)***

Within-person alone (z14) −0.02 (0.03)

Within-person home (z12) −0.06 (0.03)
†

(Continued)

TABLE 3 | Continued

Color shapes test of visual short-term memory binding

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and context adjusted

Parameter Estimate (SE) Estimate (SE)

Between-person distracted (z11) −0.03 (0.09)

Between-person alone (z15) −0.24 (0.05)**

Between-person home (z13) −0.05 (0.09)

Random effects

Level-3 (Person) (V00i)

Intercept (CU) 0.06 (0.01)*** 0.05 (0.01)***

Intercept (MCI) 0.08 (0.01)*** 0.08 (0.01)***

Level-2 (Day) (U0di)

Intercept (CU) 0.01 (0.01)*** 0.01 (0.001)***

Intercept (MCI) 0.01 (0.01)*** 0.01 (0.001)***

−2LL 12035.0 7533.2

N = 311. ref = reference group; CU = cognitively unimpaired; Cognitive status,

Classification of mild cognitive impairment (MCI) scored as 0 = CU, 1 = MCI. The level-2

and level-3 random intercepts are allowed to have different variance between CU and MCI

participants. Parameters under Model Within-Person Variability (Residual Variance)= fixed

effects predicting variability in cognitive performance across assessment sessions using

log-linear prediction of the residual variance. Coefficients from Equation (1) appended to

parameter labels to align table contents with the analytic plan.
†p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.

observed cognitive status differences in level of performance for
all tested domains of cognitive function are broadly consistent
with extant literature demonstrating MCI-related deficits in
multiple domains of cognitive function including processing
speed, as well as tests requiring visuospatial skills and general
executive functioning [e.g., (6, 54, 55)]. The main advance of the
current study, however, is that differences between participants
with MCI and those who were CU also emerged in variability in
cognitive performance under naturalistic circumstances.

Unlike the uniform reductions in mean performance in
the MCI group, the cognitive status differences in variability
in mobile cognitive performance emerged for two of the
three mobile cognitive tests and domains. Consistent with our
hypotheses, individuals with MCI exhibited greater within-day
variability for mobile tests of processing speed and visual short-
term memory binding. The lack of differences on the test
of spatial working memory was unexpected; the implications
of this finding are discussed below. To our knowledge, the
present study is the first examination of cognitive status
differences in the variability in mobile cognitive performance
across assessment sessions nested within days in naturalistic
settings. Thus, our findings extend previous work in two primary
ways. First, the extant literature on cognitive status differences
in variability in cognitive performance largely operationalize
variability as trial-level fluctuations in speeded responses [e.g.,
(20)]. We demonstrate that variability from assessment-to-
assessment within a day, a longer timescale than trial-to-trial
fluctuations, is also sensitive to MCI. The present study’s findings
are broadly consistent with expectations formulated based on
trial-level variability’s established sensitivity to MCI [e.g., (6,
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TABLE 4 | Heterogeneous variance models examining cognitive status differences

in mean and variability in grid memory performance.

Grid memory test of spatial working memory

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and context adjusted

Parameter Estimate (SE) Estimate (SE)

Fixed effects

Model mean

Intercept (γ001) 4.66 (0.12)*** 3.72 (0.46)***

Session linear trend (β1) 0.06 (0.02)** 0.03 (0.04)

Session quadratic trend (β2) −0.004 (0.004) 0.01 (0.01)

Day linear trend (δ01) −0.08 (0.01)*** −0.08 (0.01)***

Day quadratic trend (δ02) 0.002 (0.001)* 0.002 (0.001)
†

Cognitive status (0 = CU, 1 = MCI) 1.03 (0.18)*** 0.79 (0.16)***

(γ001)

Age (centered at mean 77 years) −0.01 (0.02)

(γ002)

Education (centered at mean 15 −0.16 (0.02)***

years) (γ003)

Sex (0 = Male, 1 = Female) (γ004) 0.91 (0.17)***

Race/ethnicity–non-hispanic black 0.43 (0.18)*

(ref: non-hispanic white) (γ005)

Race/ethnicity–other (ref: 0.06 (0.24)

non-hispanic white) (γ005)

Within-person distracted (β3) 0.26 (0.05)***

Within-person alone (β5) −0.07 (0.05)

Within-person home (β4) −0.18 (0.05)***

Between-person distracted (γ006) 0.84 (0.50)
†

Between-person alone (γ008) −0.06 (0.24)

Between-person home (γ007) 0.28 (0.52)

Model within-person variability

(residual variance)

Exp(Intercept) (Exp(z0)) 4.72 (0.14)*** 4.17 (0.36)***

Session linear trend (z1) −0.03 (0.02) −0.04 (0.03)

Session quadratic trend (z2) 0.004 (0.003) 0.01 (0.01)

Day linear trend (z3) −0.03 (0.01)*** −0.02 (0.01)*

Day quadratic trend (z4) 0.001 (0.001)* 0.001 (0.001)

Cognitive status (0 = CU, 1 = MCI) −0.01 (0.02) 0.01 (0.03)

(z5)

Age (centered at mean 77 years) −0.003 (0.003)

(z6)

Education (centered at mean 15 −0.01 (0.004)

years) (z7)

Sex (0 = Male, 1 = Female) (z8) 0.08 (0.03)**

Race/ethnicity–non-hispanic black −0.01 (0.03)

(ref: non-hispanic white) (z9)

Race/ethnicity–other (ref: −0.003 (0.04)

non-hispanic white) (z9)

Within-person distracted (z10) 0.08 (0.03)*

Within-person alone (z14) −0.02 (0.03)

Within-person home (z12) −0.03 (0.03)

Between-person distracted (z11) −0.01 (0.09)

Between-person alone (z15) −0.02 (0.03)

(Continued)

TABLE 4 | Continued

Grid memory test of spatial working memory

Model 1:

unadjusted main

effects

Model 2:

sociodemographic

and context adjusted

Parameter Estimate (SE) Estimate (SE)

Between-person home (z13) 0.10 (0.09)

Random effects

Level-3 (Person) (V00i)

Intercept (CU) 2.48 (0.25)*** 1.86 (0.19)***

Intercept (MCI) 2.00 (0.29)*** 1.37 (0.22)***

Level-2 (Day) (U0di)

Intercept (CU) 0.18 (0.03)*** 0.20 (0.04)***

Intercept (MCI) 0.14 (0.04)*** 0.18 (0.06)**

−2LL 107016.1 69955.1

N = 311. ref = reference group. CU = cognitively unimpaired; Cognitive Status =

Classification of mild cognitive impairment (MCI) scored as 0 = CU, 1 = MCI. The level-2

and level-3 random intercepts are allowed to have different variance between CU and MCI

participants. Parameters under Model Within-Person Variability (Residual Variance)= fixed

effects predicting variability in cognitive performance across assessment sessions using

log-linear prediction of the residual variance. Coefficients from Equation (1) appended to

parameter labels to align table contents with the analytic plan.
†p < 0.10. *p < 0.05. **p < 0.01. ***p < 0.001.

7)] and links to central nervous system integrity [e.g., (24)].
Though prior research has shown that memory binding tasks
are sensitive to ADRD (32, 33, 36), past work assessed level
of performance but not variability. Our findings on variability
in performance suggest that individuals with MCI may have
compromised neurological capacity to consistently perform tasks
throughout the day that require speeded responses and memory
binding. Our work also helps address an open question in the
field as to whether mobile cognitive tests within an EMA protocol
can be used to evaluate cognitive status differences in variability
in mobile cognitive performance across assessments. We provide
preliminary evidence for this smartphone-based digital health
approach with findings that suggest individuals with MCI exhibit
greater variability inmobile cognitive test performance compared
to those were CU.

These EMA-based findings for within-day variability in
performance on smartphones are broadly consistent with prior
work in laboratory settings that has found trial-level variability
to be associated with greater likelihood of MCI classification
at cross-section (6) and greater odds of CIND classification
4 years later (7). Thus, the present study extends prior
research with preliminary evidence suggesting that assessments
of variability over longer timescales than the trial-level also
show promise for identifying early clinical manifestations of
cognitive impairment. Longitudinal work is needed however, to
fully evaluate its predictive validity in detecting incidentMCI and
other pathological cognitive aging outcomes years later.

Individuals with MCI and participants who were CU did not
differ in variability on our test of spatial working memory. The
dissociative pattern among tests supports and extends conceptual
and empirical accounts demonstrating that mean and variability
reflect distinct cognitive processes [e.g., (7, 16, 56, 57)]. If mean
and variability conferred redundant information, we would have
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FIGURE 5 | Cognitive status differences in mean and variability in mobile cognitive performance.

expected that the tests that show mean differences would also
show cognitive status differences in variability.While worsemean
performance in general (i.e., across all three mobile tests) appears
to be a ubiquitous marker of MCI, variability in processing
speed and visual short-term memory binding performance may
provide specific detection of MCI. Variability in tasks without
speeded responses or memory binding paradigms, in contrast,
may have less utility in identifying those at increased risk of MCI.
A dissociative pattern could also arise if the Grid Memory test
provides a less reliable estimate of variability. Future research
leveraging longitudinal data across multiple years is needed to
assess the separate and joint predictive validity of baseline mean
and variability (and rates of change in mean and variability) for
assessing cognitive decline [e.g., (22)] and MCI [e.g., (7)] years
later. To determine if the dissociation in mean performance and
variability in performance reflects the domain being measured or
an attribute of the test, additional exploration with a variety of
domain-specific measures would be required.

Value of EMA Measurement Burst Design
for Smartphone-Based Digital Health
Approach to Assessing Risk of Cognitive
Impairment
In utilizing a digital health approach and leveraging the
EMA measurement burst design of EAS, we were able to
operationalize multiple timescales of cognitive performance

variability in naturalistic settings. The innovative integration
of smartphones equipped with ultra-brief cognitive tests and
multiple assessments repeated every day for 16 consecutive days
allowed for evaluation of within-day and day-to-day variability–
relatively untapped timescales of variability as possiblemarkers of
MCI. We would not have been able to evaluate these timescales
of short-term variability without the EMA measurement burst
design and digital health approach. Distinguishing within-day
variability from day-to-day variability revealedmore pronounced
cognitive status differences in within-day variability compared to
day-to-day variability. Compared to CU participants, individuals
with MCI exhibited significantly greater within-day variability in
mobile tests of processing speed and visual short-term memory
binding. These cognitive status differences in variability were
less pronounced at the day-to-day timescale for the tests of
processing speed and visual short-term memory binding, and
were ultimately non-significant for the test of visual short-term
memory binding.

Our results may have important implications for the design of
future digital health approaches to measuring mobile cognitive
performance and cognitive status differences therein. Given
within-day variability appears to be more sensitive to MCI than
day-to-day variability in the current study, measurement burst
designs with EMA protocols and research questions focused
on differentiating cognitive status may consider prioritizing
more assessments within a given study day rather than adding
additional study days in each measurement burst epoch. This
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is an important implication for EMA protocol design because
balancing sampling density with participant burden is essential
for ensuring adherence to the protocol while retaining capacity
to observe systematic variability in cognitive performance that is
sensitive to MCI.

Our digital health approach was situated within a tradition
of intraindividual variability (IIV) approaches that harness
intensive repeated measurements (e.g., EMA) and technological
advancements for capturingmeaningful short-term variation and
enhanced sensitivity of behavioral markers of impairment [(58,
59) for a review on EMA, see (60); for reviews on IIV approaches,
see (16, 61, 62)]. While the present study identified variability
in mobile cognitive performance across assessment sessions
as a behavioral marker of MCI, other indices of behavioral
variability show promise as markers of impairment as well.
Indeed, past research adopting IIV approaches have identified
a broad range of behavioral markers of cognitive decline and
impairment, including variability in gait performance measured
by passive in-home infrared sensors (63) and computerized
walkways [e.g., (64)], as well as variability in computer mouse
movements measured during in-home computer use (65). Each
of these behavioral markers lend support for digital health and
IIV approaches that assess performance dynamics in naturalistic
settings (e.g., EMA protocols, passive monitoring in homes) for
sensitive detection of subtle changes within persons and early
clinical manifestations of cognitive impairment.

Further, collecting information on the context in which
participants perform the mobile cognitive tests helps to specify
the moments when variability in performance is heightened
or lessened. The current study found within-day cognitive
performance variability to be higher when participants were
distracted and lower when participants were alone and at
home. Additionally, adjusting for EMA context variables
when examining cognitive status differences in variability in
mobile cognitive performance helps to strengthen the case for
variability’s sensitivity to MCI if the effects are robust to their
inclusion as they were in the current study.

Limitations and Future Directions
Several limitations of this study should be considered. Analyses
were correlational and cross-sectional, which prevent any causal
or temporal conclusions concerning the predictive validity of
variability as a sensitive indicator of MCI status. Future work is
needed to assess the predictive validity of variability in cognitive
performance with longitudinal data to determine if greater
variability in performance predicts changes in cognitive function
and higher odds of incident MCI year(s) later. Importantly,
data from bursts 2 and 3 of the EAS EMA measurement burst
protocol are currently being processed by the EAS team and
will offer an ideal analytic opportunity in future work to assess
variability at burst 1 as a predictor of incident MCI at subsequent
bursts (i.e., 1–2 years later), as well as other longitudinal research
questions pertaining to annual change in variability in cognitive
performance within- and between-persons. Further, we cannot
rule out the potential for false positive MCI classifications due
to the unstable nature of MCI as an indicator of cognitive
pathology in general and the use of Jak/Bondi algorithmic criteria

of global neuropsychological test performance from a single
visit to the EAS clinic. While outside the scope of the present
study, longitudinal work with at least a second comprehensive
neuropsychological evaluation 1 year later will help to ensure
true positive MCI cases and identify instances of reversion in
individuals initially classified with MCI.

Finally, the present study examined estimates of variability
in performance across assessments, controlling for between-
person and within-person contextual influences (distraction,
location, social company). It did not evaluate possible between-
person and within-person conceptual/theoretical influences on
these estimates of variability. Recent work has demonstrated
that trial-level variability is systematically related to daily
variations in stress (15), negative affect (19), and perceived
control (66). In addition to work on trial-level variability, prior
work has also found that working memory performance is
worse on high-stress days compared to low-stress days (53),
as well as days with higher levels of negative affect (67) and
anticipatory stress upon waking (14). This line of research
broadly informs personalized approaches to optimize cognitive
health (68, 69) by characterizing for whom and at what
moments modifiable risk factors are related to early indicators
of normative and pathological cognitive aging (i.e., indices of
variability). With the present study as a foundation, future
research should evaluate the extent to which variability in mobile
cognitive test performance is impacted by fluctuations in time-
varying within-person psychosocial/health factors (e.g., stress,
affect, control beliefs, pain, sleep) and individual differences in
between-person risk factors (presence of chronic pain, presence
of chronic stress, depression diagnosis, diabetes status) and
ADRD biomarkers such as β amyloid deposition, pathologic
tau, and neurodegeneration [AT[N]; (70)]. Pinpointing within-
person and between-person sources of variability (and potential
moderating roles of cognitive status) will further clarify the
unique utility of variability in cognitive performance as an early
marker of cognitive impairment.

Our smartphone-based digital health approach leveraged the
innovative platform Mobile Monitoring of Cognitive Change,
or M2C2. Part of the larger NIH Mobile Toolbox project, the
M2C2 platform is currently in the development, validation,
and norming phase with testing underway across a wide
range of samples and study designs [e.g., (27, 31)]. See
www.mobiletoolbox.org for additional information about the
forthcoming NIH Mobile Toolbox.

CONCLUSION

Our results demonstrate that a smartphone-based digital health
approach to ambulatory assessment of cognitive performance
in older adults has the capacity to differentiate individuals with
MCI from those who are CU. Results suggest that variability
in performance on mobile devices uniquely distinguishes MCI
and exhibits dissociative patterns by timescale of variability
and cognitive domain. Within-day variability in processing
speed and visual short-term memory binding performance may
provide specific detection of MCI. The 16-day smartphone-based
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EMA measurement burst offers novel opportunities to leverage
digital technology and performance variability across frequent
assessments for studying cognitive function and identifying early
clinical manifestations of cognitive impairment.
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