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Abstract

It is well accepted that the brain’s computation relies on spatiotemporal activity of neural networks. In particular, there is
growing evidence of the importance of continuously and precisely timed spiking activity. Therefore, it is important to
characterize memory states in terms of spike-timing patterns that give both reliable memory of firing activities and precise
memory of firing timings. The relationship between memory states and spike-timing patterns has been studied empirically
with large-scale recording of neuron population in recent years. Here, by using a recurrent neural network model with
dynamics at two time scales, we construct a dynamical memory network model which embeds both fast neural and
synaptic variation and slow learning dynamics. A state vector is proposed to describe memory states in terms of spike-
timing patterns of neural population, and a distance measure of state vector is defined to study several important
phenomena of memory dynamics: partial memory recall, learning efficiency, learning with correlated stimuli. We show that
the distance measure can capture the timing difference of memory states. In addition, we examine the influence of network
topology on learning ability, and show that local connections can increase the network’s ability to embed more memory
states. Together theses results suggest that the proposed system based on spike-timing patterns gives a productive model
for the study of detailed learning and memory dynamics.
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Introduction

Recurrent neural networks of the brain compute information

through complexly spatiotemporal neural activity. Recent experi-

mental observations and theoretical studies have proposed that

spike-timing patterns (STPs) in the range of a few hundred

milliseconds play a fundamental role in sensory, motor and high-

level cognitive behaviors such as learning and memory [1–4]. For

instance, songbirds, one of the most studied neural systems, learn

and memorize the crystallized song composed by precise individual

syllables as STPs [5]. Traditionally, firing rate is used to describe the

activity of single neurons and neural networks. However, a

memorized song as a STP contains not only firing activity, i.e.,

whether neurons fire or not, but also firing timings, i.e., when

neurons fire. Therefore, memory has to be both reliable in firing

and precise in timing. Firing rate as a average measure is reliable but

not precise [2]. Thus the question is how to capture the precise

timing of memory from STPs.

Recent experimental data of hundreds of spike trains from multi-

electrode recording have identified repeated or periodic STPs [2].

There is a great interest in such a STP code in neural circuits.

Neurons in vitro produce a STP in response to an external stimulus.

However, neurons in vivo are modulated by local oscillatory neural

activities and top-down inputs. In a cortical circuit, precise STPs

thus reflect the interaction between internally generated activity and

sensory information. On the other hand, memory states are global

dynamical behaviors of the cortical network emerged from relatively

simple neural and synaptic dynamics. It has shown that several

different dynamical regions for the spontaneous network activity

generated by Poisson background inputs can be identified [6].

However, dynamical behavior of neural networks in response to

external stimuli is less well studied due to the difficulty of the

mathematical description of nonlinear high dimension dynamical

system [7,8]. Thus the essential question is how to construct a global

description of network states in terms of STPs, which is less

dependent of the existence of background spiking noise and external

inputs.

In this work, we address these questions by simulating a two time-

scale biologically realistic neural network with dynamics evolving at

two time-scales: the fast scale of neurons and synapses and slow scale

of homeostatic presynaptic-dependent synaptic scaling. After

training, the network converges to a stable state with a spare neural

trajectory as a STP. By proposing a state vector for the STP induced

by each stimulus, we show the distance of state vectors can be used

to characterize learning process and several important phenomena

of memory dynamics: partial memory recall, learning efficiency,

learning with correlated stimuli. Specifically, we examine the

influence of network topology on leaning ability, and show that local

connections can increase the network’s ability to embed more

memory states. We also show that distance measure can capture the

timing difference of memory states formed in partial memory recall

tasks and correlated-stimuli learning tasks. However, firing rate and

correlation coefficient fail to differentiate these similar memories.

Together theses results suggest that the proposed system based on
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spike-timing patterns gives a productive model for the study of

detailed learning and memory dynamics.

Methods

Neuron dynamics
The single neuron was modeled as a integrate-and-fire neuron

[9], in which the membrane potential V was described when

VvVthr as:

CV ’~{gL Vz60ð Þ{gAHP tð Þ Vz90ð Þ{Isyn, ð1Þ

where membrane time constants were 10 ms for all excitatory (E)

and inhibitory (I) neurons (gL~0:1mS
�

cm2; C~1mF
�

cm2).

Neurons were heterogeneous in the sense that firing thresholds Vthr

was set from a normal distribution (s2~5% of the mean) with the

mean for the E(I) cells as {40 {45ð ÞmV. When Vthr was reached at

the spiking time tspk, V was set to Vpeak~40mV for the duration of

the spike (tdur~1ms). Then after the spike, V was reset as the

repolarizing potential Vreset~{60 {65ð ÞmV for the E(I) cells, at

the same time, the afterhyperpolarization gAHP was turned on and

changed as tAHPg’AHP~{gAHPz�ggAHPd t{tspk{tdur

� �
, where

tAHP~10 2ð Þms for the E(I) cells. The Dirac function d was used to

set a stepwise increment of �ggAhp~0:07 0:02ð ÞmS
�

cm2 for the E(I)

cells whenever a spike occurred. The refractory period tref ~2ms

for all neurons.

Short-term plasticity
Short-term plasticity was incorporated in all synapses and

modeled as [10,11]:

R’~ 1{Rð Þ
�

trec{uRd t{tspk

� �
, ð2Þ

u’~ U{uð Þ
�

tfaczU 1{uð Þd t{tspk

� �
, ð3Þ

where R (u) was the short-term depression (facilitation) variable

with the time constant trec (tfac), and subjected to the pulsed

decrease uRd t{tnð Þ (increase U 1{uð Þd t{tnð Þ) due to the spike

at tspk. The cumulative synaptic efficacy at any time was the

product Ru that was incorporated into single synaptic dynamics

below. Specifically, E?E synapses exhibited depression: U~0:5,

trec~500ms, tfac~10ms; E?I synapses exhibited facilitation

U~0:2, trec~125ms, tfac~500ms. All inhibitory synapses

exhibited depression as basket cell synapses [12]:

U~0:25,trec~700ms, tfac~20ms.

Synapse dynamics
Each neuron received four possible synaptic currents:

Isyn ~gAMPAr t{tdð Þ V{0ð Þ

zgNMDA 1ze{0:063V=3:57
� �{1

G t{tdð Þ V{0ð Þ
zgGABAA

r t{tdð Þ Vz70ð Þ
zgGABAB

G t{tdð Þ Vz90ð Þ

ð4Þ

where synaptic delays were uniformly distributed td [ 0,2½ �. The

receptor activation r tð Þ for fast AMPA and GABAA dynamics

followed two-state kinetic models [13]:

r’~Ru:aT 1{rð Þ{br ð5Þ

where a~1:5ms{1nM{1 and b~0:75ms{1 for AMPA;

a~0:5ms{1nM{1 and b~0:25ms{1 for GABAA. T~1nM is

the presynaptic transmitter concentration. NMDA and GABAB

with slow dynamics were modeled as [14,15]:

G’~aG? sð Þ 1{Gð Þ{bG ð6Þ

s’~{
s

ts

zRu:c 1{sð Þd t{tspk

� �
ð7Þ

G? sð Þ~ 1ze{ s{hð Þ=s
� �{1

ð8Þ

where for NMDA: a~0:06ms{1, b~0:01ms{1, ts~50ms,

c~0:5, h~0:3, s~0:5; for: GABAB : a~0:01ms{1, b~

0:015ms{1, ts~200ms, c~0:05, h~0:06, s~0:01. In all synap-

ses, Ru was included for the short-term plasticity. The ratio of

NMDA to AMPA synaptic weights was fixed as gNMDA~0:6gAMPA

for all E-cells. The ratio of GABAB to GABAA synaptic weights

was fixed as gGABAB
~0:05gGABAA

for all I-cells.

Homeostatic Synaptic Scaling
Here we used a modified presynaptic dependent synaptic

scaling (PSD) [9], which assumed that the change of synaptic

weights was dependent on the activities of both pre- and post-

synaptic neurons. When a discrete system was considered, synaptic

weights from cell j to cell i at trial t was denoted as w
tð Þ

ij . Then the

PSD rule read

w
tz1ð Þ

ij ~w
tð Þ

ij zaw
:

�nn
tð Þ

j

ngoal

: ngoal{�nn
tð Þ

i

ngoal

:w
tð Þ

ij , ð9Þ

where �nn
tð Þ

i was the average activity at trial t for cell i, which was

given by

�nn
tz1ð Þ

i ~�nn
tð Þ

i za�nn n
tð Þ

i {�nn
tð Þ

i

� �
: ð10Þ

The learning rate was aw~0:01, and the time scale of activity �nn tð Þ

was a�nn~0:05. ngoal was the target activity set as 1(2)Hz for E(I)-

cells. Therefore, learning dynamics and neural dynamics were

coupled via n
tð Þ

i , the instantaneous firing rate of cell i at the tth

trial, was defined as

n
tð Þ

i : ~
1

tmax

ðtmax

t~0

d t{tk
i

� �
, ð11Þ

where tk
i ,k~1,2, . . . was the spiking time of cell i within the trial t,

and tmax~1s was the running time of one trial. When a periodic

stimulus was used, one was equivalent to one period. The mismatch

between the instantaneous and average firing rate adjusted the

interaction between neural activities and learning dynamics until

the network reached a stable state where �nn
tð Þ

i ~n
tð Þ

i ~ngoal . One

distinguished feature of homeostatic synaptic plasticity is that a

rather long history of activity is considered with a large time

constant. In particular, Eq. 10 and Eq. 9 define a dynamical system

with a mutual coupling of two distinct processes, in which neural

dynamics and learning dynamics interact with distinct timescales.

This results in a complex evolution since neural dynamics depends

Spike Timing of Memory States
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on synaptic weights of learning dynamics and learning dynamics

evolves according to activity of neural dynamics.

Network input
A stimulus was composed by randomly selected 10 E- and 5 I-

cells that fired 1 Hz. The spiking time of input was assigned at

10+1 ms (mean6SD) following a normal distribution relative to

the onset of each period of 1 s, thus one subset of cells was firing at

the beginning of each period. Selected input cells were activated

by a 1 Hz excitatory postsynaptic current. Qualitatively similar

results were obtained when the SD of the Gaussian time window

was increased. We used a small SD to simulate a brief highly

synchronous input to the network [16].

Model Networks and Parameters
All simulations were done for a network with NE~160 E- and

NI~40 I-cells connected with a probability 10% between any pair

of cells based on experimental data [17]. Results were robust to the

network size and connection probability. Initial synaptic weights

were chosen from a normal distribution with the mean as 0.6 nS for

excitatory and 0.01 mS for inhibitory synapse, respectively, and the

SD as large as 200% of the mean to introduce the heterogeneous

distribution. If initial weights were chosen as non-positive, reset

them uniformly within the range of twice of the mean. As a result,

most of initial weights were weak. Results are qualitatively same

with the different setup of initial weights as Poisson distribution. To

avoid the plasticity to induce the unphysiological state where a single

presynaptic cell fired a postsynaptic cell, the maximal excitatory

synaptic weight were set as: wEE wEIð Þ~0:09 0:05ð ÞmS. All inhib-

itory weights were fixed without plasticity. All simulations were done

in C++ using the explicit Euler method with a time step Dt~0:1ms.

The code can be downloaded at the author’s web page (,http://

www.math.ucla.edu/,liujk/publication/index.html)

Results

State Vector and Learning Time
The current network has a feature that an unique stable

trajectory of E-cells can emerge at the end of a learning process

(t?T , where T~1000s throughout the whole study). In this final

state, every E-cell fired only once within one period [Figure 1(A),

trajectory A (green) induced by stimulus A (TrajA)], and �nn and

synaptic weights reached a steady state, �nn~n~�nngoal~1Hz for E-

cells as in Eq. 10.

By sorting all E-cells according to their firing time (during any

specific learning process), and using their ordered cell indexes to

define a NE-dimensional vector, one can obtain a NE-dimensional

state vector (SV) S tð Þ as:

S tð Þ : ~ t1,t2, � � � ,tNE
ð Þ, ti [ 0,1½ �, i~1, � � � ,NE , ð12Þ

where ti was the firing time of the i-th E-cell sorted in the

ascending order [Figure 1(A), TrajA (green)]. ti was bounded

within one period of the short-term evolution, 1 second

throughout this study, and set as 0 if a cell did not fire. Note

that initially, only a portion of the E-cells fire, so that SV is not of

full rank. As the learning process proceeded, more cells fired as

synaptic weights were updated. Thus, S(t) evolved to a state vector

of full rank NE, which then characterized a STP. Hereafter, we

denoted SVA as the characteristic state vector at the end of each

Figure 1. Spatiotemporal activity patterns are developed during the learning. (A) STPs are induced by stimulus A (green) and B (yellow) in
the same coordinated neural space sorted in the ascending order of E-cells’ firing time with respect to stimulus A. The inset shows that both average
firing rates are convergent, �nn?1. (B) State vectors SVA and SVB induced by stimulus A and B, respectively, are in the same neural space formed by
SVA; (c) Learning time tl is defined as the minimal time such that the normalized distance d falls below the horizonal white line dthr~0:05. Here
tl~659 683ð Þs for stimulus A(B), respectively.
doi:10.1371/journal.pone.0006247.g001
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learning process with a given stimuli A:

SVA : ~SA Tð Þ: ð13Þ

In practice, S(t) stably converged to SVA at a finite time tlvT ,

which can be termed the learning time tl . The practical definition

of tl can be achieved using the average distance (L2 norm) of two

vectors: d tð Þ~ S tð Þ{SVAk k2

�
NE [Figure 1(C)]. Note that in the

stable case where the maximum distance is d(0), let tl be the

minimum time such that the normalized distance for all time t§tl

was less than a threshold dthr~0:05 chosen throughout this study

to insure 95% accuracy, i.e.,

tl : ~min t :
d tð Þ
d 0ð Þvdthr, t [ 0,T½ �

� �
: ð14Þ

Therefore, with the assumption that each memory corresponded

to a STP, the spike timing was the only important variable. With

different stimuli, the network presented different SV s, which

represented different memories [18]. One can study the simulated

memory dynamics of neural network with their characteristic

STPs, in which SV s were used to measure the similarity between

different STPs. To compare different STPs, one need to compare

SVs in the same coordinate system, therefore, only one set of

ordered cell indexes was used to calculate different SV s. As shown

in Figure 1, the second SVB (yellow) was coordinated into the

same neural space formed by SVA. The distance of two vectors

was calculated to compare the similarity of two STPs, which

became a global description of two network states.

Network Topology and Learning Ability
It has been shown that synaptic connections among neurons in

the local cortical network are not random but with a higher

probability between nearby neurons [17]. To define the network

topology, all E-cells were arranged into one dimensional space as a

ring since the periodic condition was used. I-cells provided the

global inhibition to all randomly selected E-cells. There are three

common topologies used in literatures:

1.) Uniformly connection (UC): each neuron connects with its

neighbors with a probability from the uniform distribution. Then

the space range of connections for a postsynaptic neuron i at the

position hi can be characterized by a diameter diam such that

neuron i connects with other neurons j at

hj : hj [ hi{
diam

2

2p

NE

,hiz
diam

2

2p

NE

� 	
,hj=hi, ð15Þ

where self-connections are excluded. In this way, there is a natural

relationship between diam and the connection probability p as

diam [ p,1½ �. Rigorously speaking, diam~1 is a special case since

NE is even and both boundaries are coincided due to the ring

structure. In practice, it is well defined since multiple connections

between a given pair is avoid. p~0:1 is used in our work [17]. It is

easy to recognize two extreme cases: one with global random

connections as diam~1, and the other with highly localized

connections as diam~p.

2.) Normal connection (NC): each neuron connects with its

neighbors with a probability from the normal distribution. Then the

space range of connections for a postsynaptic neuron i at the

position hi can be characterized by the standard deviation (SD) s of

normal distribution such that neuron i connects with those neuron j

at the position with the mean as hi and the SD as s. In this way, the

variation of s [ 0:1,1½ � gives the global or local space range of

connections, which is comparable with the UC case, but not same.

3.) Small world connection (SC): this case is based on the NC

case but with one more condition: there are sNEE synapses for

each neuron to connect randomly and globally with all other

neurons, where NEE is the number of presynaptic neurons for each

postsynaptic neuron. In our work NEE~p �NE~0:1 � 160~16.

In this way, there are some percentage of long-range connections

within the network that is dependent of the value of s [ 0:1,1½ �.
Essentially, this type of network is a small world network. It should

be noted that there are two parameters to describe the SC

network: sNC characterizing the degree of local connections (for

the clarification, denote sNC in the SC network, and leave s to

refer the NC network), and s characterizing the degree of long-

range connections.

Figure 2 shows four typical networks with different connection

topologies. In all panels, the number of synaptic connections was

same, however, the degree of localization and globalization were

varied with different topologies. All four networks have been

suggested to exist in the cortex [19]. To understand how the

variation of topology determined the learning time, we systemat-

ically changed network parameters diam,s,s within the range

0:1,1½ � to compare the learning time tl . As shown in Fig. 3, tl with

the same stimulus A as in Fig. 1 decreased with the increasing of

diam,s,s; this was a consequence of the fact that the propagation

of activity became significantly slower as connections became

more local [9]. This effect can be understood from the learning

rule Eq. 9 that is presynaptically dependent. Whenever the

presynaptic cell was a firing input, its action potential only

propagated to the downstream postsynaptic cells in its neighbor-

hood. Therefore, activity can not spread to the whole network

until its neighbors fired, which resulted in that the network highly

localized with diam~s~s~0:1 used the largest tl to reach the

target. It should be noted that tl reached its asymptotical value at

around diam~s~0:4, which implied that the network with an

immediate connection diameter reached to its optimal learning

dynamics.

Another notable phenomenon indicated in Fig. 3 is that the

learning time in the small world network (SC: s~0:1, tl&1000T )

with sparse long-range synaptic connections was much less than

that in other two network topologies (tl~1800T in UC with

diam~0:1 and NC s~0:1). This type of network, which plays a

similar role as a small-world network that has been exemplified by

the neocortex [19], can dramatically reduce the average path

length, and is critical for globally distributing the results of local

computation throughout the entire cortex.

Memory Recall
The STP described by SV was a natural characteristic of the

memory state. With SV, one can characterize the memory recall

process in terms of the distance between STPs instead of firing rate

[20]. In general, memory recall is assumed as a process of the full

memory recovery. Here it was described by the intensity of the

response to a fraction of E-inputs previously memorized (partial

cues), then we studied this process by varying the number of

stimulated E-cells (E-inputs) after the whole stimulus was learned.

This process was designed as follows. Let the network evolved first

with the full cue (the whole set of stimulus) until it reached its

steady state, then learning was turned off since synaptic weights

were stabilized, and we increased the intensity of E-inputs stepwise

as the partial cues of associative memory [20]. The changing of the

number of inhibitory inputs had little effect comparing with E-

inputs, thus the result below were averaged over all fractions of

inhibitory inputs. Figure 4(A,B) shows the evolving of the recall

Spike Timing of Memory States
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function with different partial cues, where two measures of recalled

memory quality were calculated,

(i) the reliable measure

Cfr~np

�
ngoal ð16Þ

was defined as the normalized firing rate, where np was the firing

rate of partial cue response calculated over all cells, i.e.,

np~
1

NE

PNE

i~1 n t,tð Þ at any time t (here we used t~1 since

learning was turned off after memory was formed and n t,tð Þ did

not change with t). ngoal~1 was the firing rate of full cue response.

(ii) the precise measure

Csv~1{ SVA{SVp



 

� SVAk k ð17Þ

was defined as the normalized SV distance, where SVp was the

state vector of partial cue response, and SVA was the state vector

of the reference state in Fig. 1(B). Choosing the reference state was

important since the reference coordinate system (network space)

had to be same to compare timings.

Both Cfr and Csv were consistent in that they showed the same

tendency similar to the input-output response functions observed in

experiments [21]. However, the difference between two recall

functions was that Cfr showed higher response than Csv

[Fig. 4(C,D)], and the overestimation Cfr{Csv increased with the

increasing of the intensity of partial cues, and reached the maximum

at the full cue where the fraction of E-inputs was 1. At the full cue,

both Cfr and Csv should reach to their ideal value 1, which meant

that the full memory was recovered. However, Cfr~0:88+0:02
and Cfr~0:62+0:04. This deviation was due to the effect of the

variation of inhibitory inputs. Inhibitory perturbation had a small

effect on firing rate, but a great impact on the precise timing of STP.

We should stress that after memory was formed by the PSD

learning, network states in response to partial cues was only

dependent on the balance of excitation and inhibition. A given

partial cue induced some cells fire but not at the exact time as in the

full cue case. Such a timing difference of recalled memory may

become significant in the learning process requiring precise

temporal information, such as speech signal patterns [22]. If

thousands of memory states are embedded within the brain, the

timings of STP are more sensitive to be distracted than the firing

activity, which is an evidence for temporal coding rather than rate

coding [23]. In reality, the same neural group could fire at different

time to represent different STPs, then the only difference in these

memory states is their timings not firing activities. This supports the

idea that differential timings of spikes might be a biological

mechanism to increase the memory capacity [4].

Learning with Correlated Stimuli
It has been shown that a single neuron is sensitive to correlated

inputs [24], we studied the similar question of the effect of

correlated inputs to network behaviors. If we consider a speech

letter ‘A’ with numerous memorized versions from different

persons, and take the standard version as the reference state, all

other versions can be composed into a correlated space. How to

characterize the similarity of memories induced by these different

versions of ‘A’? It is reasonable to assume different versions induce

the same (or similar) group of cells to fire, thus they have the same

firing activity. Consequently, the only difference has to be in their

memory timings, which can be described by the distance of

different SV s, but not firing rate. Here we described two

correlated stimuli with an correlation index c[ 0,1½ � according to

the number of cells coexisted in both stimuli, then we obtained a

series of STPs SV cð Þ as a function of correlation index c, and

studied these correlated memories in terms of different STPs at the

network level with the effect of network topology by measuring

their correlation coefficients r SV 1ð Þ,SV cð Þð Þ and distances

d SV 1ð Þ,SV cð Þð Þ between the reference state SV 1ð Þ and evolu-

tional state SV cð Þ with different c.

Figure 2. Visualization of three different network topologies.
(A) UC network with diam~1 is a global random network. (B) UC
network with diam~0:4. (C) NC network with s~0:4. (D) SC network
with s~0:4,s~0:1. E-cells are colored and labeled along a ring. Black
solid lines between E-cells are excitatory synapse connections. Only
10% of total synapses are shown. There are 160 synapses in each panel.
doi:10.1371/journal.pone.0006247.g002

Figure 3. Learning time decays with the fading of network
topology. Learning time tl decreases when network become more
random by increasing topology parameters (blue: UC with diam; red: NC
with s; green: SC with s and sSC~0:4). Note that the increasing diam
and s make the UC and SC network similar, where the optimal learning
dynamics reaches at an immediate connection radius diam~s~0:4.
Error bars (S.E.M.) are calculated with 3 simulations with different
random number seeds.
doi:10.1371/journal.pone.0006247.g003

Spike Timing of Memory States

PLoS ONE | www.plosone.org 5 July 2009 | Volume 4 | Issue 7 | e6247



Fig. 5(A) presents typical state vectors with different c in a locally

connected network with diam~0:1. Here we showed two memory

states induced by two correlated stimuli that were consisted of 9

shared and only 1 unshared input E-cells, which generated two

state vectors at c~1 and c~0:9. The state vector SV 1ð Þ (green) of

the reference state and SC 0:9ð Þ (yellow) of the correlated stimulus

were quite different in their timings. Such a large difference of

memory states was resulted from the small difference in two stimuli

with only one distinct input cell. Similarly, Fig. 5(B) exhibits two

memory states induced by the same stimuli but in a globally

connected network (diam~1). Note the timing difference of state

vectors was smaller than that in Fig. 5(A), which suggested that the

network topology had an effect in the learning of correlated

stimuli. We provided a whole picture with the full range of the

variation of stimulus correlation in Fig. 5(C,D). As shown in

Fig. 5(C), d SV 1ð Þ,SV cð Þð Þ increased with the decreased correla-

tion index c, which was a consequence of the stimuli-learning-

memory dependency: distinct input stimuli generated distinct STPs.

The learning behavior of the globally connected network with

diam~1 was dramatically different from that with the local connected

topology with diam~0:1. The distance d SV 1ð Þ,SV cð Þð Þ was

doubled or more with local connections, as a result, memory states

were significantly different. For a correlated stimulus, the distance

between its memory state and the reference state was large when

diam~0:1, which suggested that local connections can enhance the

network to clarify the specificity of a stimulus by holding distinct

memory states. This may be important for the mechanisms of

discrimination between correlated memory states during the learning

of similar input stimuli. Back to the example at the beginning, the

larger distance between correlated ‘A’ will make ‘A’ more sensible and

easy to be clarified. Given the sensory system is a bounded space, the

locally connected network has a large sensible space to memorize

more signals. In this sense, the local connected topology is analogous

to the brain ssytem with different and local topographic areas.

In contrast, correlation coefficient r SV 1ð Þ,SV cð Þð Þ had a

similar change independent of topology (Figure 5(D)), even though

they captured the change over correlated stimuli. In other words, r

was too insensitive to discriminate memory states. Therefore, with

a given set of correlated stimuli, the dissimilarity of STPs

characterized by d was more significant than those by r, and the

distance of state vector was more powerful to detect the subtle

changes of STPs.

Discussion

Learning dynamics
Here we employed a recurrent neural network model with two-

scale dynamics, where the learning dynamics was slower than the

fast dynamics of neurons and synapses. When a periodic stimulus

was presented in the network, we obtained a simple neural

trajectory after learning. The trail-based learning dynamics used in

this study can guarantee that the characteristic timescale of

Figure 4. Network in response to partial cues shows unreliable memory with the distracted spike timings. (A,B) Network response
measured with firing rate Cfr (A) and distance Csv (B) as a function of the intensity of partial cue (E-input) and connection diameter. Both are
normalized and Csv~1{d to compare with Cfr . (C) Overestimation of recalled memory Cfr{Csv are the subtracted matrix (B) from (A). (D) Average
Cfr{Csv over all values of diam increases with the intensity of partial cues. Error bars (S.E.M.) are collected from 3 stimulations with different random
number seeds. Each data point is an average result of the variation of the intensity of I-inputs.
doi:10.1371/journal.pone.0006247.g004
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synaptic plasticity is comparable with the biological timescale of

experiments by setting the period arbitrarily long. The similar

scheme has been used perviously in different contexts [25–27].

The current system could be generalized to a multi-scale

dynamics for neural networks, in which synaptic dynamics occurs

as a cascade of states with different levels of plasticity through

metaplastic transitions [28]. In addition, the current network could

be extended to include other types of synaptic plasticity at different

time scales [29]. One example is the so-called reward learning

based on the effect of neuromodulation on synaptic regulation, for

instance dopamine [30]. Future work is needed to systemically

study multi-scale learning dynamics of neural networks.

It should be noted that here we only consider the homeostatic

PSD plasticity, which is one type of rate-based learning rules,

where the change of synaptic weights is only dependent on the

firing activity. There is another type of synaptic plasticity, so called

the spike-based learning rule [31], which takes into account of the

spiking timing to change synaptic weights. STDP, as a typical rule

of this class, has been studied intensively [32]. One would expect

that STDP can enhance the precision of the spike timing in STPs.

However, it has been shown that the stable neural trajectory can

not be developed if we only consider the STDP learning dynamics

[33]. The future study need to consider the effect of several rules

simultaneously, for instance the combination of PSD with STDP,

or any type of rate-based and spike-based learning rules.

Computational Ability of Spike-Timing Patterns
Although current technologies allow to record simultaneously

hundreds of neurons with the precise spike timing, a theoretical

framework for understanding and decoding the functional role of

these large-scale STPs is still immature [2]. Here we used the state

vector of STP as a precisely defined measure to characterize

network states in the context of memory dynamics. With different

stimuli, the network can embed those input information,

propagate them within the whole network, and develop distinct

STPs with information on both firing activity and timing. We have

shown that the traditional measures, such as firing rate and

correlation coefficient, can not capture the timing difference of

memory states. One may question that this is because that

memory is formed by the PSD learning, which is one type of rate-

based learning rule without taking into account of the spike timing.

However, this question is a consequence of the debate between

coarse coding and fine coding [34–37]. Results in this work

support recent theoretical and experimental observations about

the significance of STPs in cortical networks [1–4]. We suggest

that spatiotemporal patterns in local connected networks have an

advantage to hold more memory states and be more sensitive to

correlated stimuli, which has a same meant as the theory of

neuronal group selection [38] where structured neuron groups

evolve with time to generate different functional areas of the brain

[4,39].

The potential information stored in STPs is suggested to be

larger and more efficient than that contained in firing rate patterns

[2]. It has been proposed for several decades that brain’s

computation relays on the ensemble activity of neural groups at

the population level [40]. In order to simplify the complexity of

STPs in the present study, each neuron fire once without any

background stochastic spiking activity. In the realistic cortical

cortex, when the same stimulus presents repeatedly, the resulting

STP is usually neither precise in timing nor reliable in firing rate

when they are aligned to the stimulus onset [2]. Here we only

Figure 5. Memories induced by correlated stimuli show distinct spike timings. Learning correlated stimuli generates distinct memories
with different spike timings but the same firing activity. (A) State vectors induced by the reference stimulus (c = 1) and a correlated stimulus (c = 0.9)
show large different timings in a network with diam~0:1. (B) State vectors induced by the reference stimulus (c = 1) and a correlated stimulus (c = 0.9)
show small different timings in a network with diam~1. (C) SV distance becomes significantly larger when diam~0:1; (D) Correlation coefficients r
nearly overlap to each other. Here 1{r is used to compare the case with d. In (A) and (B), c~0:9 means that there is only one different input cell
within the stimulus consisted of total 10 input cells. Therefore, the difference between SV 1ð Þ and SV 0:9ð Þ is due to only one unshared input cell.
doi:10.1371/journal.pone.0006247.g005
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focused on one ideal STP, however, future work has to be done

with more complex STPs associated with spontaneous neural

activity. Typical background activities are various rhythmical

oscillations with different frequencies, which might also contribute

to high-level cognitions [19,41]. Therefore, it is important to

address the question how the precise and reliable STP might

emerge in the environment with dominating rhythmic oscillations.

Characterizing Network States
Mathematical tools to describe high dimensional network states,

even a few hundreds of neurons, are still demanding. Here we

proposed a global description of network dynamics with a simple

state vector, which could be extended to describe more complicated

network states. A recent study proposed that the simple state vector

can be extracted from the varying STPs when firing activity patterns

were averaged over many trials [18], where the neural trajectory

can be obtained by sorting with the latency of the peak firing rate.

As in the current study, the experimental trajectory was a state

vector with one particular temporal order. The difference is that our

state vector has the memory of input stimulus, in contrast, the state

vector given in Ref. [18] was internally generated in a memory task.

However, the internal generation of state vector has to relay on the

past experiences of the memory task. There was no trajectory in the

control task without any learning experiences. Furthermore, they

showed that the state vector not only encoded the past memory, but

also provided the future planning of behaviors. As in our case where

different stimuli generated different memory states, different initial

conditions can provide different trajectories in their memory tasks.

Future study could explore learning mechanisms behind this kind of

memory task. Given a sea of experiment data on various behavior

tasks at a large-scale network level, the theoretical approach like the

current one may have an advantage.
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