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Abstract
Historic and current land-use changes have altered the landscape for grassland biota, with over 90% of grasslands and 
savannas converted to agriculture or some other use in north temperate regions. Reintegrating grasslands into agricultural 
landscapes can increase biodiversity while also providing valuable ecosystem services. In contrast to their well-known 
importance in tropical and subtropical ecosystems, the role of ants in temperate grasslands is often underappreciated. As 
consumers and ecosystem engineers, ants in temperate grasslands influence invertebrate, plant, and soil microbial diversity 
and potentially alter grassland productivity. As common and numerically dominant invertebrates in grasslands, ants can also 
serve as important indicator species to monitor conservation and management practices. Drawing on examples largely from 
mesic, north temperate studies, and from other temperate regions where necessary, we review the roles of ants as consumers 
and ecosystem engineers in grasslands. We also identify five avenues for future research to improve our understanding of the 
roles of ants in grasslands. This includes identifying how grassland fragmentation may influence ant community assembly, 
quantifying how ant communities impact ecosystem functions and soil processes, and understanding how ant communities 
and their associated interactions are impacted by climate change. In synthesizing the role of ants in temperate grasslands 
and identifying knowledge gaps, we hope this and future work will help inform how land managers maximize grassland 
conservation value while increasing multiple ecosystem services and minimizing disservices.
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Introduction

Grassland ecosystems support high levels of plant and ani-
mal biodiversity, but are increasingly threatened by global 
change drivers including land-use change, climate change 
and invasive species. Temperate grasslands and savannas 
have been particularly impacted and currently represent 
the single most highly converted and least protected biome 
globally (Hoekstra et al. 2005; Orlikowska et al. 2016). For 
example, in North America past conversion of grasslands to 
agriculture and other uses has resulted in the loss of more 
than 90% of the former total area of mixed grass prairies 
(Samson and Knopf 1994) and conversion continues to 
occur. Recent interest in corn ethanol production in North 

America has contributed to the continued loss and fragmen-
tation of North American grasslands (Wright and Wimberly 
2013). Similar rates of grassland loss have also occurred 
throughout Europe (Ratcliffe 1984; Poschlod and Wallis-
DeVries 2002) and over vast portions of East Asia (Tsukada 
et al. 2004). In view of these losses and global vulnerability 
(Hoekstra et al. 2005), there is great interest in grassland 
conservation and developing creative ways to reintegrate 
grasslands into agricultural landscapes (Williams et al. 2013; 
Liebman and Schulte 2015). Such managed grasslands can 
increase biodiversity, productivity, and the provision of eco-
system services from agricultural landscapes (Werling et al. 
2014; Landis et al. 2017), but require a deep understanding 
of the roles played by ecologically dominant taxa.

Ants (Hymenoptera: Formicidae) are common, dominant 
taxa in terrestrial ecosystems that play key roles in shap-
ing ecosystem structure and function. However, our under-
standing of the role of ants in temperate grasslands remains 
incomplete. In grasslands globally—including tropical and 
subtropical regions—ants are known to play important roles 
as consumers and ecosystems engineers (Hölldobler and 
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Wilson 1990; Del Toro et al. 2012), that influence inver-
tebrate, plant, and soil microbial diversity (Boulton and 
Amberman 2006; Sanders and van Veen 2011), and have 
the potential to alter grassland productivity (Dean et al. 
1997). As dominant and influential members of grasslands, 
ants can serve as indicator species to monitor conservation 
and management practices (Underwood and Fisher 2006; 
Moranz et al. 2013). Far less is known about the role of 
ants in temperate grasslands, particularly their role in pest 
suppression, soil nutrient cycling, microbial community, 
and plant community regulation (Frouz et al. 2003; Nemec 
2014).

Here, we review the role of ants in north temperate 
grasslands, with a focus on the implications for biodiver-
sity conservation and the provision of ecosystem services. 
We provide an overview of their ecological roles, highlight 
their individual interactions, and identify knowledge gaps 
in our understanding of the role ants play in the regulation 
of grassland productivity and biodiversity. Where neces-
sary we will use examples from other temperate systems 
to discuss importance of ants as consumers and ecosystem 
engineers. We then identify five avenues for future research 
to improve our understanding of the roles of ants in north 
temperate grasslands. By synthesizing current understanding 
and identifying knowledge gaps, we hope to improve data 
available for land managers to maximize conservation value 
while increasing multiple ecosystem services and minimiz-
ing disservices.

Overview of the role of ants in grasslands

The interactions between ants and other organisms is well 
supported (Rosumek et al. 2009; Del Toro et al. 2012), 
but can be complex. As consumers, ants directly and indi-
rectly impact abundance, diversity, and behavior of other 
arthropods within an ecosystem (Fig. 1). Ants can directly 
reduce populations of other organisms (herbivores, preda-
tors, etc.) through predation or competition (Styrsky and 
Eubanks 2007; Sanders et al. 2011). They can also indirectly 
influence arthropod populations through non-consumptive 
effects, where cues to the predator’s presence (e.g., visual, 
chemical) cause changes in the development, growth, or 
behavior of potential prey (Cembrowski et al. 2014; Mestre 
et al. 2014). The nature of these interactions (positive or 
negative/direct or indirect) towards other arthropods gener-
ally depends on access to plant-based carbohydrate resources 
(e.g., extrafloral nectar, hemipteran exudates). The defense 
of plant-based carbohydrate resources determines the like-
lihood of ants protecting honeydew-producing plant pests 
(Kaplan and Eubanks 2005), or reducing the presence of 
herbivores (Pringle et al. 2011), predators (Sanders and Plat-
ner 2007), or pollinators (Galen and Geib 2007) (Fig. 2). 
While in other cases, ants are known to more directly influ-
ence other arthropod populations and alter trophic food webs 
regardless of access to carbohydrate resources (Sanders and 
Platner 2007). 

Ant forging also influences their roles as ecosystem engi-
neers. As seed dispersers, ants can redistribute seeds within 
a landscape and help maintain a mosaic of plant diversity 

Fig. 1  Diagram of the interaction between ants, soil properties, 
and other organisms. Lines represent the  direct (solid) and indirect 
(dashed) impacts on organisms. Red lines represent negative interac-
tions, green lines represent positive interactions and gray represents 
an interaction that can be either positive or negative depending on 
the species considered. Ants generally have a positive effect on soil 
properties through nest construction and maintenance, improving soil 
conditions for plants. Altered soil conditions can also improve con-
ditions for decomposers but ants can directly diminish decomposer 
abundance as consumers. By improving soil conditions for micro-

bial decomposers, ants improve soil conditions for plants. Ant forg-
ing can negatively impact predator and pollinators through direct or 
indirect interactions. These can negatively impact pollination success 
or reduce beneficial predators. Seed collecting or seed harvesting 
ants can serve as either seed predators (− effect) or seed dispersers 
(+ effect). Ants can protect honeydew-producing insects, negatively 
impacting plants. In tending honeydew-producing insects, ants can 
disrupt herbivores and reduce plant herbivory. When honeydew-pro-
ducing insects are present, the overall indirect effect of ants on plants 
is positive
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(King 1977b; Dean et al. 1997). Their foraging activity 
can also concentrate resources within a nest and influence 
the availability of resources within the soil by increasing 
microbial activity, and the subsequent release of nutrients 
(Lobry de Bruyn and Conacher 1990; Jouquet et al. 2006). 
In addition, nest construction and maintenance behaviors 
can influence water infiltration and retention by increasing 
biopores for water to move through the soil (Lobry de Bruyn 
1999; Cammeraat et al. 2002). Nest construction and main-
tenance can also redistribute soil, organic matter, and nutri-
ents within the soil profile (Lobry de Bruyn 1999; Halfen 
and Hasiotis 2010). By both disturbing and redistributing 
soil and seeds within a landscape, ants can have a dramatic 
impact on grassland diversity and plant structure (Dean et al. 
1997; Dostál 2007).

Ants frequently play an important role in determining 
grassland biodiversity. The impact of ants on other inverte-
brates influences their distribution, abundance, and diversity 
within a grassland (Boulton and Amberman 2006; LeBrun 
et al. 2013). The direct effects on these groups can indi-
rectly alter plant productivity and biodiversity (Dean et al. 
1997; Dostál 2007). Although these indirect interactions are 
complex and may work in opposing directions, recent stud-
ies exploring the complexity of these interactions suggests 
the overall effect of ants on plants is positive (Styrsky and 
Eubanks 2007; Rosumek et al. 2009) (Figs. 1, 2). Moreover, 
ant forging can help maintain plant diversity by dispersing 
seeds or creating conditions for plant colonization (Dostál 

2007). By better understanding ants as important compo-
nents in grasslands, we hope to improve grassland manage-
ment and conservation.

Ants as consumers in grasslands

In the following section, we review the role of ants in north 
temperate grasslands, the interactions between ants and 
other actors (Table 1), and then ultimately discuss how these 
interactions affect the distribution, abundance, and produc-
tivity of grassland plant species.

Ants and herbivores

The impact of ants on herbivores is well documented, with 
extraordinary examples of ants forming food-for-protection 
mutualisms (Styrsky and Eubanks 2007; Rosumek et al. 
2009). In temperate grasslands, common ant species such 
as Lasius spp. are known to protect aphids and move them 
between plants (Way 1963; Pontin 1978). Honeydew pro-
ducing insects can further benefit from ant tending as the 
result of increased survivorship (e.g., reduced predation), 
decreased development time, or increased growth (Way 
1963; Bristow 1984) (Fig. 2). For example, Myrmica spp. 
tended membracide colonies produce approximately five 
times more adults, are more likely to survive longer, and 
are generally larger than adults not tended by ants (Bristow 

Fig. 2  The direct (solid) and indirect (dashed) effects of ants on 
plants. a With  access to honeydew-producing insects (e.g., aphids), 
ants can indirectly have a negative impact on plants by protecting and 
dispersing plant pests. b With access to honeydew-producing insects 
and herbivores present, ants in this system indirectly benefit plants 
because ant foraging for honeydew reduces herbivory. c If honeydew-

producing insects and both herbivores and predators present, ants can 
negatively impact populations of predators and herbivores in protect-
ing honeydew resources. Despite reducing other predators, in nega-
tively impacting herbivore feeding and abundance, the overall indirect 
effect of ants is positive
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1984). In turn, by tending honeydew-producing insects, ants 
maintain a high quality resource within their foraging range 
that is important for fueling adult workers, and in the case of 
some Lasius spp., that may serve as a significant portion of 
their protein diet (Pontin 1978). Readily accessible carbohy-
drate resources are important determining factors regulating 
colony growth, colony establishment, and worker body size 
(Wills et al. 2015).

Ant activity associated with tending honeydew-produc-
ing insects impacts the presence of other insect herbivores 
(Messina 1981; Ando and Ohgushi 2008). Ants can reduce 
herbivore populations by disrupting herbivore feeding 
(Messina 1981), or by removing them completely (Ando 
and Ohgushi 2008). Regardless of the presence of honey-
dew-producing insects, ants are known to contribute to the 
control of lepidopteran herbivores in grasslands (Sanders 
and Platner 2007). Ants are often cited as potential and 
observed predators of lepidopteran eggs and larvae (Sand-
ers and Platner 2007), including monarch butterflies (Zalucki 
and Kitching 1982) and black cutworm (López and Potter 
2000). In extreme cases, such as the introduction of an inva-
sive ant species like the raspberry crazy ant (Nylanderia 
fulva), they can be effective at reducing overall arthropod 
abundance in grasslands (LeBrun et al. 2013).

Ants and arthropod predators/parasitoids

Ants in grasslands generally reduce predator populations and 
interfere with their behavior. Ants impact arthropod preda-
tor density through direct consumption, competition, and 
non-consumptive effects (Sanders and Platner 2007; Sanders 
and van Veen 2011; LeBrun et al. 2013). In grasslands, spi-
ders are most commonly considered an important generalist 
arthropod predator, influencing a variety of ecosystem ser-
vices (Schmitz 2008). Ants prey upon spiders heavily in late 
spring through early summer (Petal et al. 1971), consum-
ing up to several thousand spiders per square meter every 
growing season (Petal and Breymeyer 1969). Ant foraging 
can also reduce spider abundance without any direct con-
sumption of spiders, as the residual chemical cues of ant 
foraging can also limit their abundance by eliciting spider 
dispersal or avoidance behavior. Mestre et al. (2014), found 
that Phylloneta impressa exposed to ant chemical cues from 
Lasius niger, a common ant species in European grasslands, 
increases spider silk dispersal by 80% and more than doubles 
the dispersal of the hunting spider Xysticus.

Ants can also impact the presence of other predators and 
parasitoids within a grassland when they enter into contact 
with ant species that tend aphids or other honeydew pro-
ducing insects (Eubanks et al. 2002; Kaplan and Eubanks 
2005). Ant tending species will generally reduce densities 
of parasitoids (Sanders and van Veen 2011), and in the case 
of the grassland ant L. niger, they can catch and kill around 

25% of the parasitoids attacking an aphid colony (Hübner 
and Völkl 1996). Invasive ant species are even more effec-
tive predators. In the US, invasive ant species like the red 
imported fire ant (Solenopsis invicta) can reduce the abun-
dance of important beneficial predators such as green lace-
wing larvae (Neuroptera: Chrysopidae) and lady beetles 
(Coleoptera: Coccinellidae) by 38 and 50%, respectively, 
in defense of their aphid colonies (Eubanks et al. 2002). 
Ant predation of other predators within grasslands can ulti-
mately positively influence the populations of herbivore and 
decomposer communities (Kaplan and Eubanks 2005), and 
herbivory (Messina 1981).

Ants and arthropod decomposers

Ants are known predators of decomposers in grassland com-
munities potentially impacting decomposer communities 
directly or via non-consumptive mechanisms as with herbi-
vores and predators. There are relatively few examples docu-
menting their impacts on decomposer abundance in temper-
ate grasslands (Sanders et al. 2011), potentially because of 
the difficulty in observing the impact of predation on below 
ground macroinvertebrate communities. However, the 
impact of ants on decomposers has been observed in other 
temperate systems, where ants directly consume decompos-
ers (Stoker et al. 1995), or indirectly disrupt decomposer 
access to food resources (Zhao et al. 2014). For example, in 
an alpine meadow system in China, an aggressive and ter-
ritorial ant species (Camponotus herculeanus) limited the 
number of coprophagous beetles and flies landing on dung 
pats, reducing egg laying success (Zhao et al. 2014).

Ants and pollinators

As with herbivores, predators, and decomposers, ant forag-
ing can influence the flower visitation behavior of pollina-
tors through direct and indirect interactions. Ants impact 
pollinator populations by reducing nesting success or con-
suming pollinators (Zammit et al. 2008). They may also 
disrupt plant–pollinator relationships and adversely affect 
plant reproduction (Ness 2006; Galen and Geib 2007). For 
example, the European fire ant (Myrmica rubra) is known 
to modify foraging behavior of bumblebees, where they 
transferred and removed more pollen in artificial flowers 
without ants than flowers with ants, and removed more pol-
len in flowers without ant scent cues than with ant scent 
cues (Cembrowski et al. 2014). In their study, Cembrowski 
et al. (2014) observed ants directly attacking bees visiting 
the artificial flowers and some bees having trouble flying 
after the interaction. Similarly, the invasive Argentine ants 
(Linepithema humile) are known to reduce pollinator forag-
ing behavior within the temperate zone (Lach 2008; Sidhu 
and Wilson Rankin 2016). This aggressive invasive species 
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holds the potential to reduce pollinator visitation duration 
by 50% and pollinator visitation is three times more likely 
on flowers without scent cues (Sidhu and Wilson Rankin 
2016). These invasive ants may be more likely to impact 
pollination than native species (Lach 2008), and are worth 
noting because of their global presence in temperate regions.

Ants can also indirectly reduce pollinator activity or 
reduce pollination services through competition for floral 
nectar (Galen and Geib 2007), and in some instances pollen 
(Byk and Del-Claro 2010). Ants are very rarely effective 
pollinators (Beattie et al. 1985), and are more often respon-
sible for damaging flowers, or robbing flowers of nectar and 
pollen resources (Galen and Geib 2007; Byk and Del-Claro 
2010). Nectar thieves, like the Formica neorufibarbus in 
high altitude meadows, are known to reduce the median seed 
set of alpine skypilot flowers (Polemonium viscosum) by 
16–45% because the ants remove the style to obtain nectar 
at the base of the flower (Galen 1999; Galen and Geib 2007). 
These ants potentially further disrupt seed-set as potential 
predators on flowers or reduced pollinator foraging behavior 
due to a perceived decrease floral resource availability, but 
little evidence suggests this occurs here (Galen and Geib 
2007). However, through floral damage, resource exploita-
tion, and impact on pollinators and pollination services, ants 
can have a significant indirect effect on plant fitness and 
flower morphology (Traveset and Richardson 2006; Galen 
and Geib 2007).

Ants and seeds

The role and importance of ants as seed harvesters in grass-
lands is often dependent on climate. In drier regions, seed 
harvesting ants typically play an important role in seed dis-
persal (MacMahon et al. 2000). Seed harvesting ant species 
are considered seed predators that also opportunistically 
collect arthropods (see MacMahon et al. 2000). As seed 
predators, these species will generally consume the entire 
seed but also disperse seeds when they are lost enroute to, 
or mistakenly discarded at the nest (Hölldobler and Wilson 
1990). In more mesic grasslands, ants can serve as seed dis-
persers (Dostál 2005; Servigne and Detrain 2008), but are 
often opportunistic, omnivores (Fiedler et al. 2007) that sup-
plement their diet with seeds when available (Beattie 1989; 
Servigne and Detrain 2008). In contrast to seed harvesting 
ants, seed dispersers leave the seed intact and are attracted 
to seeds with an elaiosome, a lipid rich external appendage 
of the seeds used to provision their larvae. Once elaiosomes 
are removed, foragers will discard the seeds. This may occur 
at any point along the path back to the nest so they are, there-
fore, considered seed dispersers (Hölldobler and Wilson 
1990). In moving seeds away from parent plants, ants can 
minimize density-dependent effects of seedling competi-
tion and mortality from seed predators (e.g., rodents). For 

example, ants can reduce impacts of seed predation by other 
seed predators (Manzaneda et al. 2005; Ness and Morin 
2008), disperse seeds into new areas (Prior et al. 2015), or 
transport seeds to ideal seed germination and establishment 
sites (Beattie and Culver 1983; Hanzawa et al. 1988).

The relative amount of seed dispersal provided by ants 
in grasslands, therefore, depends on ant community com-
position (Prior et al. 2015), but is also dependent on seed 
availability (Servigne and Detrain 2008). For example, 
Aphaenogaster rudis, a species found in temperate North 
America, is considered a keystone seed disperser of herba-
ceous plants and often responsible for a disproportionate 
amount of seed dispersal within temperate systems (Ness 
et al. 2009). The importance of A. rudis as a seed disperser 
is often studied in the context of temperate forests, but this 
species is also found in grasslands in the northeastern US 
(Wodika et al. 2014; Menke et al. 2015), and likely plays a 
similar role. Species identity can also influence dispersal dis-
tance. Based on a global data set, species from the subfamily 
Myrmicinae, such as A. rudis, tend to transport seeds over a 
shorter distance than those from the subfamily Formicinae 
(Gómez and Espadaler 1998). The keystone seed disperser, 
A. rudis, is known to move seeds on average 0.63 m, while 
other grassland species, Formica subsericea (Formicinae) 
have been observed dispersing seeds on average of 12 m 
(Pudlo et al. 1980). Grassland ant species are also known to 
collect seeds not associated with ant dispersal, acting as seed 
predators (Mittelbach and Gross 1984) and contributing to 
their dispersal in grasslands (Escobar-Ramírez et al. 2011). 
Ultimately, ants as seed consumers can influence plant diver-
sity within a landscape and are important contributors to 
plant diversity, abundance, and spatial heterogeneity of plant 
species (Escobar-Ramírez et al. 2011; Prior et al. 2015).

Ants and plants

As consumers, ants can influence distribution and diversity 
of plants within a grassland through one or more interac-
tion described above. The strength of these interactions and 
impact of ants on plants is further dependent on the species 
involved (Rosumek et al. 2009) (Fig. 2), and the bottom-up 
differences in plant quality (Pringle et al. 2014). The strength 
of the positive interaction of ants as plant protectors tends to 
increase with ant diversity (Rosumek et al. 2009), but can 
vary based on species-specific preferences in the honeydew-
producing insects they tend and protect (Bristow 1984). The 
quality of plant-derived carbohydrate resources consumed 
by ants, through honeydew-producing insects, can determine 
ant foraging behavior (Pringle et al. 2014). Higher quality 
resources elicit increased ant foraging behavior on plants 
and confer a greater level of protection from other herbi-
vores (Pringle et al. 2014). For flowering plants, ant forag-
ing for honeydew or other resources can both disrupt and 
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improve seed set (Messina 1981; Cembrowski et al. 2014), 
further altering the plant communities within a grassland 
(Dean et al. 1997). These direct and indirect interactions of 
ants as consumers have the potential to impact almost all 
plant life stages and are generally positive. Understanding 
the relationships of ants within grasslands, particularly their 
effect on decomposers and herbivores, will be important for 
determining how best to manage grasslands to maximize its 
plant and insect biodiversity.

Ant as ecosystem engineers

Nest construction and associated soil movement by ants can 
have important implications for soil microbial and inverte-
brate communities, and influence soil properties. While the 
percent soil surface occupied by nests of a single species is 
typically small (< 1–11%), the total surface area occupied by 
multiple species is rarely estimated (Lobry de Bruyn 1999), 
and is potentially much larger when one considers their 
impact on soil properties can extend beyond the surface area 
of nest structure (Drager et al. 2016). Nest structures also 
create a mosaic within grassland soils, where nutrients are 
concentrated and conditions for soil biodiversity increased 
(Boulton and Amberman 2006). In the following section, we 
will discuss how ants impact soil communities, soil qualities, 
and how these in turn can influence the structure and diver-
sity of grassland plant communities. More general reviews 
exploring the roles of ants on soil properties are also avail-
able (Cammeraat and Risch 2008; Frouz and Jilková 2008; 
Del Toro et al. 2012).

Ants, invertebrates, and microbes

Nest construction activity and the concentration of food 
resources within ant nests impact soil conditions and alter 
important belowground communities. Ants often maintain 
their nests at a constant temperature that is often higher than 
ambient air temperature (Frouz and Jilková 2008). Under 
these conditions of higher availability of resources, nutri-
ents, and constant temperatures, nests can serve as diver-
sity hot spots within a grassland. Nests can be homes to 
commensal and parasitic insect species (Campbell and 
Crist 2016), including other ant species such as Solenopsis 
molesta that is commonly found nesting within nests of other 
species, or social parasitic ant species (e.g., Polyergus spp.) 
that can usurp control within nests and force the host spe-
cies to raise their offspring (Ellison et al. 2012). In Europe, 
ant colonies are also hosts to charismatic butterfly species, 
such as the threatened Maculinea butterfly (Thomas et al. 
2009). This group of large blue butterflies parasitizes several 
ant species in the genera Myrmica, and can specialize on 
specific Myrmica species (Thomas et al. 2009).

Perhaps more importantly for grassland communities, ant 
nests can harbor a variety of microorganisms (Boulton et al. 
2003; Boulton and Amberman 2006). In drier grasslands 
in the western US, Boulton and Amberman (2006) found 
that diversity of nematodes, microarthropods, bacteria, and 
eukaryotes increases within nests of seed harvesting Mes-
sor andrei. They also found that the increase in diversity 
is most likely due to the concentration of nutrients (seeds 
and insects) rather than an increase in soil moisture due to 
nest building activity. Regardless of the mechanism, the role 
of ants in grasslands can have important implications for 
belowground activity and diversity.

Changes to soil microbial biomass and activity within a 
nest is strongly influenced by species-specific differences in 
foraging strategy or nest architecture. In central Germany, 
Dauber and colleagues found that three common grassland 
ant species play an important part in determining micro-
bial diversity and activity. They found that the nests of L. 
niger and Myrmica scabrinodis are areas of high microbial 
functional diversity relative to soils with no ant activity, 
while lower microbial diversity in Lasius flavus nests sug-
gesting species-specific differences in their impact on soil 
communities (Dauber and Wolters 2000). Microbial activity 
has also been found to be greater in M. scabrinodis nests 
relative to soils with no ant activity, while the nests of L. 
niger and L. flavus show no increase in microbial activity 
(Dauber et al. 2001). Despite limited microbial diversity and 
activity in L. flavus nests, their soil modification activities 
seem to increase root arbuscular mycorrhizal fungi (AMF) 
colonization of grasses (Dauber et al. 2008). This increased 
colonization is potentially the result of AMF spore accu-
mulation and root-spore contact, maintenance of ideal soil 
temperature, or other soil conditions (e.g., AMF diversity, 
nutrient availability) (Dauber et al. 2008). Such alterations to 
soil diversity can have important implications on food webs. 
Ant nest conditions may influence the numbers of important 
decomposers such as collembola, which can influence soil 
nutrient availability to plants, and also serve as important 
food resources for spiders (Sanders and Platner 2007). Man-
aging grasslands to sustain healthy ant communities may 
support diverse microbial communities and impact grassland 
resilience to disturbances.

Ants, pH, and nutrients

Within nest ant activity can alter soil nutrients and pH via 
three general processes: (1) ants can move, separate, and 
alter soil material during nest construction; (2) nest con-
struction can indirectly alter the solubility of nutrients 
through changes of the nest’s environmental conditions; 
and (3) ant foraging concentrates food resources and waste 
products within nests (Cammeraat and Risch 2008). The 
nature of changes to nest soil are dependent on the original 
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soil conditions. In the case of pH for example, ant activity 
generally neutralizes nest soil (Frouz and Jilková 2008). For 
example, a common European grassland species, L. niger, 
tends to increase pH in acidic soil and decrease pH in alka-
line soils (Frouz et al. 2003).

Ants can also impact the availability of important nutri-
ents in the soil. A variety of ant species from the genera 
Lasius, Myrmica, and Formica are common in grasslands 
across the north temperate regions, and their nests tend to 
harbor a greater concentration of total nitrogen and phos-
phorous within the soil (Frouz and Jilková 2008). Ant nests 
also impact the availability of nutrients within grasslands. 
Dauber et al. (2001) found that three common grassland spe-
cies (M. scabrinodis, L. niger, and L. flavus) increase the 
availability of nitrogen in nest soils. In case of L. niger, colo-
nies also tend to have greater available phosphorous than the 
surrounding soils, because shifts in soil pH increases phos-
phorus availability (Frouz et al. 2003). However, there are 
also likely to be species-specific differences in the nutrient 
availability. For example, M. scabrinodis nests have higher 
levels of available nitrogen than surrounding soils, but is 
80% lower than the available nitrogen found in nest of L. 
niger and L. flavus, which is likely due to differences in nest 
structure (Dauber et al. 2001). Nests of M. scabrinodis tend 
to have grassy vegetation integrated into the nest that may 
reduce nitrogen availability (Dauber and Wolters 2000).

Changes in nutrient availability tends to exhibit tem-
poral turnover which may overall enhance niche diversity. 
In Illinois grasslands, Lane and BassiriRad (2005) found 
an increase in total N, dissolved organic N, and  NH4

+ on 
soil from nests of Formica montana and Acanthomyops 
claviger, relative to soils from the surrounding prairie soil. 
Nutritional differences between mound and surrounding 
soils peaks 8 years post-restoration and differences dimin-
ish with time (16, 26 years) since restoration, suggesting 
that because colony mounds lack vegetation, nest mounds 
lose the added nutrient input from leaves and roots as expe-
rienced by surrounding soils (Lane and BassiriRad 2005). 
By creating diversity in nutrient concentrations, ants play 
an important role creating resource heterogeneity within a 
landscape (Dostál 2007) that may be important in helping to 
establish restored grasslands on nutrient poor soils.

Ants, bulk density, and water movement

Ant nest building activity within the soil also modifies soil 
physical structure, which can ultimately impact how water 
moves through soil. In constructing nests, ants mix soil from 
different horizons (bioturbation) (Halfen and Hasiotis 2010). 
The construction of nest chambers and tunnels, mixes soils 
and increases pore size. Overall ant nest construction activ-
ity reduces soil bulk density, with the exception of nests 
of species in sandy soils (see Cammeraat and Risch 2008). 

In Illinois, mound building ant species F. montana and A. 
claviger can reduce soil bulk density 60% relative to bulk 
density of nearby soil (Lane and BassiriRad 2005), a pattern 
also observed for other mound building ant species in grass-
lands found within the US (Drager et al. 2016) and Europe 
(Blomqvist et al. 2000; Dostál et al. 2005). In the case of F. 
subsericea, the changes in bulk density can extend laterally 
beyond the boundaries of the nest mound, through changes 
to soil properties directly under the mound structure and ant 
modifications to natural soil pores extending beyond the nest 
structures (Drager et al. 2016). By altering the soil physi-
cal structure, ant nests can in turn impact water infiltration. 
Because ants impact organic content within their nests, the 
direction of impact ants have on water infiltration (increase 
or decrease) is dependent on surrounding soil conditions. An 
increase in organic matter can increase water repellency at 
lower soil moistures (see Frouz and Jilková 2008). Therefore, 
in wet or moist soils ants can reduce water infiltration and 
increase water infiltration in drier soils. Belowground nests 
structures can improve soil drainage (Drager et al. 2016), but 
Lasius neoniger, common to grasslands in temperate North 
America, are effective at preventing water infiltration into 
nest structures (Wang et al. 1996). In this case, L. neoniger 
tend to close nest openings prior to precipitation events with 
up to 80% of nest entrances closed with a minimal amount 
of precipitation (5 mm) (Wang et al. 1996).

Ants, soil, and plants

Ant activities within soil have important consequences on 
belowground biodiversity, nutrient content, and physical 
properties. These changes have important consequences 
for grassland plant communities because ant mounds serve 
as small scale, but frequently-encountered soil distur-
bances (Umbanhowar 1992). Nest mounds often represent 
islands of high total nitrogen and phosphorous content, 
neutral pH, and water content different than the surround-
ing soils (Frouz and Jilková 2008), but generally do not 
harbor more plant species than the surrounding soils (Cul-
ver and Beattie 1983; Dean et al. 1997). Some ant species, 
including seed harvesting ants, will directly remove or clip 
plant vegetation in and around their nests, maintaining 
vegetation free islands surrounding their nests (MacMahon 
et al. 2000). However, mounds often do maintain small 
scale patchiness in grasslands (King 1977b) because in 
north temperate systems mounds often contain relatively 
less moisture than surrounding soils. Therefore, nests tend 
to harbor more xeric tolerant plant species (King 1977a), 
or other species that cannot compete with the dominant 
plant species (Beattie and Culver 1983; Dean et al. 1997; 
Dostál 2007). In drier grasslands with seed-harvesting ant 
species, nests often serve as important islands for plants by 
increasing soil moisture and nutrient concentration within 
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nests compared to the surrounding soils (MacMahon et al. 
2000). Regardless of the type of grassland, in most cases, 
ant nests are thought to provide nutrient rich sites that hold 
the potential for increasing seedling survivorship (Beattie 
and Culver 1983), or improved plant growth (Dean et al. 
1997). For example, when radishes were grown in nest 
soils from mounds of ants in central Germany (species 
not specified) and non-nest mound soils, those from nest 
mound soils had approximately two times as much leaf 
area, root mass, and shoot mass than radishes grown from 
the surrounding soil (Dean et al. 1997).

Future research directions

By summarizing current knowledge of the roles of ants in 
grasslands and identifying those that need further study, 
we can improve our understanding of how ants contribute 
to restoration and management of grasslands. Here, we 
discuss five avenues for future research specific to north 
temperate grasslands.

Dominant disturbance‑tolerant ant species

Historic and current changes in land-use have dramati-
cally diminished the connectivity and prevalence of 
grasslands within landscapes, potentially altering ant 
community assemblage processes and community struc-
tures. Species-specific changes to an ant community can 
alter seed dispersal (Ness et al. 2009), populations of ant 
specialist nest parasites (Thomas et al. 2009), nest condi-
tions and subsequent changes to soil conditions (Dauber 
et al. 2001), or many other interactions. Efforts to restore 
grasslands can help maintain diverse ant communities, 
but restored grasslands are not always similar to those in 
remnant grasslands (Német et al. 2016). This is potentially 
attributable to the lack of connectivity between grasslands, 
leaving some species unable to enter newly established 
grasslands (Német et  al. 2016), or because dominant 
species prevent establishment of other species (Moranz 
et al. 2013). Dominant disturbance-tolerant ant species 
are often invasive species (LeBrun et al. 2013), and they 
may also be an important factor influencing populations 
of native ant species (Moranz et al. 2013). Future research 
should consider the importance of native ant species that 
are disturbance-tolerant generalists and explore how they 
impact the establishment of other grassland ant species. 
We can use this information when managing grasslands to 
minimize dominant species from excluding other species, 
potentially increasing overall ant biodiversity.

Invasive ant species

Introduced generalist species of ants often displace exist-
ing ant species, disrupting their functional roles (Prior et al. 
2015), and consuming a variety of native arthropods (LeB-
run et al. 2013). The introduced ant species the red imported 
fire ant (S. invicta) can become predominant features in the 
southern US, and despite their ecosystem disservices, may 
provide some benefits. They can serve as biocontrol of some 
plant pests (Styrsky and Eubanks 2007) and may even play 
a role in improving soil quality (Lafleur et al. 2005). In 
the cases like S. invicta, where control efforts have largely 
failed and they will likely remain a permanent feature of the 
landscape, we should start considering their ecosystem ser-
vices, particularly their role in belowground soil processes. 
However, this does not suggest we should reduce efforts to 
document, control, or mitigate the impacts of other invasive 
ant species such as the Japanese pavement ant (Tetramorium 
tsushimae) and the European fire ant (M. rubra) whose intro-
ductions are more isolated and relatively recent. Moreover, 
because the ecological conditions of these species’ intro-
duced ranges are so similar to their native ranges, these 
introduced ant species may have important implications for 
biotic interactions in north temperate regions. For example, 
M. rubra is known to disperse more seeds of an invasive 
plant (Chelidonium majus) than A. rudis, a native a keystone 
disperser (Prior et al. 2015). When introduced ant species 
interact with other introduced species, they hold the poten-
tial to further alter an already disturbed ecological commu-
nity through their synergistic interactions (Simberloff and 
Von Holle 1999). Identifying and understanding the impact 
of these relationships, particularly between co-evolved spe-
cies (e.g., ant–plant relationships), will be important as spe-
cies are moved around the globe.

Pest suppression

Ants may play an important role in natural control of pest 
populations within grasslands. For example, ants have been 
identified as important predators of pest lepidopteran (López 
and Potter 2000) and coleopteran larvae (Zhao et al. 2014), 
and may be contributing to pest control in surrounding agri-
cultural fields. In perennial crops such as blueberry, ants 
have been observed foraging day and night and are quick 
to recruit and remove sentinel prey items (Grieshop et al. 
2012). As social insects, ants in general are at an advantage 
when food resources are clustered. As a unit, foraging work-
ers can cover more area than an individual organism. Once 
a resource is located, ants quickly recruit to, retrieve, or 
defend a resource. Additionally, because of their association 
with honeydew producing insects and extrafloral nectar, ant 
foraging on plant surfaces may limit herbivore populations 
through predation or disturbance (e.g., non-consumptive 
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effects). Even the notorious invasive S. invicta can in some 
cases limits herbivory on cotton (Eubanks 2001). Ants are 
unlikely to be important predators in traditional annual crop-
ping systems (e.g., corn and soy) due to the soil disturbance 
of tillage, but in the north temperate region they may serve 
important roles in perennial crops and create pest population 
sinks in grassland habitats surrounding crop fields. More 
work is required to understand their role as natural pest con-
trol in grasslands within the agricultural landscape.

Soil processes

Ants can be abundant members of soil communities, yet lit-
tle research has been focused on their impact on soil commu-
nity structure and function. With the advent of new tools and 
lower costs for next generation sequencing, we can further 
explore how ant activity and diversity impact soil microbial 
communities and soil processes. The effect of ants often 
differs based on soil quality (Frouz and Jilková 2008), and 
using sequencing tools we can potentially explore how ants 
impact soil microbial functional diversity across a variety 
of habitat types to build a broader understanding of the role 
of ants in belowground processes. Moreover, because the 
impact of ants on soil communities can be species-specific 
(Dauber and Wolters 2000), we can also start identifying 
particular species or taxonomic groups that play a larger role 
in influencing soil microbial communities. One potential 
candidate is L. neoniger, because it is common and numeri-
cally dominant in restored grasslands (Wodika et al. 2014). 
This species is also known to influence soil turnover and 
alter physical properties of the soil (Wang et al. 1995) and, 
therefore, may exert a disproportional influence on soil pro-
cesses in restored or disturbed grasslands.

Climate change

In each of the future research directions listed above, climate 
change represents an additional factor which may alter the 
function of ants in grasslands. Ant species physiological lim-
its are important factors determining their species-specific 
responses to climate change, and useful to helping forecast 
their presence and responses to future climate conditions 
(Diamond et al. 2012). In general, because north temperate 
ant species are further from their critical thermal maximum 
they are more resilient to changes in climate than tropical 
species (Diamond et al. 2012, 2013). Furthermore, increases 
in air temperature can impact species ranges, with the poten-
tial for cold-intolerant invasive species (e.g., S. invicta) to 
move into previously uninvaded ranges (Morrison et al. 
2004). However, ants display incredibly plastic responses 
to cope with changes in temperature. For example in hot, 
dry climates smaller bodied Cataglyphis velox, workers 
forage during the cooler morning hours and larger workers 

forager during the heat of the day (Cerdá and Retana 2000). 
Within a habitat, ants can also adjust a nest’s location and 
architecture to improve nest thermoregulation in response to 
changes in temperature (Jones and Oldroyd 2006). Overall, 
north temperate ants as a whole are likely able to be resilient 
to moderate changes in temperature (Diamond et al. 2017).

However, this resilience does not exclude behavioral 
shifts that may disrupt the role of ants, the stability of ant 
communities and the role of ants as consumers and eco-
system engineers. Niches of grassland ant communities are 
portioned in part by temperature and humidity preferences 
(Albrecht and Gotelli 2001). Shifts in climate may desta-
bilize ant communities, limit foraging periods, and disrupt 
their important biotic interactions with other grassland spe-
cies. Additionally, changes in climate may also shift the phe-
nology of plants dependent on ant seed dispersal, causing 
an uncoupling of plant fruiting and peak foraging activity of 
keystone dispersers (e.g., A. rudis). Shifts in nest construc-
tion activities can also alter the soil microbial community, 
soil turnover, and soil porosity that ultimately impacts the 
role of ants as ecosystem engineers. Finally, changes in cli-
mate may impact colony investment in timing and rate of 
colony growth and subsequently their ecosystem services. 
This may occur through changes in proximate, temperature 
cues in colony development, changes to food availability or 
foraging success, or larval development.

Future research should consider the implications and 
consequences of climate change on ants and the subsequent 
changes to their interactions listed above. For example, pre-
dictive models have been developed to forecast the effects 
of climate change on ant communities, they lack important 
information regarding impact on colony demographics 
beyond worker survival (Diamond et al. 2013). Quantifying 
and incorporating the impacts of climate change on species 
interactions into predictive models is daunting. To overcome 
this, a primary focus should be to identify keystone ant spe-
cies and their key community interactions to move closer to 
developing a better understanding of climate change impacts 
on temperate grassland systems. Future work that includes 
how climate change impacts foraging, phenology (colony 
and food resources), nest construction, and colony growth 
will be valuable when developing models that generalize 
how climate change may impact ant communities (Fitzpat-
rick et al. 2011).

Grassland management

Due to the continuing loss of native grasslands, land man-
agers will be integral in maintaining ant communities and 
their roles within grasslands. Ant communities in grass-
lands respond differently to conservation and management 
efforts than plant communities (Englisch et al. 2005). Land 
managers will need to be aware of how ants respond to 



334 Oecologia (2018) 186:323–338

1 3

different management strategies. For example, ant diver-
sity appears to be locally determined by the structural 
properties of the vegetation that in turn influences soil 
temperature (Dauber and Wolters 2005). Soil quality and 
humidity also influence colony establishment within grass-
lands (Dauber et al. 2005). Managers can reduce plant 
litter, improving light penetration to the soil surface, and 
provide soil conditions can increase ant abundance and 
diversity by utilizing fire, grazing, and mowing regimes in 
grassland management plans (Moranz et al. 2013). Future 
work on how to mitigate the effects of fragmentation and 
habitat constriction on ant communities will be important 
in determining how land managers can conserve ant diver-
sity. For example, determining, how best to add and link 
grasslands will be important for conserving ant species, 
and maintaining grassland landscape diversity.

Future work should continue to identify ant species that 
play a disproportionally important role in grassland com-
munities and describe the breadth of their influence. As we 
have identified in this review, these ant species typically are 
generalists and numerically dominant species that play a role 
in multiple ecosystem processes (e.g., L. neoniger, L. niger, 
L. flavuus, and A. rudis). These and other key species often 
require different habitat conditions (Thomas et al. 2009). 
Future work should first identify key species to their region, 
their habitat requirements, and then adjust management 
practices to maintain the desired functions associated with 
these species within the landscape (Thomas et al. 2009). 
Currently, relatively more work has explored how different 
management techniques impact ant communities in Euro-
pean grasslands (Dahms et al. 2005), but relatively less for 
temperate North America (Nemec 2014, but see Moranz 
et al. 2013). Moreover, because of the variation in grass-
lands across North America (e.g., short-grass, mixed, and 
tallgrass prairie) additional work is needed to develop best 
management practices for maintaining ant communities for 
different regional type grasslands.

Generally, it appears most dominant, generalist spe-
cies are effective contributors to multiple processes. Thus, 
maintaining their abundance should require relatively little 
changes to current management strategies. However, land 
managers will also need to retain other ant species as this 
will improve performance and resilience of ecosystem ser-
vices. To do so, land managers can manage individual par-
cels to create and maintain high quality local habitats (e.g., 
through fire, grazing) that disrupt competitively dominant 
ant species (Moranz et al. 2013). They should also avoid 
major soil disturbances during the peak periods of colony 
founding (region dependent) to improve their impact on soil 
processes. Ultimately, by developing regional management 
strategies to maximize connectivity, and patch diversity in 
age, disturbance regime, and size at the landscape scale, 
managers will maximize the beneficial services ants provide.

Conclusion

Ants are among the most diverse and successful insects 
in terrestrial ecosystems. Their abundance, diversity, and 
biomass make them important consumers and ecosystems 
engineers (Del Toro et al. 2012). Overall ants appear to play 
a positive role in grasslands. Previously published meta-
analyses suggest the roles of ants as consumers is generally 
positive for plants, serving to protect plants from herbivory 
(Styrsky and Eubanks 2007; Rosumek et al. 2009). Moreo-
ver, this and prior reviews of their role ants play as ecosys-
tem engineers in a variety of systems have found that ants 
generally improve soil conditions supporting greater plant 
diversity (Del Toro et al. 2012; Nemec 2014). Ants can also 
serve as key contributors to a variety of ecosystem processes 
that help maintain a more resilient ecosystem in the face 
of major disturbance and habitat loss. Future work should 
identify key members of north temperate grassland commu-
nities, such as dominant generalist ant species and invasive 
species, and their impact on community assembly and key 
ecosystem processes. Moreover, additional work is needed 
to fully understand the role of ants in natural control of pest 
populations and the regulation of soil processes. Finally, 
understanding how ant communities and their associated 
interactions are impacted by climate change and manage-
ment will be essential for mitigating the loss of biodiversity 
and ecosystem services in an ever changing world. By iden-
tifying key species and strengthening our understanding of 
their ecological function within grasslands and other temper-
ate systems, we can develop monitoring programs that can 
quickly assess the effects of changes to land management 
or land use (Underwood and Fisher 2006; Nemec 2014). 
This will bolster efforts to restore and manage grasslands 
for recreation, biofuel feedstocks, aesthetics, ecosystem ser-
vices, or biodiversity. Ultimately, by maintaining diverse and 
resilient grasslands within the landscape, we can maximize 
ecosystem services.
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