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Introduction
How species traits influence rates of diversification is of central 
interest in evolutionary biology.1–3 The Binary State Speciation 
and Extinction (BiSSE) model1 allows the joint estimation of 
state-dependent but time-invariant rates of binary character 
change (q01, q10) as well as state-dependent rates of extinction 
(µ0, µ1) and speciation (λ0, λ1). Together with its derivations 
(eg, QuaSSE,4 GeoSSE,5 ClaSSE,6 MuSSE,7 BiSSE-BMA,8 
HiSSE9), the BiSSE method has become one of the most pop-
ular tools for the detection of asymmetries in diversification 
rates from phylogenies. However, till date, there has been lit-
tle work on the statistical power of BiSSE.10 In fact, only three 
studies have so far explored the potential for type-I (incor-
rect rejection of a true null hypothesis) and type-II (failure to 
reject a false null hypothesis) statistical errors associated with 
this method.1,10,11 While the potential for type-I errors can 
be assessed by using simulated (“neutral”) trait datasets,11 and 
potentially be counteracted using the HiSSE framework,9,11 
there has been little guidance in interpreting the sources of 
type-II errors and thus the ability of BiSSE to distinguish 
among macroevolutionary hypotheses of interest.1,10

According to previous accounts,1,10 BiSSE suffers from 
two general limitations that complicate the detection of mac-
roevolutionary processes underlying observed heterogenei
ties of state frequencies in a given phylogeny, namely, (i) the 

requirement for fairly large phylogenetic trees (with c. 300–500 
extant species) and (ii) a low tip ratio bias (one character state 
should be not more frequent among the tips than a ratio of 
10:1). The reason for this could be that many similar ways could 
have generated an observed phylogeny and associated character 
states, which only larger datasets are able to disentangle.1,10 In 
other words, if tree size is too small, or when one of the binary 
states in question is exceedingly rare, confounding effects may 
lead to the acceptance of a (false) null model of diversification 
rate symmetry; thus, the potential for a type-II error is extremely 
high.1,10 Based on these earlier findings, it is now the general 
perception that the BiSSE method performs poorly with low 
sample sizes and/or high tip ratio bias,1,10 which by itself is 
often a reason for causing concern (eg, see Igić and Busch12; 
Soltis et al.13 for a critical reappraisal of Mayrose et al.14).

Maddison et al.1 and Davis et al.10 have previously assessed 
the type-II error of BiSSE using simulations. However, it 
remains unclear whether these earlier power explorations 
included the full range of macroevolutionary hypotheses. The 
latter are essentially defined by asymmetries in one of the 
diversification parameters (speciation or transition or extinc-
tion rate) of the derived state compared to the ancestral one 
(Table 1). For example, if state 1 confers a higher speciation 
rate than state 0 (λ0 , λ1), then a tree with the pattern of a 
key innovation is simulated if the ancestral state is 0; or a tree 
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with a lonely state pattern is simulated, if the ancestral state 
is 1 (see also Table 1). This connotation has been ignored in 
the test setups of Maddison et al.1 and Davis et al.10, probably 
because the option to use different root priors for joint tree–
trait simulations (eg, to fix state 0 or 1 at the root) has become 
available (for the Diverse package of Mesquite) only after 
the initial description of the BiSSE method.1,7,24,25 Instead, 
Maddison et al.1 and Davis et al.10 used simulated trees with 
the stationary frequency (sometimes termed equilibrium fre-
quency) root state prior, which randomly chooses a state of the 
diversification model’s equilibrium distribution. Under this 
setting, a state whose diversification parameter increases the 
frequency of that state among the tips (eg, . λ or , µ or . q; 
all else being equal) is more likely to be selected as the state at 
the root of that tree.1,2,25,26 It is thus unclear whether and how 
the potentially circular logic of the stationary frequency root 
state assumption affected the conclusions of Maddison et al.1 
and Davis et al.10 in their exploration of the statistical power 
of the BiSSE method. It is known, however, that the root state 
assumption can have a dramatic effect on phylogenetic tests of 
irreversibility, eg, by frequently leading to an incorrect rejec-
tion of Dollo’s law.25

The present simulation study investigates the power of 
BiSSE to detect rate asymmetries in diversification parameters 
in trees simulated under a variety of macroevolutionary models. 
For this purpose, trees were simulated under the three alterna-
tive root state assumptions and variable tree sizes (300, 90, 60, 
and 30 extant species). The present findings suggest that the 
root state assumption has a dramatic effect on the trees simu-
lated. This will be discussed in the context of what is known 

about the power of the BiSSE method, especially with regard 
to small sample size trees and the effect of tip ratio biases.

Methods
BiSSE performance evaluation using simulated data. 

In general, BiSSE computes the probability of a phyloge-
netic tree and the observed state distribution of a binary trait  
(0, 1) among extant taxa, given a particular model of char-
acter evolution, speciation, and extinction.1,2 BiSSE assumes 
that the phylogenetic tree is fully resolved and complete (but 
see Fitzjohn et al.2 for methodology dealing with incomplete 
or unresolved phylogenies) and that the diversification para
meters are constant and operate independently throughout 
the tree.1

The power of BiSSE hypothesis testing was explored 
using simulated trees of 30, 60, and 90 terminal taxa, and for 
direct comparison with the study of Davis et al.10, 300 extant 
terminal taxa were used under various simple models of rate 
asymmetry. The R package Diversitree version 0.9–27 was 
used for joint tree–trait simulations and subsequent BiSSE 
likelihood calculations and hypothesis tests. The tree.bisse 
function was used to simultaneously simulate binary characters 
that affect speciation and/or extinction, and the tree history 
itself. For each of the states 0 and 1, rates of speciation (λ0, λ1), 
extinction (µ0, µ1), and transition (q01, q10) as well as the char-
acter state at the root were specified (all R functions used are 
provided as Supplementary File 1). The state at the root was 
fixed to either 0 or 1 or set to stationary frequency (NA in 
Diversitree). In the latter case, the root is weighted accord-
ing to the expected equilibrium of frequencies of taxa with 

Table 1. Simple alternative macroevolutionary hypotheses that can be tested using BiSSE. These macroevolutionary hypotheses are essentially 
defined by asymmetries in one of the diversification parameters (speciation [λ0 , λ1] or transition [q01 . q10] or extinction [µ0 . µ1] rate) of the 
derived state compared to the ancestral one (with all other parameters being symmetrical). 

Ancestral 
state

Rate asymmetry Process Macroevolutionary 
model

Example studies

0 λ0 , λ1 Higher net diversification rate of the 
derived state due to higher speciation 
rate3,8

Key innovation Herbivory in mammals;15 
CAM photosynthesis in 
Bromeliaceae;8 heterostyly in 
primroses16

1 Reduced net diversification rate of the 
derived state due to lower speciation 
rate17

Lonely state Moth pollination in Ruella;18 
unpigmented flowers in Ipomoea 
subgenus Quamoclit;19 omnivory 
in mammals15

0 µ0 . µ1 Higher net diversification rate of the 
derived state due to lower extinction 
rate3,8

Key innovation Tank habit of Bromeliaceae8

1 Negative net diversification rate of the 
derived trait (usually) due to higher 
extinction rate3,12,17

Dead end Loss of self-incompatibility in 
Solanaceae;20 polyploidy in 
plants;14 selfing in Madagascan 
Bulbophyllum21

0 q01 . q10 Higher transition from the ancestral 
state to the derived state3

Asymmetrical transitions Selfing in Madagascan 
Bulbophyllum;21 shifts 
from lowland to highland in 
Madagascan Bulbophyllum22

1   Lower transition from the ancestral 
state to the derived state3 

Asymmetrical transitions Sociality in spiders23

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Evaluating binary state speciation and extinction (BiSSE) model

167Evolutionary Bioinformatics 2016:12

state 0 and 1, as defined by the diversification parameters (λ0, 
λ1, µ0, µ1, q01, q10).1,2,10,25,26,27

Using the same diversification parameter settings as 
Maddison et al.1 and Davis et al.10, 500 trees and associated 
binary characters, each with 300, 90, 60, and 30 terminal taxa, 
were simulated for each root state under two scenarios of rate 
asymmetry. Under the first scenario, one parameter (in the fol-
lowing marked in bold) has twice the value than the other one 
with all other parameters being equal (see Maddison et al.1 and 
the 2x models of Davis et al.10), that is, asymmetrical rates of 
speciation (2x): λ0 = 0.1, λ1 = 0.2, µ0 = µ1 = 0.03, q01 = q10 = 0.01; 
asymmetrical rates of extinction (2x): λ0 = λ1 = 0.1, µ0 = 0.06, 
µ1 = 0.03, q01 = q10 = 0.01; and asymmetrical rates of transi-
tions (2x): λ0 = λ1 = 0.1, µ0 = µ1 = 0.03, q01 = 0.01, q10 = 0.005. 
Under the second scenario of rate asymmetry, one parameter 
(in the following marked in bold) has ten times the value 
(compare to the 10x models of Davis et al.10) with all other 
parameters being equal, that is, asymmetrical rates of specia-
tion (10x): λ0 = 0.1, λ1 = 1.0, µ0 = µ1 = 0.03, q01 = q10 = 0.01; 
asymmetrical rates of extinction (10x): λ0 = λ1 = 0.1, µ0 = 0.03, 
µ1 = 0.003, q01 = q10 = 0.01; asymmetrical rates of transitions 
(10x): λ0 = λ1 = 0.1, µ0 = µ1 = 0.03, q01 = 0.01, q10 = 0.001.

The influence of the root state assumption on the simu-
lations was assessed by fixing the root to either state 0 or 1 
or stationary frequency (see above). For each simulation, the 
average percentage of (i) the root state with state 0 and (ii) 
the terminal taxa with state 0 was recorded from 500 simu-
lated trees, respectively. The observed root state can differ 
from the fixed one if the early branching taxa go extinct after 
a transition to the new state has occurred (as the tree only 
contains extant taxa, the next descendant node with the new 
state is then perceived as the root of the tree). For the purpose 
of this study, the state at the root of the tree is referred to as 
the ancestral state. Representative tree histories reflecting the 
average observed frequency of state 0 at the root and tips (see 
Tables 2–4) are depicted in Figure 1.

All simulated trees were examined to explore the power 
of the BiSSE method to reject a (false) null model of diversi
fication rate symmetry, that is, either λ0  =  λ1 or µ0  =  µ1 or 
q01 = q10 when in fact the trees were simulated under an asym-
metric model, that is, λ0 , λ1 or µ0 . µ1 or q01 . q10.1 To 
do so, the fit of the full (six-parameter) BiSSE model with 
unconstrained parameters (ie, λ, µ, and q are allowed to 
vary) was compared to three models with those parameters 
constrained to be equal. All models were fitted by maximum 
likelihood (ML) optimization across all 500 trees for each of 
the tree size and diversification parameter combinations. For 
testing hypotheses of speciation, extinction, or transition rate 
asymmetry likelihood ratio tests (LRTs) were used.1 However, 
for speciation rate asymmetry, the power levels of hypotheses 
significantly differed from those reported in the literature1,10 
(see Results). Hence, in this case, the power was addition-
ally tested and confirmed using empirically determined criti-
cal (5% cutoff) values (see Table  2). The cutoff values were 

determined by simulating a set of 500 trees with symmetrical 
rate parameters (λ0  =  λ1, µ0  =  µ1, q01  =  q10) and by using 
these trees to test the fit of the full model (more complex) 
and the constrained (symmetrical; eg, λ0 = λ1) H0 model.1,10 
The lowest value of the upper 5% of the 2x log-likelihood dif-
ferences between the full and constrained model was used as 
the cutoff value.1,10 Power was estimated as the percentage of 
simulations that had a higher likelihood difference than the 
empirically determined 5% cutoff value.1,10

Likewise, LRTs were calculated as twice the difference 
in log-likelihoods between the full (more complex) model and 
the constrained (simpler) model (H0), which should follow a 
χ2 distribution with degrees of freedom equal to the difference 
in the number of free parameters allowed by the two models.1 
Power was estimated as the percentage of trees, where the full 
model provided a significant improvement (P , 0.05) over the 
simpler constrained model (H0).

Results
Influence of the root state assumption on observed 

root/tip state frequencies and simulated tree histories. 
The results of the three types of asymmetrical rate simula-
tions (speciation, extinction, and transition) are shown in 
Tables  2–4. As a general outcome, the frequency enhanc-
ing diversification parameters associated with state 1 (higher 
speciation, transition, or lower extinction rate compared to 
state 0) had, depending on the root state assumption (the state 
from which the simulations started), a dramatic effect on the 
simulated tree histories and tip frequencies (Tables 2–4). In 
detail, in the asymmetrical speciation rate simulations, the 
observed frequencies of state 0 at the root and tips ranged 
between 85–88.2% (root) and 25.6–7.6% (tips) under the 2x 
scenario and between 86.4–88.6% (root) and 4.5–28.4% (tips) 
under the 10x scenario if the root was fixed to state 0 (Table 2). 
In contrast, the observed frequency of state 0 at the root and 
tips ranged between 9.8–13% (root) and 10–13.1% (tips) under 
the 2x scenario and between 0.4–1.8% (root) and 1.1–1.6% 
(tips) under the 10x scenario if the root was set to station-
ary frequency (NA) and between 3.4–5% (root) and 8.1–8.6% 
(tips) under the 2x scenario and between 0.6–1.2% (root) and 
1.1–1.2% (tips) under the 10x scenario if the root was fixed to 
state 1 (Table 2). In the asymmetrical extinction rate simula-
tions (Table  3), with the root fixed to state 0, the observed 
frequencies of state 0 ranged between 73.8–89.2% (root) and 
34.7–59.6% (tips) over both scenarios; when the root was set 
to stationary frequency or to state 1, the observed frequencies 
of state 0 ranged between 17.8–23.8% (root) and 23.3–28.7% 
(tips) and between 6–8.8% (root) and 18.5–23.8% (tips) over 
both scenarios, respectively. Finally, in the asymmetrical 
transition rate simulations (Table  4), with the root fixed to 
state 0, the observed frequencies of state 0 ranged between 
88.2–89.6% (root) and 44.2–69.5% (tips) over both scenarios; 
when the root was set to stationary frequency or state 1, the 
corresponding values were, respectively, 31.2–34.4% (root) 
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and 30.8–34.2% (tips) under the 2x scenario and between 
8.6–11.2% (root) and 8–10.1% (tips) under the 10x scenario, 
and 5–7.6% (root) and 15.5–26.2% (tips) under the 2x sce-
nario and between 1.2–1.6% (root) and 3.8–5.5% (tips) under 
the 10x scenario. Thus, as a general pattern across all simula-
tions, the observed frequency of state 0 at the root and tips 
was relatively high when the root was fixed to state 0 but 
much lower when the root was fixed to state 1 or stationary 
frequency (Tables 2–4). Furthermore, trees simulated under 
stationary frequency tended to mimic trees that were simu-
lated with the root fixed to state 1  in terms of dominance 
of state 1 at the root and tips (see also Fig. 1B, C, E, F, H, 
I). This is simply because the root state is pushed toward the 
state with higher speciation and transitions rates (here state 1)  
and lower extinction rates (here state 1), if the root is set to  
stationary frequency.

Macroevolutionary models are essentially defined by 
diversification rate asymmetries of the derived state compared 
to the ancestral one (see Table 1). Not unexpectedly, there-
fore, the root state assumption was found to have a determin-
ing effect on the macroevolutionary tree histories simulated. 
In detail, if the root was set to stationary frequency or state 1, 
trees were simulated following the lonely state model (for asym-
metrical speciation), or the dead end model (for asymmetrical 
extinction) or a model of asymmetrical transitions in terms of 
higher transitions from the derived trait to the ancestral one. 
In contrast, if the root was set to state 0, trees were simulated 
following (i) the key innovation model due to higher specia-
tion of the derived trait than the ancestral one (for asymmet-
rical speciation), or (ii) the key innovation model due to lower 
extinction rate of the derived trait (for asymmetrical extinc-
tion) than the ancestral one, or (iii) a model of asymmetrical 

Table 2. Power of asymmetrical speciation rate simulations. The remaining parameters were symmetrical for each simulation (2x: λ0 = 0.1, 
λ1 = 0.2, µ0 = µ1 = 0.03, q01 = q10 = 0.01; 10x: λ0 = 0.1, λ1 = 1.0, µ0 = µ1 = 0.03, q01 = q10 = 0.01). The trees were simulated with the root set to either 
state 0 or 1 or stationary frequency (NA) and used to test the null hypothesis (H0) of rate symmetry (λ0 = λ1) in BiSSE. The observed percentage 
of root and terminal taxa with state 0 is indicated by the mean value from 500 simulations. The corresponding macroevolutionary pattern is 
indicated according to Table 1. See Figure 1A–C for a representative set of simulated trees (60 taxa) under different root state assumptions.

Number 
of taxa

Root state 
assumption 

Asymmetry % observed 
state 0 (root)

% observed 
state 0 (tips)

Macroevolutionary 
pattern

5% cutoff 
value

Power% 
(cutoff)*

Power 
(LRT% 
rejecting 
H0)

300 root = 0 2x 88.2 25.6 Key innovation 3.4 75.2 72

90 2x 85 39.5 4.1 39.8 42.6

60 2x 87 45.5 3.3 38.8 33.8

30 2x 88.2 57.6 3.3 18 14.8

300 10x 87.2 4.5 3.4 88.4 86.4

90 10x 86.4 12.6 4.1 82.6 83.2

60 10x 87 18.4 3.3 85.2 82.2

30 10x 88.6 28.4 3.3 77.2 72.2

300 root = NA 2x 13 10 Lonely state 3.5 49.4 44.6

90 2x 10 10.8 3.5 22 18.4

60 2x 12 12.1 3.5 9.4 8.2

30 2x 9.8 13.1 3.2 4.6 7.6

300 10x 0.4 1.1 3.5 32.8 29.6

90 10x 1.8 1.2 3.5 17 13.2

60 10x 1.6 1.2 3.5 8 6

30 10x 1 1.6 3.2 7.8 5

300 root = 1  2x 4 8.6 Lonely state 3.6 46.6 43.8

90 2x 4.6 8.5 3.3 20.6 15.8

60 2x 5 8.1 3.3 14.2 11.2

30 2x 3.4 8.2 3.2 6.6 3.2

300 10x 0.6 1.1 3.6 30.4 28

90 10x 0.6 1.1 3.3 11.6 6.8

60 10x 1.2 1.2 3.3 9.4 6.2

30   10x 0.6 1.1   3.2 4.6 2.8

Note: *Percentages of trees with a greater log likelihood difference than the empirically determined critical (5% cutoff) values leading to the rejection of the (false) 
H0 (see also Maddison et al.1; Davis et al.10).
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transitions in terms of higher transitions from the ancestral 
trait to the derived one. These results were robust to differ-
ent sample sizes (300, 90, 60, and 30 terminal taxa) and to 
different degrees of rate asymmetry (2x and 10x), indicat-
ing that the stationary root state assumption is not the most 
appropriate root prior for ensuring a balanced set of simulated 
tree histories.

Power of the BiSSE method: speciation, extinction, 
and transition rates. The present simulations further indi-
cate that the power of the BiSSE method depends on the tree 
size, with the lowest power in small trees and highest power 
in large trees (Tables 2–4). However, the power of the method 
was found to differ depending on the root state assumption 
under which the trees were simulated (Tables  2–4). In this 
respect, the power to detect speciation rate asymmetries was 
highest in trees simulated with the root set to 0 (ie, trees with 
the derived state had the higher speciation rate), while the 
power was relatively low in trees simulated with the root set to 

either 1 or stationary frequency (ie, trees in which the ancestral 
state had the higher speciation rate). Further, the degree of 
rate asymmetry apparently modulates the signal for BiSSE to 
detect the speciation rate – and to a lesser extent the transition 
rate – but not extinction rate asymmetries (Tables 2–4). That 
said, under the scenarios of high rate asymmetry (10x), the 
power strongly increased for detecting differences in the spe-
ciation rate compared to the 2x scenarios when the root is set 
to 0 but decreased when the root is set to stationary frequency 
or state 1 (see Table 2). Also, the power to detect transition 
rate asymmetries increased compared to the 2x scenario, while 
the power to detect extinction rate asymmetries remained 
relatively low under the scenario of high rate asymmetry (10x; 
see Tables 3 and 4).

In detail, the statistical power for trees simulated with the 
root set to 0 ranged between 72 and 75.2% for trees with 300 
tips, 33.8 and 42.6% for trees with 60 and 90 tips, and between 
14.8 and 18% for trees with 30 tips under the 2x scenario and 

Table 3. Power of asymmetrical extinction rate simulations. The remaining parameters were symmetrical for each simulation (2x: λ0 = λ1 = 0.1, 
µ0 = 0.06, µ1 = 0.03, q01 = q10 = 0.01; 10x: λ0 = λ1 = 0.1, µ0 = 0.03, µ1 = 0.003, q01 = q10 = 0.01). The trees were simulated with the root set to either 
state 0 or 1 or stationary frequency (NA) and used to test the null hypothesis (H0) of rate symmetry (µ0 = µ1) in BiSSE. The observed percentage 
of root and terminal taxa with state 0 is indicated by the mean value from 500 simulations. The corresponding macroevolutionary pattern is 
indicated according to Table 1. See Figure 1D–F for a representative set of simulated trees (60 taxa) under different root state assumptions.

Number of 
taxa

Root state 
assumption 

Asymmetry % observed 
state 0 (root)

% observed 
state 0 (tips)

Macroevolutionary 
pattern

Power (LRT% 
rejecting H0)

300  root = 0  2x 77 34.7 Key innovation 6.4

90 2x 78.2 43.7 2.6

60 2x 73.8 47.8 2

30 2x 77 57.8 1

300 10x 85.8 43 3.8

90 10x 89.2 52.1 1.4

60 10x 84.8 52.1 0.6

30 10x 84.4 59.6 1

300  root = NA 2x 17.8 24 Dead end 8.8

90 2x 19.6 23.3 2

60 2x 17.4 26.2 0.6

30 2x 19.8 26.1 0.8

300 10x 23.2 27.4 4.2

90 10x 22.6 28.7 1.6

60 10x 23.8 28.3 0.2

30 10x 22.4 27.4 0.6

300 root = 1  2x 8.8 22 Dead end 7.6

90 2x 7.2 20.6 2.2

60 2x 7 19.9 1.6

30 2x 6.6 18.5 0.8

300 10x 6.4 23.8 4.4

90 10x 7.8 23.3 1

60 10x 7.8 22.6 0.6

30 10x 6 20.7 0.6
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between 86.4 and 88.4% for trees with 300 tips, 82.2 and 
88.4% for trees with 60 and 90 tips, and between 72.2 and 
77.2% for trees with 30 tips under the 10x scenario (Table 2). 
Overall, these results demonstrate an approximately 1.6 to 4.6 
times higher power under the 2x scenario, and an even 2.9 to 
25.8 times higher power under the 10x scenario in trees simu-
lated with the root set to 0 than in trees simulated with the root 
set to either 1 or stationary frequency (Table 2). This effect was 
most pronounced in trees of small sample size (30 and 60 taxa) 
with an approximately 2 to 4.6, and even 13.7 to 25.8 times 
increase in power under the 2x and 10x scenarios, respectively 
(Table 2). In contrast, when using trees simulated with the root 
set to 1 or stationary frequency, the power was much lower 
and ranged between 43.8–49.4% (2x) and 28–32.8% (10x) for 
trees of 300 taxa, between 15.8–22% (2x) and 6.8–17% (10x) 
for trees of 90 taxa and between 3.2–9.4% (2x) and 2.8–9.4% 
(10x) for trees of both 30 and 60 taxa.

On the other hand, the power of BiSSE for testing 
hypotheses of extinction and transition rates was mostly unaf-
fected by the root state assumption (but see below) and much 
lower than that observed for speciation rate asymmetry, but also 
dependent on tree size (300 . 90 . 60 . 30; Tables 3, 4). The 
only exception is found in the asymmetrical transitions models 
under the 10x scenarios in trees of 300 taxa. Here, BiSSE showed 
a 2.8 to 3.7 times increase in power in trees simulated with the 
root set to 0 compared to trees simulated with the root set to 
either 1 or stationary frequency (Table 4). That said, the power 
to reject the false hypothesis of transition rate symmetry ranged 
from 2.4 and 17.4% (root set to 0) under the 2x scenario and 
between 3.4 and 63.2% under the 10x scenario, and between 2.2 
and 22.2% (root set to stationary frequency), and between 2 and 
17% (root set to 1) over both scenarios (2x and 10x) respectively 
(Table  4). Whereas, the power to reject the false hypothesis 
of extinction rate symmetry over both scenarios (2x and 10x) 

Table 4. Power of asymmetrical transition rate simulations. The remaining parameters were symmetrical for each simulation (2x: λ0 = λ1 = 0.1, 
µ0 = µ1 = 0.03, q01 = 0.01, q10 = 0.005; 10x: λ0 = λ1 = 0.1, µ0 = µ1 = 0.03, q01 = 0.01, q10 = 0.001). The trees were simulated with the root set to 
either state 0 or 1 or stationary frequency (NA) and used to test the null hypothesis (H0) of rate symmetry (q01 = q10) in BiSSE. The observed 
percentage of root and terminal taxa with state 0 is indicated by the mean value from 500 simulations. The corresponding macroevolutionary 
pattern is indicated according to Table 1. See Figure 1G–I for a representative set of simulated trees (60 taxa) under different root state 
assumptions.

Number 
of taxa

Root state 
assumption 

Asymmetry % observed 
state 0 (root)

% observed 
state 0 (tips)

Macroevolutionary 
pattern

Power (LRT% 
rejecting H0)

300 root = 0 2x 88.2 57.4 Asymmetrical transitions 17.4

90 2x 87.8 62.9 6.2

60 2x 86.2 65.3 4.2

30 2x 89.6 69.5 2.4

300 10x 86.2 44.2 63.2

90 10x 89.6 53.3 19.8

60 10x 87.8 54.6 10.4

30 10x 86.8 59.8 3.4

300 root = NA 2x 31.2 32.5 Asymmetrical transitions 14.8

90 2x 34.4 34.2 6.8

60 2x 32 30.8 5.6

30 2x 32.2 34 2.2

300 10x 9 8.9 22.2

90 10x 10 9.6 7.2

60 10x 8.6 8 6

30 10x 11.2 10.1 3

300 root = 1 2x 5 22 Asymmetrical transitions 13.4

90 2x 7.6 17.4 4.2

60 2x 5 26.2 4.6

30 2x 7 15.5 2.8

300 10x 1.2 5.5 17

90 10x 1.6 5.2 8.2

60 10x 1.2 4.2 4

30 10x 1.6 3.8 2
 

http://www.la-press.com
http://www.la-press.com/journal-evolutionary-bioinformatics-j17


Evaluating binary state speciation and extinction (BiSSE) model

171Evolutionary Bioinformatics 2016:12

ranged between 0.6 and 6.4% (root set to 0), 0.2 and 8.8% (root 
set to stationary frequency), and between 0.6 and 7.6% (root set 
to 1; Table 3).

Discussion
The circular logic of the stationary frequency root state 

prior in joint tree–trait simulations. The main purpose of this 
study was to reassess the power of BiSSE to detect simple rate 
asymmetries in diversification parameters (in terms of specia-
tion or extinction or transitions) in trees simulated under a 
variety of simple macroevolutionary models and, especially, 

those of small sample sizes. Results show that during the 
joint tree–trait simulations, the root state assumption has a 
determining effect on the simulated tree histories in terms 
of the frequency of state 0 at the root and tips (Tables 2–4). 
More specifically, trees simulated with the root fixed to state 
0 have a higher frequency of this state at both the root and the 
tips, while state 0 becomes exceedingly rare when the root is 
set to state 1 or stationary frequency (Tables 2–4). However, 
the frequency of state 0 at the tips is lower when the sim-
ulation (viz. evolution) starts from state 1 rather than state 
0 (Tables  2–4). The simple reason for this is that if state 1  

Figure 1. Representative tree histories and character states (for 60 extant taxa) simulated under different root state assumptions (state 0; stationary 
frequency [the root assumption used by Maddison et al.1 and Davis et al.10]; or state 1) and models of diversification rate (2x) asymmetry: (A–C) 
asymmetrical speciation (λ0 = 0.1, λ1 = 0.2, µ0 = µ1 = 0.03, q01 = q10 = 0.01); (D–F) asymmetrical extinction (λ0 = λ1 = 0.1, µ0 = 0.06, µ1 = 0.03, 
q01 = q10 = 0.01); (G–I) asymmetrical transition (λ0 = λ1 = 0.1, µ0 = µ1 = 0.03, q01 = 0.01, q10 = 0.005). In each case, nodes and branches of the trees are 
colored (state 0: black; state 1: red) to indicate the known (because simulated) character state at a particular time.
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has frequency enhancing diversification parameters (higher 
speciation, transition, or lower extinction rate compared to 
state 0), and the simulation starts from the ancestral state 0, 
then at least one shift to the derived state 1 has to occur (ie, 
evolutionary time must pass) in order to allow taxa with state 
1 to diversify with a higher rate (Fig. 1A, D, G). In contrast, if 
taxa with the ancestral state evolve immediately at higher rate 
(state 1), then the derived one (state 0) becomes exceedingly 
rare and isolated (twiggy/tippy) across several clades (Fig. 1B, 
C, E, F, H, I). Furthermore, under the stationary frequency 
root state assumption, the state with more frequency enhanc-
ing diversification (state 1) is also much more frequently 
selected as the state at the root of the trees than the alter-
native one (state 0; eg, Table 2), just as expected under this 
root prior.1,2,25,26

Evidently, the stationary frequency root state assump-
tion favors the state with frequency-enhancing diversification 
parameters (state 1) and the root state assumption determines 
the macroevolutionary model under which the tree evolves (see 
Table 1). Given a predefined diversification rate asymmetry, this 
results in circular logic. As such, the joint tree–trait simulations 
using the stationary frequency root state prior (as previously 
also conducted by Maddison et al.1 and Davis et al.10) favor trees 
evolving under the same macroevolutionary models as those 
simulated with the root fixed to state 1, namely, the lonely state 
(for asymmetrical speciation), the dead end (for asymmetrical 
extinction), and the asymmetrical transition model (with higher 
transitions from the derived trait to the ancestral one). These 
models are all known to produce “tippy” patterns of trait dis-
tribution across phylogenies17 and are likely the cause of a high 
tip ratio bias in favor of one of the binary states as observed by 
Davis et al.10 and also as observed in the present study (Fig. 1B, 
C, E, F, H, I). Conversely, assigning state 0 to the root for the 
same simulations results in different macroevolutionary models, 
namely, the key innovation (for asymmetrical speciation), the key 
innovation (for asymmetrical extinction), and the asymmetrical 
transition model (with higher transitions from the ancestral trait 
to the derived one). In other words, there is a bias in macro-
evolutionary models selected caused by the joint influence of 
the time-invariant but state-dependent diversification rates and 
the stationary frequency root state prior on the tree simulation. 
Probably because of this bias, the latter three macroevolutionary 
models escaped the otherwise rigorous statistical power testing 
of the BiSSE method by Maddison et al.1 and Davis et al.10 This 
latter notion is supported by the fact that under the stationary 
frequency root state prior, the levels of statistical power for trees 
of 300 taxa, as observed here, mostly resemble those reported by 
Davis et al.10 [compare Tables 2–4 with S1–S3 in the Supple-
ment of Davis et al.10]. Overall, the present data indicate that 
the power assessments of Davis et  al.10 and Maddison et  al.1 
were confounded with respect to the macroevolutionary models 
tested, rather than being incorrect.

Consequences for statistical power assessment. As 
shown here, the power of the BiSSE method for testing 

hypotheses of extinction and transition rates is relatively low 
as already shown previously by Maddison et  al.1 and Davis 
et  al.10 and mostly unaffected by the root state assumption 
(Tables  3 and 4). As a consequence, earlier statements by 
Maddison et  al.1 and Davis et  al.10 regarding the statistical 
power of this method (eg, the necessity for large datasets) still 
hold true for testing hypotheses of extinction and transition 
rates. However, there is one exception: if one examines trees 
simulated under the (hitherto untested) key innovation model 
(for asymmetrical speciation), BiSSE has a significantly higher 
statistical power, that is, almost twice as high as inferred pre-
viously10 (see Table 2). In this regard, BiSSE performs at least 
as good or even better with trees of 300, 60, and 90 and even 
with trees of 30 taxa than, as previously thought, with trees of 
500, 300, and 100 taxa under the 2x scenario, respectively.1,10 
This effect is even stronger under a scenario of high specia-
tion rate asymmetry (10x), where BiSSE constantly reaches 
power levels well above 70% and thus about 1.3 to 1.6 times 
the power in trees of 30, 60, 90, and 300 taxa (see Table 2) 
than previously thought with trees of 500 taxa.10 The reason is 
that Davis et al.10 and Maddison et al.1 did not acknowledge 
that the hypothesis of diversification rate asymmetry can be 
subdivided into different macroevolutionary models of differ-
ent tree histories and trait distributions (Table 1), which (in 
case of speciation rate – and to a lesser extent transition rate 
asymmetry) are evidently associated with different power lev-
els (Tables 2 and 4). In this sense, trees simulated under the 
lonely state and key innovation model (for asymmetrical specia-
tion) represent, respectively, the worst and best case scenarios 
with regard to the statistical power of BiSSE. As a conse-
quence, it seems feasible to use BiSSE in tests of speciation 
rate asymmetry, even when using phylogenies of low sample 
size (Table 2), provided that neither state is (too) scattered or 
twiggy across the tips of a given phylogeny (as might be the 
case when a newly evolved character state is associated with an 
increased rate of speciation).

However, one may conjecture that the increased power of 
BiSSE to detect speciation rate asymmetries in trees under the 
key innovation model is simply caused by the more balanced tip 
frequency (a tip ratio of lower than 10:110) of the binary states 
(frequency of state 0) as compared to the lonely state model 
(4.5–57.6% vs. 1.1–13.1%, respectively; see Table 2). This pop-
ular view (eg, Soltis et al.13), however, is ill founded because 
Davis et al.10 showed that the power in trees with asymmetri-
cal rates of speciation and tip ratios of 20:1, 30:1, and 40:1 is 
much higher than in trees with tip ratios of 3:1, 5:1, and 10:1 
but also in those with ratios of 90:1 and 180:1. Moreover, there 
is apparently no linear relationship between the tip state fre-
quency (or tip state ratio) and statistical power (see Tables 2–4; 
but also Davis et al.10). In addition, the present results indicate 
that a strong signal of key innovation can still be detected by 
BiSSE with high confidence even though the ancestral state 
is exceedingly rare among the tips (eg, the frequency of state 
0 is 12.6 and 4.5% for trees of 90 and 300 taxa, respectively, 
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but the power of BiSSE is still well above 80% in either case; 
see the key innovation model under the 10x scenario; Table 2). 
Overall, there is no firm evidence for assuming that the sta-
tistical power of BiSSE decreases for trees with a tip ratio of 
greater than 10:1 (in favor of either state) as cautioned previ-
ously by Davis et al.10 Hence, the present results indicate that, 
rather than the tip state frequency, it is the tip state distri-
bution (eg, taxa with derived states either confined to clades 
under the key innovation model or scattered across the tree 
under the lonely state model) that more reliably serves as an a 
priori indicator of the statistical power of BiSSE for detecting 
asymmetrical rates of speciation (Table 2; compare Fig. 1A vs. 
B, C). The question remains as to why, for simulated trees, the 
statistical power of BiSSE can be apparently high and quite 
sensitive to the root state assumption for testing the hypoth-
esis of speciation rate asymmetry (Table 2) but relatively low 
and unresponsive to the root state assumption for testing 
hypotheses of extinction/transition asymmetries (Tables  3 
and 4). Of course, this discrepancy could simply reflect the 
general difficulty to estimate transition and, especially, extinc-
tion rates.1,10,28,29 On the other hand, this discrepancy might 
also reflect the different intensity of signal each diversification 
parameter asymmetry is able to leave within a phylogenetic 
tree. For example, in Figure 1A, there are 28 speciation events 
associated with state 0 and 32 speciation events with state 1 
but only two transitions from state 0 to 1, and only one from 1 
to 0. Apparently, BiSSE is able to distinguish differential rates 
of speciation from this sample, but this does not imply statisti-
cal certainty of this method when it comes to distinguishing 
among transitions that have equal rates and those that involve, 
for example, two forward and one reverse transitions. Here it 
becomes apparent why more species-rich (simulated) trees are 
generally associated with higher power (see Davis et al10; but 
also Tables 2–4), simply because larger trees (with, by neces-
sity, more speciation events) offer a broader scene for state-
dependent differential diversification parameters (speciation, 
extinction, transition) to act on, thus leaving a statistically dis-
tinguishable footprint. In other words, while the present study 
demonstrates that asymmetrical speciation can leave a strong 
unambiguous signal even in small phylogenetic trees (Fig. 1A, 
Table  2), the findings agree with those of Maddison  et  al.1 
and Davis et al.10 in that the accumulated evolutionary infor-
mation of large trees is necessary for the BiSSE method to be 
able to distinguish among the comparably weak signatures of 
transitions and extinctions.

Conclusions
The present study demonstrates that Maddison et  al.1 and 
Davies et  al.10 underestimated the power of BiSSE for 
detecting speciation rate asymmetries due to a bias, which is 
based on the joint influence of the time-invariant but state-
dependent diversification rates and the stationary frequency 
root state prior on the tree simulation. In particular, these ear-
lier simulation studies1,10 lead to an overestimation of type-II 

statistical error because they did not account for the fact that 
hypotheses of diversification rate asymmetry can be subdi-
vided into different macroevolutionary models with different 
tree histories and trait distributions, and which – in the case 
of speciation rate asymmetry – can have different power levels. 
Thus, as shown here, trees simulated under the lonely state vs. 
key innovation models (for asymmetrical speciation) represent, 
respectively, the worst and best case scenarios with regard to 
the statistical power of BiSSE. In this context, BiSSE per-
forms at least as good, or even better, with trees of 300, 60, 
and 90 and even 30 taxa than, as previously thought, with 
trees of 500, 300, and 100 taxa under the 2x scenario, respec-
tively. However, even in the presence of a high tip ratio bias, a 
scenario of high speciation rate asymmetry (10x) may already 
be detectable with confidence in trees with a sample size $30 
taxa, provided there is a strong signal of a key innovation. It 
seems feasible, therefore, to use BiSSE in tests of speciation 
rate asymmetry even for trees of relatively low sample size 
(eg, when the aim of a phylogenetic study is simply to con-
firm suspected cases of a key innovation). Nonetheless, the 
present results also reemphasize those of Maddison et  al.1 
and Davis et al.10, indicating that still large sample sizes are 
required when the full state-dependent diversification history 
needs to be disentangled (in terms of speciation and extinction 
and transition rates). As a side note, researchers should be less 
concerned about tree size and tip ratio biases but rather be 
focused on the trait distribution within a given tree. Although 
the results reported here only refer to power tests in BiSSE, 
they might also bear significance for similar tests in related  
State dependent Speciation and Extinction (SSE) models (eg, 
QuaSSE, GeoSSE, ClaSSE, MuSSE, BiSSE-BMA, HiSSE, 
etc.). In any event, future power tests should involve simu-
lated trees with different root state assumptions in order to 
obtain as far as possible an unbiased set of trees. In sum, 
the present study indicates that the BiSSE method per-
forms better than its reputation and, almost ten years fol-
lowing its initial description,1 still offers fascinating insights 
into its versatility to detect diversification rates asymmetries  
of interest.
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Supplementary File 1
R functions used for the joint tree–trait simulations as well 
as for recording the root and tip states of the simulated 
tree histories.
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