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Abstract: The genus Bletilla is a small genus of only five species distributed across Asia, including
B. chartacea, B. foliosa, B. formosana, B. ochracea and B. striata, which is of great medicinal importance.
Furthermore, this genus is a member of the key tribe Arethuseae (Orchidaceae), harboring an
extremely complicated taxonomic history. Recently, the monophyletic status of Bletilla has been
challenged, and the phylogenetic relationships within this genus are still unclear. The plastome, which
is rich in both sequence and structural variation, has emerged as a powerful tool for understanding
plant evolution. Along with four new plastomes, this work is committed to exploring plastomic
markers to elucidate the phylogeny of Bletilla. Our results reveal considerable plastomic differences
between B. sinensis and the other three taxa in many aspects. Most importantly, the specific features
of the IR junction patterns, novel pttRNA structures and codon aversion motifs can serve as useful
molecular markers for Bletilla phylogeny. Moreover, based on maximum likelihood and Bayesian
inference methods, our phylogenetic analyses based on two datasets of Arethuseae strongly imply
that Bletilla is non-monophyletic. Accordingly, our findings from this study provide novel potential
markers for species identification, and shed light on the evolution of Bletilla and Arethuseae.

Keywords: orchidaceae; Bletilla; phylogeny; chloroplast tRNA; codon usage and aversion; highly
polymorphic regions

1. Introduction

As one of the most species-rich families in vascular plants, Orchidaceae possesses ap-
proximately 28,000 species from 736 recognized genera [1,2]. Over the years, numerous stud-
ies have been performed on the phylogeny of Orchidaceae [3–8]. To date, within the family,
the following five subfamilies are currently recognized: Apostasioideae, Vanilloideae,
Cypripedioideae, Orchidoideae and Epidendroideae [9]. Among the five subfamilies,
Epidendroideae is the largest and most diverse, containing approximately 14 tribes [4,10].
Within the subfamily Epidendroideae, Arethuseae is a key tribe, undergoing variable
taxonomic revisions, and currently consists of two subtribes (Arethusinae and Coelogyni-
nae) [8,10–12].

Bletilla (subtribe Coelogyninae), with great medicinal importance, is a small genus of
only five species distributed in Asia, including B. chartacea, B. foliosa, B. formosana, B. ochracea
and B. striata [13–15]. Interestingly, despite the small number of species, this genus has
a complicated taxonomic history, due to morphological similarities with other genera,
e.g., Arethusa and Bletia [15]. As shown in Table 1, the genus Bletilla was subsequently
included within the subtribe Bletieae, Bletilleae [16], Bletillinae [17], Bletiinae [10,12] and
Coelogyninae [8], respectively. Among them, the most widely convincing taxonomic
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system for Bletilla is that of van den Berg et al. [4,8,9,18]. In this system, Arethuseae only
included two subtribes (Arethusinae and Coelogyninae), and Bletilla was nested within
Coelogyninae instead of Bletiinae.

Table 1. The taxonomic history of Bletilla.

Botanists Taxonomic Status of Bletilla

Bentham
(1883)

Included within the genus Bletia
Position: tribe Epidendreae, subtribe Bletieae

Schlechter
(1926)

As an individual genus associated with the genus Arethusa in the same subtribe
(Bletia was placed in the subtribe Phajeae of tribe Kerosphaereae)
Position: tribe Polychondreae, subtribe Bletilleae

Mansfeld Bletilla, Arethusa and Bletia were classified in the same tribe
(1937, 1954) Position: tribe Epidendreae subtribe Bletillinae (including Bletilla and Arethusa)

subtribe Phaiinae (including Bletia)
Dressler Bletilla, Arethusa and Bletia were classified in the same tribe

(1981, 1993) Position: tribe Arethuseae subtribe Arethusinae (Arethusa)
subtribe Bletiinae (included Bletilla and Bletia)

Szlachetko
(1995)

Bletilla and Bletia were classified in the same tribe
(Arethusa was still placed in tribe Arethuseae)
Position: tribe Bletiinae (including Bletilla and Bletia)

Berg
(2005)

Bletilla and Arethusa were classified in the same tribe
(Bletia was placed in the subtribe Bletiinae of tribe Epidendreae)

Until now Position: tribe Arethuseae subtribe Arethusinae (including Arethusa)
subtribe Coelogyninae (including Bletilla)

Nevertheless, although most studies have focused on the systematic status of Bletilla,
only a few reports have involved its internal branching patterns. Based on nrDNA-ITS and
plastid gene matK, Li et al. [19] observed that the genus Bletilla was monophyletic, with
B. ochracea being a sister to the remaining species of this clade; Feng et al. [20] found that
B. formosana was a sister to B. striata + B. ochracea. Moreover, the monophyletic status of
Bletilla has been challenged by a recent study from Huang et al. [18]. In this work, with
combined morphological and molecular data, the species B. foliosa (a synonym of B. sinensis)
has been treated as a new monotypic genus Mengzia. The monophyletic status of Bletilla
and the phylogenetic relationships within this genus are still unclear. Thus, more evidences
and further investigations are needed to clarify these issues.

As we know, the plastid genome (plastome), which is rich in both sequence and struc-
tural variation, has emerged as a powerful tool for understanding plant evolution [21–28].
In particular, with the rapid development of high-throughput sequencing technologies,
numerous studies have enriched plastomic resources, such as the genomic composition,
structural variation, high diversity regions [29–31]. Additionally, there are still several
important characteristics of plastome, which harbor phylogenetic implications, that need
to be explored further. For instance, studying plastomic tRNA (pttRNA), which accumu-
lated multiple mutation events, is one point for delving into the plastid evolution [32].
It is becoming widely recognized that tRNAs possess highly conserved clover leaf-like
structures [33]. Interestingly, our recent study surprisingly found some novel structures
in the pttRNAs of the Macaronesian species (Crassulaceae) [28]. We further identified
these secondary structural variations as genus-specific markers. Accordingly, exploring
the pttRNAs’ secondary structure in Bletilla greatly benefit a better understanding of the
phylogeny of this genus.

In addition, codon usage bias (CUB), referring to the unbalanced utilization of syn-
onymous codons in coding DNA, can be analyzed for getting insights into the evolutionary
patterns of both taxa and genes [34–38]. By the statistical analysis of CUB, we can speculate
which factor is mainly responsible for bias pattern, usually mutational bias or natural
selection [39–41]. It should also be noted that the CUB pattern has been reported to be
highly associated with gene expression level [42,43]. Based on that, a codon that has a
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distinct positive relationship between its frequency and gene expression is defined as the
optimal codon [44,45]. Codon optimality was attributed as a major determinant of mRNA
stability [46–48]. Additionally, codon aversion motifs (CAM), presented as the nonuse of
codons in genes, has recently been found to be a novel marker for phylogeny studies [49,50].
Definitely, the phylogenetic implications obtained from the analyses of the codon usage
and aversion will improve our understanding of the phylogeny of Bletilla.

In this work, aiming to explore the interspecific differences of the genus Bletilla, four
new plastomes were reported. Through comprehensive analyses, we are committed to
address (1) the compositional variations of plastomes among the members of Bletilla;
(2) the differences in novel secondary structures of pttRNAs; and (3) the phylogenetic
relationships within the genus Bletilla. Ultimately, our findings of this study will shed light
on the evolution of Bletilla and Arethuseae.

2. Results
2.1. Plastomic Organizations and Structural Features

The size of four complete plastome sequences of Bletilla ranged from 156,942 (B. sinensis)
to 160,168 bp (B. ochracea), with typical quadripartite structures, containing LSC regions (86,289–
87,746 bp) and SSC regions (18,249–18,804 bp) separated by two IR regions
(26,202–26,809 bp each) (Figure 1, Table 2). The four plastomes were extremely conserved
in GC contents and gene numbers, sharing the highest GC content in IR (43.2%), followed
by LSC (35.0–35.1%) and SSC (30.2–30.4%). All investigated plastomes possessed 135 genes,
containing 86 protein-coding genes (PCG), 8 rRNAs, 38 tRNAs and 3 pseudogenes (Table S1).
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Figure 1. Chloroplast genome map of 4 Bletilla species. Directed with arrows, genes that are listed
inside and outside of the circle are transcribed clockwise and counterclockwise, respectively. Genes
are color-coded by their functional classification, with pseudogenes marked with asterisks. The GC
content of the genome is depicted as the proportion of the shaded parts of each section.
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Table 2. Comparative analysis among the plastomic features of the species in this study.

Species
(Accession Number)

B. formosana
(OP104328)

B. ochracea
(OP104329)

B. striata
(OP104330)

B. sinensis
(MT806143)

Size (base
pair, bp)

Total 160,022 160,168 159,484 156,942
LSC 87,636 87,746 87,114 86,289
IR 26,801 26,809 26,793 26,202

SSC 18,784 18,804 18,784 18,249

Number of
genes

Total 135 135 135 135
PCGs 86 86 86 86
tRNA 38 38 38 38
rRNA 8 8 8 8

Pseudo 3 3 3 3
Intron-

containing 17 17 17 17

GC content
(%)

Total 37.2 37.2 37.2 37.2
LSC 35.1 35.0 35.0 35.0
IR 43.2 43.2 43.2 43.2

SSC 30.3 30.3 30.2 30.4
All genes 39.7 39.8 39.7 39.7

CDS 38.0 38.0 38.0 37.9
tRNA 53.0 53.1 53.2 53.2
rRNA 54.9 54.9 54.9 54.8

As shown in Figure 2, the four Bletilla species displayed similar structures at JSA
(junction IRA/SSC) and JSB (junction IRB/SSC), where ycf1 (functional copy) and ndhF
genes spanned these two junctions, respectively. Additionally, a 55 bp overlap between ycf1
(pseudo copy) and ndhF was found at JSB in all four plastomes. Most notably, upon further
analysis, we found that B. sinensis had several unique features. For instance, compared
with the rather high similarity of plastome size among the three other species of Bletilla
(159,484–160,022 bp), B. sinensis featured a much smaller size (156,942 bp). Moreover, we
also detected that rpl22 of B. sinensis completely existed in LSC regions, whereas this gene
in the other three species was all across LSC and IRb. To better understand the structural
variation of IR-LSC junctions, we further investigated a total of 16 well-annotated plastomes
from the tribe Arethuseae. Additionally, the results show that the same location of rpl22
was found in B. sinensis and all species in node 1. Meanwhile, all species in node 2 and 3,
together with Arundina graminifolia, shared the same expansion of IR in rpl22 gene (Figure 2).
Moreover, we also observed that each IR of Arethuseae had a trnH-rps19 gene cluster near
both JSA and JSB.

In addition to coding regions, the diversity might also occur in the non-coding regions
of the plastomes. Hence, we further analyzed DNA polymorphism among the four plas-
tomes of Bletilla. To detect the intrageneric divergence, the calculation was conducted in
two groups: all four Bletilla taxa (group A) and three Bletilla species (excluding B. sinensis)
(group B). The identified highly polymorphic regions (HPR) of each group displayed a
high degree of variation (Figure 3). In group A, a total of 12 regions were identified with
the nucleotide divergence (Pi) ranging from 0.03667 to 0.07028 and 44–353 mutation sites.
In comparison, group B possessed 14 HPRs featuring Pi in 0.00556–0.01185 and different
sites in 5–33 (Table 3). Most interestingly, only four regions were shared by the two groups,
and the Pi values of group A were overall almost 7 times larger than those of group B.
Complicated relationships within Bletilla could be inferred by all the above divergence, and
the unique patterns of the IR junction and HPR might serve as specific markers for this
genus.
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Figure 2. Contraction and expansion comparison of the junctions among 4 Bletilla plastomes. Blue,
orange and green blocks represent the LSC, IR and SSC regions, respectively. Gene boxes represented
above the block were transcribed clockwise and those represented below the block were transcribed
clockwise. The base pairs (bp) number labeled within scale bars above the gene boxes indicate the
extent of the integration between the junction region. The number 1, 2, and 3 above the branches
represented different nodes, respectively.
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Figure 3. The HPR analyses among the plastomes of different groups. (a) The nucleotide diversity
of the complete chloroplast genomes based on the comparison of group A (shown left the Y axis)
and group B (shown right the Y axis), respectively. (b) The HPRs possessed by the two groups were
shown in the Circoletto plot. The width of line reflected the region size, and the color is based on the
BLASTn score: (i) group A; (ii) group B.

Table 3. The highly polymorphic regions identified in the plastomes of the two groups.

Taxa Region Nucleotide
Diversity

No. of
Mutations

Region
Length

Group A

1 matK-trnK-UUU 0.04243 199 1307
2 trnS-GCU-trnG-GCC 0.03875 93 965
3 petN-psbM-trnD-GUC 0.04389 158 1127
4 trnE-UUC-trnT-GGU-psbD 0.07028 253 1331
5 trnT-GGU-psbD 0.03667 44 731
6 ndhC-trnV-UAC-trnM-CAU-atpE 0.04194 50 1540
7 rbcL 0.05880 203 1247
8 psbB-psbT 0.04569 109 1078
9 petB 0.05546 188 1130

10 ccsA-ndhD 0.05944 353 1504
11 ndhD 0.03764 89 857
12 ycf1 0.04000 48 621
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Table 3. Cont.

Taxa Region Nucleotide
Diversity

No. of
Mutations

Region
Length

Group B

1 psbA-matK 0.00556 15 1000
2 matK-trnK-UUU 0.00612 33 1601
3 rps16-trnQ-UUG-psbK 0.00556 10 845
4 trnS-GCU-trnG-GCC 0.00667 18 1016
5 trnG-GCC-trnR-UCU-atpA 0.00695 25 1205
6 trnT-GGU-psbD 0.00556 5 609
7 atpB-rbcL 0.00917 33 1257
8 psbH-petB 0.01185 32 1009
9 rpoA-rps11-rpl36-infA 0.00778 21 1000

10 rpl16 0.00741 20 1023
11 rps3-rpl22 0.00556 5 601
12 ccsA-ndhD 0.00723 13 849
13 rps15-ycf1 0.00926 25 1000
14 trnN-GUU-trnR-ACG-rrn5-rrn4.5-rrn23 0.00630 17 1009

2.2. High-Informative Patterns of pttRNAs’ Secondary Structures

The secondary structures of pttRNAs were identified and compared among four
plastomes of Bletilla. In 38 tRNA genes, a total of 12 novel putative pttRNA structures
were detected (Figure 4) and were clustered into five groups: (1) pttRNA with one novel
loop located in the accept stem: tRNAArg-ACG and tRNAThr-UGU; (2) pttRNA with one
novel loop located in the D arm: tRNAMet-CAU; (3) pttRNA with novel variations in the
anticodon arm: tRNAIle-GAU harbored an intron in all four Bletilla species and tRNAGln-
UUG in B. sinensis contained an expanded anticodon loop; (4) pttRNA with novel structures
in the variable loop: tRNATyr-GUA (with a 3-bp stem), as well as tRNALeu-CAA, tRNALeu-
UAA, tRNALeu-UAG, tRNASer-GCU and tRNASer-GGA (with new loops); (5) pttRNA with
new structures in multiple regions: tRNASer-UGA had one new loop in the acceptor arm, T
arm and variable loop, respectively.

To explore potential new markers for DNA barcoding, we further compared these
novel putative pttRNA structures within Bletilla. Interestingly, the species B. sinensis has
unique structural features of pttRNA. For example, the expanded 9-nt anticodon loop
of tRNAGln-UUG was found to be characteristic for B. sinensis (Figure 4) compared with
the ordinary 7-nt loop for the remaining three Bletilla species. Moreover, in the variable
loop, three unique pttRNAs were also detected (Figure 5): (1) B. sinensis only had one
new variable loop in tRNALeu-UAA, while the other three species all possessed two new
loops; (2) tRNASer-GCU contained anticodon-like sequences in the variable loops for all
four Bletilla species, however, the sequence 5′-UUU-3′ is only for B. sinensis, while it is
5′-UUA-3′ for the other three; (3) the position nt 56 in tRNASer-UGA was occupied by ‘C’
for B. sinensis and ‘A’ for the other three.

Furthermore, we conducted comparative analyses at the intergeneric level in the tribe
Arethuseae (involving 22 released plastomes in total). Notably, except for tRNASer-UGA,
the structural features of tRNAGln-UUG, tRNASer-GCU and tRNALeu-UAA of B. sinensis
differed from the other species of the tribe Arethuseae.
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(only in B. sinensis).
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2.3. Patterns of Codon Usage and Aversion

To explicate the patterns of codon usage and aversion among four species of Bletilla
and one closely related species Arundina graminifolia, we performed the evaluation of
the effective number of codons (ENCs), relative synonymous codon usage (RSCU) value,
optimal codons and codon aversion motifs (CAM). Only 53 CDSs with sizes of at least
300 bp were considered for further analyses.

To reflect varying levels of CUB, the lowest and highest 5% of ENC values were
selected and compared among these five species. As presented in Table 4, we detected high
similarities in B. formosana, B. ochracea and B. striata, which shared the exactly same pattern
for both low (rps18, rpl16 and psbD) and high (clpP, ndhE and ycf3) groups. In contrast, for
B. sinensis, the low group included rps8, and the high group possessed rps4 and ndhJ. It was
worth noting that the B. sinensis was found to share some similarities with A. graminifolia on
ENC values. For instance, the rps8 (37.85) gene was also one of the lowest in A. graminifolia
and ndhJ (53.81) was the third highest as well.

Table 4. The highest and lowest 5% ENC values of 53 CDSs among the 5 investigated species.

Bletilla formosana Bletilla ochracea Bletilla striata Bletilla sinensis Arundina graminifolia
Gene ENC Gene ENC Gene ENC Gene ENC Gene ENC

Low
group

rps18 36.65 rps18 36.65 rps18 36.65 rps18 38.16 rps8 37.85
rpl16 41.39 rpl16 41.39 psbD 42.05 rps8 40.80 rps14 42.03
psbD 42.05 psbD 42.05 rpl16 42.20 rpl16 41.67 petD 42.03

High
group

clpP 57.86 clpP 57.86 clpP 57.86 ndhJ 53.81 ndhJ 54.68
ndhE 59.50 ndhE 59.50 ndhE 59.50 rps4 54.04 clpP 57.69
ycf3 60.75 ycf3 60.75 ycf3 60.75 clpP 60.36 ndhE 57.83
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Considering the codon aversion can act as a new character system in phylogenetics,
we also employed the analysis of CAM for these 53 CDSs of five plastomes (Table S2).
The genus Bletilla had a highly conservative codon aversion pattern excluding B. sinensis,
harboring the same motifs for 27 CDSs. Among these 27 CDSs, five are shared by B.
sinensis (clpP, ndhB, ndhJ, rps7 and ycf4). Surprisingly, we detected many unique CAM for B.
sinensis from a total of 31 CDSs, indicating the substantial interspecific difference in Bletilla.
Furthermore, two CDSs (accD and atpF) were observed that were shared by A. graminifolia
and B. sinensis. Most significantly, as shown in Figure 6, the aversion motifs identified in
ndhA and rps11 genes could distinguish five investigated species.
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The optimal codons identified in the five plastomes were shown in Table 5. Four
species possessed four optimal codons, respectively: B. formosana, B. ochracea and B. striata
had the same pattern (GGU, UUG, UCC and CGU), and A. graminifolia featured by GGU,
UUG, UCC and CGA. Instead, B. sinensis only had two optimal codons (GGU and CGA),
showing a high degree of diversity. Notably, GGU was shared by all five species, and CGA
was shared by B. sinensis and A. graminifolia.

Table 5. The optimal codons of the 5 investigated species.

Taxa Optimal Codons

B. formosana GGU UUG UCC CGU
B. ochracea GGU UUG UCC CGU
B. striata GGU UUG UCC CGU

B. sinensis GGU CGA
A. graminifolia GGU CGA UUG UCC

2.4. Phylogenetic Implications of Plastomes within Bletilla

To further clarify the evolutionary relationships within the genus Bletilla, especially
the taxonomic position of B. sinensis, we performed phylogenetic analyses. Along with
four new plastomes generated in this study, our phylogeny totally covered 36 species from
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9 genera of Arethuseae using the datasets of 79 PCGs. Based on the 69,937-bp concatenated
sequence, similar tree topologies were obtained for both ML and BI algorithms.

As Figure 7 displayed, most Arethuseae species formed two main clades. Clade I
comprised 6 genera, which could be further divided into two subclades. All Pleione species
clustered in a strongly supported monophyletic group (subclade A) ([BS] = 100, [PP] = 1.0).
As sister to subclade A, subclade B consisted of four genera (Pholidota, Coelogyne, Panisea
and Bulleyia ([BS] = 100, [PP] = 1.0). Among the members of subclade B, the two genera
(Pholidota and Coelogyne) were recovered to be paraphyletic. Thuniopsis, a monotypic genus,
was found to be the basal sister branch of Clade I ([BS] = 100, [PP] = 1.0). Furthermore,
Bletilla species (excluded B. sinensis) and Thunia alba formed a distinct clade (clade II) (90 in
ML, 1.0 in BI). Our data also support a sister relationship between Arundina graminifolia
and these two main clades (clade I and II).
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with the omission of those <50% bootstrap or <0.5 PP).

In addition, we also constructed a wider taxonomic sampled cladogram based on
six cpDNA loci, additionally comprising the data of three Arethusinae taxa (Figure S1).
Notably, clade I showed a highly similar topology to the PCG trees. Additionally, its sister
clade (clade II) was composed of four species, three of which (Arethusa bulbosa, Eleorchis
japonica and Calopogon tuberosus) formed a well-supported subclade (100 in ML, 1.0 in BI),
and A. graminifolia was weakly grouped with them.
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Significantly, it was interesting to note that B. sinensis was not clustered with other
Bletilla members, and was located at the basal position of Arethuseae ([BS] = 100, [PP] = 1.0)
in all trees instead. Thus, our results suggest that the genus Bletilla is paraphyletic.

3. Discussion

With the aim of clarifying the interspecific relationships in the genus Bletilla, this study
reported the plastomes sequences of four species. Comprehensive analyses were performed
within Bletilla and the tribe Arethuseae, including basic genomic properties of plastids, the
structural features of IR boundaries, the predicted structures of pttRNAs, the patterns of
codon usage and aversion, as well as phylogeny. Thereby, this work provides abundant
molecular evidence for resolving the taxonomic issues in Bletilla, and also sheds light on
the evolution of Arethuseae.

Characterized by single-parent inheritance, conservative organization, and a relatively
slow-evolving rate, the plastome is widely recognized as a super-barcode for plant species
discrimination and phylogenetic analyses [51–53]. From our analyses, both similarities
and differences were detected between B. sinensis and three other Bletilla species. All four
plastomes harbored exactly the same number of genes and similar GC contents. With the
same location of the ycf1 gene, all four plastomes possessed a pseudo ycf1. Nevertheless,
compared to other species, the gene content of B. sinensis at JLB was highly divergent.
According to Downie and Palmer [52], any mutation occurring in the structure or content
of plastome possibly implicated phylogeny. In our recent study on plastome evolution [28],
the rps19 genes in all investigated taxa of Crassulaceae were located at the JLB, and were
extended by 105 or 110 bp in the IRb. However, all rps19 genes from members of the tribe
Arethuseae were present in IRb. Moreover, the trnH-rps19 gene cluster in IRs observed in
this study was also present in most monocots, implying that the duplication of this cluster
was prior to the divergence of monocot lineages [54].

Nucleotide mutations are cluster-distributed and manifested as “hotspots” in plas-
tomes [55]. Consistent with previous studies [56–60], we also observed that genes in the
IR regions were slower to evolve than those in the SC regions. To our knowledge, few
mutational hotspots were found in the IR regions. For instance, Henriquez et al. [31]
investigated five plastomes of Monsteroideae, which exhibited no hotspots in the two
repeat regions. The decreased rates of substitution might result from gene conversion in IR
regions [58,61,62]. More interestingly, Li et al. [63] observed that genes translocated into the
IR region of fern plastomes not only reduced substitution rates, but also increased the GC
content. In addition, the substantial increase in the Pi values in group A (Bletilla included
B. sinensis) compared to group B (Bletilla excluded B. sinensis) indicated the faster substitu-
tion rate in B. sinensis. This finding implies that the three species (B. ochracea, B. formosana
and B. striata) were closely related to each other and distantly related to B. sinensis. Dong
et al. [64] found that highly variable chloroplast markers were suitable for evolutionary
studies on angiosperms at low taxonomic levels. In our recent research on the plastome
evolution of Aeonium and Monanthes (Crassulaceae) [28], we strongly recommended that
the hotspots (highly polymorphic regions) of plastomes might have important implications
for phylogeny, and could be used for the DNA barcoding of plants. Therefore, the identi-
fied hotspots loci in this study obviously possessed higher informative divergence, which
would act as more efficient markers for the barcoding and phylogeny of Bletilla.

As we know, the complete plastome has significant genomic resources for untangling
phylogenetic issues [65–68]. Linking the mRNA and protein, pttRNA occupies a critical
part of chloroplast [32,69,70]. Brennan and Sundaralingam [71] pointed out that tRNAs
embodies two categories on the basis of a variable-region size: type I contains a small loop
with 4 or 5 nt, and type II has a larger size with a stem (3–7 bp) as well as a loop (3–5 nt). In
this work, among the 38 pttRNAs of Bletilla, seven with a variable arm were examined to
belong to type II, including tRNALeu-CAA, tRNALeu-UAA, tRNALeu-UAG, tRNASer-GCU,
tRNASer-GGA, tRNASer-UGA and tRNATyr-GUA. It is noteworthy that tRNATyr of type
II was considered to be unique to prokaryotes in an early study [72]. However, through
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intensive and extensive sampling, Sun and Caetano-Anollés [73] found that all Tyr specific
tRNAs in both Archaea and Eukaryotes were also classified as type II. The long variable
arm was presumed to be an ancient structure and was lost in more derived tRNAs [73].

More notably, plastomic tRNALeu-UAA was proved to have important phylogenetic
implications. As shown in Figure 7, Arethuseae could be sorted into five distinct categories
based on the variable loop of tRNALeu-UAA. Type A was shared by Clade I, consisting
of the genera Bulleyia, Coelogyne (except for C. corymbosa), Panisea, Pholidota (except for
P. yunnanensis) and Pleione; type B was featured in the genus Bletilla (except for B. sinensis),
C. corymbosa and P. yunnanensis; while types C, D and E were unique to Thunia alba, Arundina
graminifolia and B. sinensis, respectively. Based on these analyses, we strongly suggest that
the genus Bletilla is non-monophyletic. Our results clearly indicate that the secondary
structures of pttRNAs are of highly informative value for phylogenetic analyses. Thus,
more in-depth studies are needed to better understand the evolutionary significance of
pttRNAs in plants.

The CUB pattern is affected by multiple factors, such as selection on translation [74],
gene size [75] and composition [76], as well as mutation and selection pressure [41,77].
The ubiquity of CUB in different genes or taxa makes it an ideal resource for investigating
molecular evolution, gene expression, nucleotide composition, etc. [78,79]. As a vital index
of CUB, ENC is widely associated with the gene expression level. The lower value of
ENC means the stronger impact from CUB, and vice versa [80]. Additionally, it has been
widely acknowledged that a higher level of expression is generally associated with a more
powerful bias [81,82]. Notably, in comparison with three other species of Bletilla, our
analysis revealed that B. sinensis varied considerably in ENC pattern, which might imply
that the gene expression mode in B. sinensis is different. Another important indicator for
gene expression is optimal codons. In fact, codon optimality has been proven to be a key
determinant of mRNA stability [46–48]. Previous studies proposed that the number of
optimal codons might be correlated with a different selection mode [81,83]. Generally, a
positive selection will result in an increased number of preferred codons, while negative
selection might cause a decrease. Significantly, we found that B. sinensis harbored the least
number (two) of optimal codons among the five taxa investigated, suggesting that this
species might undergo more pressure from purifying selection than others. On the other
hand, codon aversion has recently been proposed to have extraordinarily potential value in
phylogeny [28,49,50,84,85]. Remarkably, this study identified extremely divergent CAM in
B. sinensis compared with other analyzed species. Moreover, following the method of Miller
et al. [50], we further recovered the phylogeny of Arethuseae using CAM, exhibiting the
same topology with the tree based on the PCGs of plastomes. Accordingly, our analyses on
the patterns of codon usage and aversion confirmed the non-monophyly of Bletilla within
the tribe Arethuseae.

In order to overcome the limitations of a few loci and the taxon sampling estimated,
we employed two datasets (79 plastomic PCGs for 38 taxa, and 6 cpDNA regions for
49 taxa) to construct the cladogram of Arethuseae, respectively. Significantly, the non-
monophyly of Bletilla was strongly supported by two different phylogenetic methods. We
also found a heterogeneity in the relationship between B. sinensis and Arundina graminifolia
compared to the work of Huang et al. [18]. The latter study found a sister relationship of
them, while B. sinensis was located at the basal position of Arethuseae in the present study.
Currently, there are a limited number of phylogenetic informative sites for the phylogeny
of Arethuseae. Hence, to better evaluate the taxonomic status of B. sinensis, more samples
are needed.

4. Materials and Methods
4.1. Sample Material, DNA Extraction, Sequencing and Annotations

The fresh leaves of four Bletilla species (B. formosana, B. ochracea, B. sinensis and B. striata)
were gathered, and their specific locations are listed in Table S3. The extraction of whole-
genomic DNA was achieved using the Plant Genomic DNA kit (Tiangen, Beijing, China)
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according to CTAB method [86]. TruSeq DNA PCR-Free Library Prep Kit (Illumina, San
Diego, CA, USA) was employed for library construction. Additionally, the resulting
libraries were then sequenced through Illumina Novaseq 6000 with 150 paired-ends and
350 bp insert size.

The sequenced reads were quality assessed by FastQC and trimmed using Fastp
v.0.11.0 [87,88]. The obtained reads were then assembled by GetOrganelle v.1.7.5.0 [89],
taking the plastome of Bletilla striata (MT193723) as reference [90]. Gene annotation was
conducted by GeSeq [91], and the annotation results were manually confirmed, with
the BLAST program for coding sequences (CDSs) and tRNAscan-SE v.2.0.3 for pttRNA
genes [92,93]. Lastly, the plastomes were visualized by Chloroplot [94].

4.2. Comparative Structural Analyses among the Plastomes of Bletilla

Comprehensive structural analyses were conducted comparatively among four mem-
bers of the genus Bletilla. Firstly, the nucleotide composition of the plastomes was identified
using Bioedit [95]. The boundaries at the junctions of IR and SC regions were checked and
plotted manually. Additionally, the secondary structure of pttRNAs was then predicted by
tRNAscan-SE v.2.0.3 [46].

4.3. Plastomic Codon Usage and Aversion Indices

To investigate the plastomic codon usage, CodonW v.1.4.2 was employed for the
calculation of the value of ENC and RSCU [96]. The RSCU value was applied to quantify
the degree of even use for each synonymous codon, with a value larger than 1 favoring the
use of a codon and vice versa [97]. In the range of 20–61, ENC values usually denote the
bias of codon usage, and the strong bias features with a low value [98].

Furthermore, to explore the deep correlation between CUB and gene expression, we
conducted the ∆RSCU method to determine optimal codons in Bletilla [44,45]. Taking the
ENC values of the CDSs as a substitute for expression degree, the highest and lowest 5%
were categorized as the low and high group, respectively [40,81] Then, the optimal codons
were sifted out with the ∆RSCU > 0.08 as well as the RCU (relative codon usage) value > 1
in the high group and <1 in the low group.

Moreover, to gain more informative genetic evidence, the codon aversion motifs,
possessing strong phylogenetic implications, were extracted and manually checked using
the CAM algorithm [50].

4.4. Phylogenetic Inferences

To untangle the controversy of the phylogeny of Bletilla, we performed phylogenetic
analyses within the tribe Arethuseae. Additionally, two species of Liparis, from the closely
related tribe Malaxideae of Arethuseae, served as outgroups. Additionally, two phyloge-
netic sampling strategies were employed in this study.

The first one was the inclusion of all available complete plastomic sequences of the
tribe Arethuseae from NCBI, along with four new data from this study. The 79 plastomic
CDSs from a total of 38 taxa formed the first dataset, which represented nine genera of the
tribe Arethuseae (Table S4).

Furthermore, six cpDNA regions (ccsA, matK, psaB, rbcL, rpoC1 and ycf1) were selected
for the second dataset. It consisted of 49 species, including eight additional species of
Coelogyninae and three Arethusinae taxa compared to the first dataset (Table S5).

The two datasets were aligned, respectively, with MAFFT, under the default set-
tings [99]. SequenceMatrix was then used for the concatenation [100], with gaps as missing
data. After that, two approaches were chosen for phylogenetic analysis: maximum likeli-
hood (ML) and Bayesian inference (BI).

The ML trees were inferred by RAxML 8.2.12 [101]. Fifty runs and one thousand
bootstrap replicates were executed under the models identified by PartitionFinder v.2.1.1
with the “-raxml” command line [102]. We also checked the convergence of each node by
the “-I autoMRE” option. For BI analysis, the best models for the dataset were determined
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by ModelTest-NG [103]. Two simultaneous runs with four Markov chains each were run
for 10 million generations (sampling every 100 generations), and Tracer 1.7.1 was used to
assess the convergence [104].

5. Conclusions

In the context of the controversial intrageneric relationships within Bletilla, this study
newly sequenced plastomes from four species of Bletilla, and performed comparative
analyses among them. Interestingly, our results reveal considerable plastomic differences
between B. sinensis and the other three taxa in many aspects. Most importantly, the specific
features of the IR junction patterns, novel pttRNA structures and codon aversion motifs can
serve as useful molecular markers for Bletilla. Furthermore, at the tribe level, the variable
region of plastomic tRNALeu-UAA and IR boundaries showed important phylogenetic
implications for Arethuseae. Additionally, our phylogenetic analyses based on the two
datasets, covering 36 species and 49 taxa of Arethuseae, respectively, suggested the non-
monophyly of Bletilla with strong support. The convincing molecular evidence reported
herein will provide novel potential markers for species identification, and achieve a more
profound understanding for the evolution of Bletilla and Arethuseae.
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