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Abstract

Background—Host genetic polymorphisms may be important in determining susceptibility to 

Mycobacterium tuberculosis (Mtb) infection, but their role is not fully understood. Detection of 

microbial DNA and activation of type I interferon (IFN) pathways regulate macrophage responses 

to Mtb infection.

Methods—We examined whether seven candidate gene SNPs were associated with tuberculin 

skin test (TST) positivity in close contacts of microbiologically confirmed pulmonary TB patients 

in Brazil. Independent associations with TST positivity were tested using multivariable logistic 

regression (using genotypes and clinical variables) and genetic models.

Results—Among 482 contacts of 145 TB index cases, 296 contacts were TST positive. 

Multivariable regression analysis adjusted for population admixture, age, family relatedness, sex 

and clinical variables related to increased TB risk demonstrated that SNPs in PYHIN1-IFI16-
AIM2 rs1101998 (adjusted OR [aOR]: 3.72; 95% CI = 1.15–12.0; p = 0.028) and in PYHIN1-
IFI16-AIM2 rs1633256 (aOR = 24.84; 95%CI = 2.26–272.95; p = 0.009) were associated with 

TST positivity in a recessive model. Furthermore, an IRF7 polymorphism (rs11246213) was 

associated with reduced odds of TST positivity in a dominant model (aOR: 0.50, 95%CI: 0.26–

0.93; p = 0.029).

Conclusions—Polymorphisms in PYHIN1-IFI16-AIM2 rs1633256, rs1101998 and in IRF7 
rs11246213 were associated with altered susceptibility to Mtb infection in this Brazilian cohort.
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Introduction

Tuberculosis (TB) is the leading cause of death from a single infectious agent (WHO, 2018). 

Approximately one-quarter of the global population is infected with Mycobacterium 
tuberculosis (Mtb) (Houben and Dodd, 2016). Latent tuberculosis infection (LTBI) is 

defined by immunological sensitization to Mtb antigens in the absence of clinical symptoms 

of disease and the diagnosis is based on the tuberculin skin test (TST) and/or Interferon-

γ(IFN-γ) release assay (IGRA) (Robertson et al., 2012). Nevertheless, these tests do not 
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discriminate between active disease and LTBI and, more importantly, have a low predictive 

value for progression to active TB (Rangaka et al., 2012). Many risk factors for developing 

active TB have been described, including HIV co-infection, diabetes, young age and recently 

acquired Mtb infection (Reid et al., 2019), but intriguingly some TB patients do not exhibit 

any known risk factors (Yan et al., 2015). TB occurs as the result of an intricate and dynamic 

relationship involving host genetics (van Tong et al., 2017) as well as immunological 

(Mahan et al., 2012; Tameris et al., 2013), and epidemiological (Shin et al., 2016) factors, in 

addition to characteristics of the Mtb strain itself (Koch and Mizrahi, 2018), that contribute 

to disease susceptibility (Pai et al., 2016).

Genetic factors are important for TB susceptibility, but the major genes involved remain 

unknown (van Tong et al., 2017). Candidate gene/pathway studies interrogate selected 

pathways that are important in the human host response to mycobacterial infection (Kinnear 

et al., 2017). Type I IFN pathways mediate an important role in TB pathogenesis. Whole 

blood RNA signatures dominated by Type I IFN-signaling identify individuals who will 

develop active disease (Berry et al., 2010). In Mtb-infected mice, increased expression of 

type I IFNs is deleterious for survival in association with reduced Th1 immunity (Manca et 

al., 2005). The Type I IFN pathway is activated by DNA (e.g. IFI16-PYHIN1-AIM2, cGAS, 

STING) and RNA sensors (e.g. IFIT1 and 5), and contains several important signaling 

molecules and transcription factors (e.g. IRF family). For example, the cytosolic DNA 

sensor cGAS regulates IFN production during Mtb infection of macrophages (Watson et al., 

2015). Although these murine and cellular studies suggest an important role for Type I IFNs 

in TB pathogenesis, the human genetics of this pathway in the context of Mtb infection are 

poorly understood (Donovan et al., 2017).

In a longitudinal investigation examining TB contacts from Brazil, we recently found that 

polymorphisms in toll-like receptor 4 (TLR4) and tumor necrosis factor (TNFA) are 

associated with increased risk of TST conversion and development of active TB (Cubillos-

Angulo et al., 2019). Here we investigated in this same cohort whether genetic variation of 

Type I IFN pathway genes were associated with susceptibility to Mtb infection by examining 

single nucleotide polymorphisms (SNPs) involved in DNA and RNA sensing: (rs1101998, 

rs1633256, rs866484 in IFI16-PYHIN1-AIM2 region, rs59633641 and rs10887959 in 

IFIT5), rs304478 and rs304498 in IFIT1 and the IFN signaling pathway (rs11246213 

[IRF7]). The objective of this study was to identify potential genetic biomarkers of 

susceptibility to Mtb infection. We studied close contacts of microbiologically confirmed 

pulmonary TB patients to estimate factors associated with a positive versus negative TST.

Methods

Study design

The present study was based on analyses performed retrospectively on a cohort of contacts 

of pulmonary TB patients, recruited between November 1998 through March 2004. The 

parent study was reported previously (Cubillos-Angulo et al., 2019). The cases and controls 

were enrolled in the state of Rio de Janeiro, Brazil where the population is mostly white and 

brown (‘parda, mixed ethnic ancestries) (IBGE, 2012). Racial/ethnic background was self-

reported and used the definitions/approaches employed by the Brazilian government for race 
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documentation. TB index cases were diagnosed by acid-fast bacilli (AFB) smear and/or 

culture, according to Brazilian Ministry of Health Guidelines (Ministério da Saúde, Brasil, 

2019). TB index case variables included cough, AFB sputum grade, and chest radiographs. 

TB contacts were defined as living in the same household or reporting contact with the TB 

index case for >20 h weekly for 2 months (Cubillos-Angulo et al., 2019). In the analyses 

presented here, we used data from a subgroup of 482 individuals, which were selected by 

such criteria and included contacts with TST-positive or TST-negative results. Patients who 

developed active TB were excluded from the analysis. Additional details on inclusion and 

exclusion criteria as well as patient characteristics have been described previously (Cubillos-

Angulo et al., 2019).

A standardized questionnaire was administered to obtain demographic and clinical data, 

including a history of risk factors for TB (e.g., HIV, diabetes, hematologic malignancies, and 

use of immunosuppressant drugs) and duration of contact with the index case. 

Consanguinity was considered if a contact was a grandparent, parent or sibling of the index 

case, where as spouses or other relationships were not. At study baseline, a medical visit and 

chest radiograph were performed. BCG scar was assessed and TST reading was performed 

48–72 h after administration at baseline, using 2 tuberculin units of the purified protein 

derivative RT 23 (Statens Serum Institute, Copenhagen, Denmark).

TST interpretation and TB diagnosis

A positive TST was defined as an induration larger than ≥5 mm induration, according to the 

Brazilian Ministry of Health (Ministério da Saúde, Brasil, 2019). Contacts with any TST ≥5 

mm were not re-tested with TST. The Brazilian National TB Guidelines indicated that 

treatment of TST-positive individuals was systematically offered but implementation was not 

mandatory during the study period (Ministério da Saúde, Brasil, 2019). For the index case, 

active TB was diagnosed when ≥1 specimen yielded a positive microbiologic (AFB smear or 

culture) result by AFB smear and/or culture in Lowenstein Jensen (LJ) medium (Cubillos-

Angulo et al., 2019).

Genotyping

Genomic DNA was extracted from peripheral blood collected from TB contacts at study 

enrollment. DNA extraction and genotyping were performed using the Flexi Gene kit 

(Qiagen, Germany). Genotypes of 8 gene polymorphisms were chosen for convenience since 

an RFLP assay was available: rs1101998 (IFI16-PYHIN1-AIM2), rs1633256 (IFI16-
PYHIN1-AIM2), rs866484 (IFI16-PYHIN1-AIM2), rs304478 (IFIT1), rs304498 (IFIT1), 

rs11246213 (IRF7), rs59633641 (IFIT5) and rs10887959 (IFIT5) were detected using 

polymerase chain reaction restriction fragment length polymorphism (RFLP) method 

(Cubillos-Angulo et al., 2019). The primer sequences are in Supplementary Table S1. The 

PCR products were digested by the enzymes EcoRII for rs1101998 (IFI16), AgsI for 

rs1633256 (IFI16), AgsI for rs866484 (IFI16), AarI for rs304478 (IFIT1), TfiI for rs304498 

(IFIT1), BsaAI for rs11246213 (IRF7), ApoI for rs59633641 (IFIT5) and AgsI for 

rs10887959 (IFIT5). Hardy-Weinberg equilibrium was tested for each SNP. We did not find 

significant deviation from Hardy Weinberg equilibrium except in rs304498 (IFIT1), and thus 

this SNP was excluded from further analysis. Linkage disequilibrium coefficients were 
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calculated using Package “LDheatmap” (Shin et al., 2006) in the stats package in R 3.5.2 

and using an R2 and D’ cutoff of 0.8. Haplotypes analysis were constructed in the stats 

package R 3.5.2 using the haplo.stats (version 1.6.0) R package (Sinnwell and Schaid, 

2018).

Data analysis

Categorical data were presented as proportions and continuous data as medians and 

interquartile ranges (IQR). For clinical characteristics, a Fisher’s exact test was used to 

perform 2 × 2 comparisons. Continuous variables were compared using the Mann–Whitney 

U test. For genetic analysis, a Cochrane-Armitage test for trend was used initially to 

examine the association of genotypes with TST positivity. SNPs were then evaluated with a 

Fisher’s exact test using dominant (00 vs 01/11) and recessive (00/01 vs 11) models. We also 

estimated significant associations between indicated SNPs and TST positivity using 

multivariable logistic regression adjusted for race/ethnicity, family relatedness, gender and 

age in both dominant and recessive models. Finally, we also performed additional 

investigations with dominant and recessive models in a multivariable analysis with 

adjustment for age, gender, race/ethnicity, family relatedness, household contact status and 

characteristics of TB index case, such as cavities on chest X-ray, ≥ 2+ AFB sputum smear 

grade and positive sputum culture for Mtb. We also used the GTEx portal (https://

gtexportal.org/home/) to evaluate the expression quantitative trait loci (eQTL) of the SNPs 

(Consortium, 2013). Furthermore, the likelihood of being a regulatory SNP was examined 

using the RegulomeDB dataset (http://www.regulomedb.org/snp/chr10/91150921 ) (Boyle et 

al., 2012).

Results

Characteristics of the study participants

We used a re trospective cohort study of contacts (N = 482) of pulmonary TB index cases (N 

= 145) to examine whether genetic variants of candidate genes were associated with TST 

positivity. Household contacts were more frequently observed in the group of individuals 

presenting with a positive TST result than in those with a negative TST (Table 1). Cavitary 

lesions as well as cough in the index TB cases were more frequent in participants who were 

TST positive compared to those who had negative results (p = 0.04 and p = 0.008, 

respectively). Other characteristics were similar between TST positive and TST negative 

individuals.

The study population was mostly female (n = 321, 67%), with a high frequency of first 

degree relatives with the index case (n = 229, 62%) (Table 1). In addition, the vast majority 

of participants were household contacts (n = 434, 90%). There were low frequencies of HIV 

infection, illicit drug use, prior TB and use of immune suppressive drugs. Approximately 

97% (n = 141) of the index cases had TB confirmed by culture. TB index cases frequently 

reported cough for more than 4 weeks (80%) and had high bacterial loads in sputum (60% 

had AFB grade ≥ +2;). In addition, 100 index TB patients had cavitary lesions on chest 

radiograph.
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Association between polymorphisms and TST positivity

Two of seven polymorphisms were associated with TST positivity (rs1633256 and 

rs59633641 with an unadjusted genotypic trend test, Table 2). PYHIN1-IFI16-AIM2 SNPs 

rs1101998 allele C (p = 0.01) and rs1633256 allele A (p = <0.01) were more common in 

TST positive participants and fit a recessive model (Table 2). IFIT5 rs59633641 allele G (p = 

0.04) was more common in TST positive individuals (trend test p = 0.04, Table 2). IFIT1 
rs304478 and IFIT5 rs10887959 were also significantly associated with outcomes in 

recessive and dominant models, respectively.

In a multivariable model that included adjustment for race/ethnicity, family relatedness, 

gender, and age (Figure 1), we observed in the recessive model that PYHIN1-IFI16-AIM2 
rs1101998 (adjusted OR [aOR] = 2.90; 95%CI = 1.24–6.78; p = 0.014) and rs1633256 (aOR 

= 10.1; 95%CI = 2.20–46.28; p = 0.003) were associated with an increasedrisk of 

TSTpositivity. Moreover, in the dominant model, IFIT5 rs10887959 (aOR = 0.49; 95%CI = 

0.28–0.84; p = 0.01) and IRF7 rs11246213 (aOR = 0.60; 95% CI = 0.36–1.00; p = 0.049) 

were also linked to a lower likelihood of positive TST.

We next used a multivariable regression analysis to adjust for household contact and 

characteristics of TB index case (cavities on chest X-ray, ≥2 AFB sputum smear and positive 

Mtb culture) as well as race/ethnicity, family relatedness, gender, and age (Figure 2). We 

confirmed in the recessive model that PYHIN1-IFI16-AIM2 rs1101998 (aOR = 3.72; 95%CI 

= 1.15–12.0; p = 0.028) and rs1633256 (aOR = 24.84; 95%CI = 2.26–272.95; p = <0.009) 

were independently associated with increased odds of a positive TST. In addition, in the 

dominant model, IRF7 rs11246213 was also independently associated with a lower 

likelihood of a positive TST (aOR: 0.50, 95%CI: 0.26–0.93; p = 0.029).

We next examined effects of linkage disequilibrium and SNP-SNP interactions in the 

PYHIN1-IFI16-AIM2 region on chromosome 1. PYHIN1-IFI16-AIM2 SNPs rs8666484, 

rs1101998 and rs1633256 were all in moderate to high linkage disequilibrium 

(Supplemental Figure S1). In a haplotype analysis of chromosome 1 adjusted for age, 

gender, race/ethnicity, family relatedness and household contact, the haplotypes containing 

allele C from rs1101998 and allele A from rs1633256 did not have a higher risk of TST 

positivity compared to single SNP analyses (Figure 3 compared to Figure 2).

Using an in silico approach with data from the GTEx portal tool (see Methods for details 

and also in (Consortium, 013), we found that six polymorphisms (rs1101998, rs1633256, 

rs866484, rs304478, rs10887959 and rs11246213) were eQTLs in different tissues 

(Supplementary Table S2). Interestingly, three different SNPs were reported to be expressed 

in the spleen and/or lung, which are organs commonly affected by TB (Figure 4). The 

findings indicated that the PYHIN1-IFI16-AIM2 rs1101998 genotype CC was linked to 

decreased expression of AIM2 in spleen (Figure 4). The PYHIN1-IFI16-AIM2 rs1633256 

genotype AA was also associated with dampened expression of AIM2 in spleen tissue 

(Figure 4). The IFIT5 rs10887959 genotype CC was associated with lower expression of 

IFIT5 in spleen and lung tissues (Figure 4). Finally, using a different online tool, the 

RegulomeDB dataset, we observed that PYHIN1-IFI16-AIM2 rs1101998 exhibited high 

likelihood of being a regulatory SNP for a DNAase I hypersensitivity peak or transcription 
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factor binding. Moreover, IFIT5 rs10887959 displayed a high likelihood of being a 

regulatory SNP for transcription factor binding and a DNAase I hypersensitivity peak. 

Together, these data suggest that rs1101998, rs1633256, and rs10887959 are eQTLs.

Discussion

In the present study, we tested associations between SNPs from related genes in different 

pathways of DNA and RNA sensing and the type I IFN pathway in a large number of TB 

contacts. The notable finding was that PYHIN1- IFI16-AIM2 rs1633256 and rs1101998 

were associated with an increased risk of TST positivity where as IRF7 rs11246213 was 

associated with a lower probability of TST positivity. To our knowledge, SNPs in these 

genes have not previously been reported to be associated with the pathogenesis of Mtb 

infection in contacts.

Our results suggest that the PYHIN1- IFI16-AIM2 rs1633256 and rs1101998 

polymorphisms are associated with increased susceptibility to Mtb infection (i.e., a positive 

TST). The two polymorphisms are in a 3-gene locus on chromosome 1q23.1; thus, it is not 

possible to know which specific gene is most likely to exert a functional effect related to 

these genetic variants. The gene encoding Interferon-γ-inducible protein 16 (IFI16) (Trapani 

et al., 1994) is a multifunctional and ubiquitous host protein (Trapani et al.,1992), and a 

member of the PyHIN (pyrin and HIN200 domain-containing) protein family that consists of 

four family members: PYHIN1 (alias IFIX), IFI16 (alias PYHIN2), MNDA (alias PYHIN3) 

and AIM2 (alias PYHIN4) (Thompson et al., 2011). During Mtb infection of macrophages, 

IFI16 is reported to be localized into the cytosolic compartment (Thompson et al., 2011) and 

Mtb DNA activates the cytosolic surveillance pathway. Mice genetically lacking IFI204 (a 

homolog gene of human IFI16) show reduced IFIT1 and IFN-β induction against Mtb 

infection (Manzanillo et al., 2012).Furthermore, mycobacterial infection of AIM2−/− (absent 

in melanoma 2) mice induces elevated IFN-γ and reduced IFN-γ responses, leading to 

higher infection burdens and more severe pathology (Yan et al., 2018). In addition, in vitro 

studies demonstrated that AIM2-deficient macrophages display impaired activation of the 

inflammasome and defective production of IL-1b and IL-18 upon Mtb infection, making 

such cells highly susceptible to bacterial proliferation and cell death (Saiga et al., 2012). To 

the best of our knowledge, there are no previously reported studies on the relationship of 

PYHIN1 and TB. PYHIN1 detects Herpes Simplex (HSV-1) DNA and contributes to the 

induction of interferon response in human fibroblasts (Diner et al., 2015). In the present 

study, the SNPs associated with TST positivity (rs1633256 and rs1101998) are part of a 

large locus; thus it is possible that at least these two SNPs could be associated with any one 

of the 3 genes described above (PYHIN1- IFI16-AIM2) and influence the detection of Mtb 

DNA during infection. Future studies are warranted to directly elucidate the molecular 

mechanisms underlying these associations.

The human IRF7 gene is located on chromosome 11p15.5 and is a member of the interferon 

regulatory factor family of transcription factors, comprised of nine members (IRF1 to 9) 

(Ning et al., 2011). This family is recognized by the regulation of many facets of innate and 

adaptive immune responses (Tamura et al., 2008). IRF7 is the central transcription factor that 

induces IFNA/B gene transcription in response to cytosolic vira l DNA and RNA in host 
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cells (McNab et al., 2015). In addition, IRF7 is produced by murine bone marrow–derived 

macrophage infected with Mtb (Cheng and Schorey, 2018; Leisching et al., 2017). In a 

recent meta-analysis, Mtb infection of THP-1 macrophages induced differential expression 

of IRF7 (Zhang et al., 2019). Excessive type I IFN expression has been linked to increased 

TB-associated immunopathology and susceptibility to severe TB (Mayer-Barber et al., 2011; 

Mayer-Barber et al., 2014). IRF7 SNPs have been reported to significant reduce IFNα 
production by plasmacytoid dendritic cells following stimulation with HIV-1 (Chang et al., 

2011). The effect of IRF7 SNPs on reduced IFNα production, if present also in exposure to 

Mtb, could be a factor explaining the decreased susceptibility to Mtb infection reported here.

We also found that IFIT5 rs59633641 was less frequently observed in individuals with a 

positive TST where as IFIT5 rs10887959 was more commonly detected in individuals with 

positive TST. IFIT5 (IFN-induced protein with tetratricopeptide repeats-5) is a member of an 

interferon-induced protein with tetratricopeptide repeats (IFIT) family with five members 

(IFIT1, IFIT2, IFIT3, IFIT1B and IFIT5) localized in chromosome 10q23 (Diamond, 2014). 

The multivariable model with adjustment for race/ethnicity, family relatedness, gender and 

age demonstrated associations between the IFIT5 rs10887959 and increased chance of 

negative TST. It has been recently demonstrated that IFIT5 physically interacts with 

MAP3K7/TAK1 and IκB kinase (IKK) to activate the transcription factor NF-κB, which is a 

key regulator of the expression of genes involved in immune responses, inflammation, cell 

survival and cancers (Zheng et al., 2015). IFIT5 is one of the main genes upregulated in 

active TB patients (Ahmed et al., 2016). The IFN-induced proteins regulate immune 

response against viruses. For example, it has been recently shown that IFIT3 has a protective 

role in response to dengue virus infection of human lung epithelial cells (Hsu et al., 2013).

Our study has several strengths such as systematic TST testing (currently recommended as 

the diagnostic test for LTBI in most resource-restrained countries) and inclusion criteria that 

ensure microbiological confirmation of TB index cases. However, it is also important to 

highlight potential limitations of our investigation, such as the cross-sectional nature of the 

analyses, which are not able to establish causal relationships. We have not performed 

functional validation of the findings; however, we showed an analysis of gene expression 

data in silico. In addition, we considered a common Mtb strain to be responsible for 

infections within a household, but it is possible that that may not have always been true. In 

addition, LTBI was only measured by TST with no IGRA assessments. These two tests are 

not perfectly concordant, so the TST negative group could probably include some 

individuals with positive IGRA results. Of note, IGRA was not available in Brazil at the time 

of the patient enrollment. The Food and Drug Administration (FDA) approved IGRA in 

2001, and this test was introduced in Brazil in 2014, 10 years after the data collection of the 

present study was finalized. Regardless, our results clearly indicate associations between 

polymorphisms in innate immune genes linked to interferon responses and odds of Mtb 

infection assessed by TST positivity. Further translational studies are required to delineate 

the molecular events behind these associations.

Supplementary Material

Refer to Web version on PubMed Central for supplementary material.
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Figure 1. Multivariable model of association between genetic variants and TST positivity.
Analysis in all study participants Data represent no. SNP: single-nucleotide polymorphism; 

OR: odds ratio, 95% CI: confidence interval; P-value represents comparison of genotype 

frequencies in a dominant and recessive model with adjustment for race/ethnicity, family 

relatedness, gender, and age. OR (Odds ratio) represents association of minor allele with risk 

of TST positivity.
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Figure 2. Multivariable model of association between genetic variants and TST positivity 
including clinical variables.
Analysis in all study participants Data represent no. SNP: single-nucleotide polymorphism; 

OR: odds ratio, 95% CI: confidence interval; P-value represents comparison of genotype 

frequencies in a dominant and recessive model with adjustment for age, gender, race/

ethnicity, family relatedness, household contact and characteristics of TB index case: 

Cavities on chest X-ray, ≥ 2 AFB sputum smear and positive Mtb culture.
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Figure 3. Haplotype analysis chromosome 1.
Haplotype analysis chromosome 1 of SNPs rs1101998, rs1633256, rs866484- PYHIN1- 
IFI16-AIM2. P-value represents comparison of haplotype frequencies with TST conversion 

in an unadjusted and adjusted model for age, gender, race/ethnicity, family relatedness and 

household contact.
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Figure 4. In silico expression of SNPs rs1101998, rs1633256 and rs10887959 adapted from GTEx 
eQTL database.
Normalized expression values were obtained from the GTEx eQTL database and violin plots 

(with median and interquartile range values) were used to represent the trends in data 

variation between the different SNPs. The full list of the SNPs and tissues evaluated is 

described in the Supplementary Table S2. The Figures describe the SNPs that had publicly 

available data on expression in spleen and/or lungs, due to its importance in TB 

pathogenesis. Thus, data on the SNPs rs1101998, rs1633256 and rs10887959 are shown. 

Allele frequency was determined as the following: 00, homozygous common allele; 01, 

heterozygous allele; 11, homozygous rare allele. A summary of the results of the analysis 

from the present study testing the association between each indicated allele and a positive 

TST result is shown at the bottom of the graphs. A star denotes statistically significant 

associations with TST positivity in the following conditions: (i) Univariate analysis: a 

comparison of genotype frequencies without adjustment for any covariates; (ii) Adjusted 

model 1: analysis in a dominant and recessive model with adjustment for race/ethnicity, 

family relatedness, sex, and age; and (iii) Adjusted model 2: analysis in a dominant and 

recessive model with adjustment for age, sex, race/ethnicity, family relatedness, household 

contact and characteristics of TB index case (cavity on chest X-ray, 2 AFB sputum smear 

and positive Mtb culture). SNP: single-nucleotide polymorphism.
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