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Simple Summary: Aqueous humor (AH) liquid biopsy is an enriched source of cell-free circulating
tumor-derived DNA for retinoblastoma (RB). The use of this AH liquid biopsy allows for genomic
analysis of eyes in the absence of tumor tissue. Development of this platform was critical because
direct tumor biopsy is prohibited in RB due to risk of extraocular tumor spread. In this retrospective
study, we provide comprehensive, whole-genome analysis of the somatic copy number alterations
(SCNAs) in 68 eyes of 64 RB patients. We show that the prevalence of specific SCNAs differ between
eyes that required immediate enucleation (surgical removal) and eyes that were attempted to be
saved but subsequently failed treatment, requiring secondary enucleation. Increases in chromosomal
instability, or higher number of broad genomic alterations, predict higher risk clinical and biomarker
features in these eyes. Prospective analyses are needed to further determine the clinical relevance
and application of these findings.

Abstract: Aqueous humor (AH) liquid biopsy has been established as a surrogate tumor biopsy
for retinoblastoma (RB). Previous AH studies have focused on highly recurrent RB somatic copy
number alterations (SCNAs) including gain of 1q, 2p, 6p, and loss of 13q and 16q. In this retrospective
study, we provide a comprehensive, whole-genome analysis of RB SCNAs and evaluate associated
clinical features for 68 eyes of 64 RB patients from whom AH was obtained between December
2014 and October 2020. Shallow whole-genome sequencing of AH cell-free DNA was performed
to assess for SCNAs. The prevalence of specific non-highly recurrent SCNAs, such as 20q gain and
8p loss, differed between primarily and secondarily enucleated eyes. Increases in chromosomal
instability predict more advanced seeding morphology (p = 0.015); later age of diagnosis (p < 0.0001);
greater odds of an endophytic tumor growth pattern (without retinal detachment; p = 0.047); tumor
heights >10 mm (p = 0.09); and containing 6p gain, a biomarker of poor ocular prognosis (p = 0.004).
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The AH liquid biopsy platform is a high-yield method of whole-genome RB SCNA analysis, and SC-
NAs are associated with numerous clinical findings in RB eyes. Prospective analyses are encouraged
to further elucidate the clinical relevance of specific SCNAs in RB.

Keywords: retinoblastoma; aqueous humor; liquid biopsy; cell-free DNA; circulating tumor DNA;
SCNA; prognostic biomarker; precision oncology

1. Introduction

Retinoblastoma (RB), a cancer of the developing retina in infants and toddlers, is the
most common pediatric intraocular malignancy [1] and accounts for 1% of childhood cancer
mortality [2]. RB tumorigenesis has been extensively studied. In the vast majority of cases
analyzed, biallelic inactivation of the tumor suppressor gene RB1 results in development
of a premalignant retinoma [3–7], and additional mutational or epigenetic events may
promote progression of a retinoma to fully malignant RB [3,8]. By activating oncogenes
and inactivating tumor suppressor genes, somatic copy number alterations (SCNAs) are
thought to contribute to subsequent RB progression [3,9–13]. However, some tumors are
negative for SCNAs or these genomic alterations are sub-clonal, suggesting a complicated
series of heterogenous events for tumorigenesis in RB. As most studies have been done
on tissue from enucleated eyes, we know very little about these events in less advanced
eyes and additionally what new alterations may form under selective therapeutic pressure
during attempts to salvage the eye.

Although highly recurrent RB SCNAs—gains on 1q, 2p, 6p; losses on 13q and 16q;
and focal MYCN amplification—are well established and documented [10,11,14–16], these
analyses were performed exclusively on tumor tissue from enucleated eyes. This was due to
previous inability to biopsy RB for risk of extraocular seeding [17,18]. Our group addressed
this limitation by demonstrating that aqueous humor (AH) can be safely extracted and is a
rich source of circulating tumor DNA (ctDNA) within the AH [19–21]. Using this platform,
we have been able to establish relationships between specific genomic alterations and
ocular prognosis that could not previously be evaluated in tumor tissue from enucleated
eyes only. For example, by comparing genomic profiles of ctDNA between the AH of
eyes that were cured and salvaged versus those that required enucleation, we were able to
demonstrate that the highly recurrent RB SCNA 6p gain is a biomarker of poor prognosis,
portending an increased risk for treatment failure and enucleation [20,22]. Similarly, focal
MYCN amplification is known to cause aggressive disease in wildtype RB1, and in a small
cohort we have shown that it is a biomarker of poor prognosis for globe salvage regardless
of RB1 status [20,22]. This was the first time that any RB SCNA was able to be connected to
clinical ocular outcomes for eyes actively undergoing salvage therapy, and this association
was facilitated by the AH liquid biopsy platform.

While past studies focused on highly recurrent SCNAs, the aim of the present study
was to employ the AH liquid biopsy to comprehensively characterize SCNAs that exist
genome-wide in RB eyes actively undergoing treatment. Previous whole-genome analyses
of RB SCNAs were limited to tumor tissue from enucleated eyes, so little was known about
the genomic landscape of tumors in less advanced, salvaged eyes or new alterations identi-
fied during therapy [10,11,14–16]. Additionally, although our group has since used the AH
liquid biopsy to identify RB SCNAs in both salvaged and enucleated eyes, these studies
focused primarily on a limited subset of highly recurrent SCNAs and did not evaluate for
other less common SCNAs that might also be contributing to RB tumorigenesis, seeding,
treatment failure, or progression of disease [19–26]. Herein we present a comprehensive
(whole-genome) analysis of RB SCNAs using the AH liquid biopsy. With this minimally
invasive platform, we hope to further elucidate the relationship between SCNAs and RB
progression, disease severity, and prognosis for eye salvage.
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2. Materials and Methods

This research was conducted under Children’s Hospital Los Angeles (CHLA) Insti-
tutional Review Board approval and adhered to the tenets of the Declaration of Helsinki.
Written informed consent was obtained from the legal guardians of all participants.

This study included all patients diagnosed with RB between December 2014 and Octo-
ber 2020 at CHLA from whom written parental consent and aqueous humor sample(s) were
obtained. Hence, this study includes AH samples that have been analyzed and published
previously, in addition to new samples taken after our most recent publications. Case
numbers remained consistent with prior studies for comparison purposes [20–22,25,26].
As in previous studies [19–26], liquid biopsy specimens consisted of approximately 100 µL
AH taken from the anterior chamber via clear corneal paracentesis for research purposes
only. Treatment of all RB patients was carried out in a non-randomized manner per CHLA
protocol [27–29], and treating physicians were blinded to the results of AH analyses. In
general, treatment courses include six cycles of systemic chemotherapy (carboplatin, etopo-
side, and vincristine) or intra-arterial chemotherapy with melphalan, followed by local
treatment that can range from targeted laser and cryotherapy to intravitreal chemotherapy
injections to treat vitreous seeds [27–29].

The samples evaluated are part of a biorepository of AH samples aimed at under-
standing whether genomic markers correlate with ocular outcomes and the presence of
other clinical features. The timing of the first AH sample for each patient depended
on the IRB approval governing our research at the time and was either (1) at diagnosis
(9/68, 13%), (2) at the end of systemic chemotherapy (4/68, 6%), (3) end of intra-arterial
melphalan treatment (1/68, 1%), (4) with intravitreal melphalan injection (33/68, 49%),
(5) with enucleation (19/68, 28%), or (6) with bevacizumab injection (1/68, 1%). Thirty-four
eyes (50%) had more than one sample taken over the course of treatment but only the first
sample taken was included in this comprehensive analysis, with the exception of case 39
wherein the first AH sample had a tumor fraction below the threshold for SCNA detection
(<5%) so the second AH sample was used.

A clinical database regarding clinical presentation, patient outcomes, response to
therapy, recurrence, any complications from AH sampling, metastasis, death and follow-up
is maintained and updated prospectively, in real time during each examination under
anesthesia or clinic visit, per IRB approved protocol; once genomic analyses were com-
pleted it was reviewed for clinical information. Information collected from the database
herein includes International Intraocular Retinoblastoma Classification (IIRC; a system
that classifies tumors confined to the ocular space into five groups of increasing severity
from A to E based on clinical features) [30], vitreous seeding morphology, and intraocular
tumor growth pattern. Germline RB1 mutation status was identified per routine clinical
leukocyte testing and obtained from the medical record as well; this is not an additional
research protocol. Primary clinical endpoints included eye salvage (the ability to save the
eye using standard chemotherapeutic modalities) versus enucleation (surgical removal of
the eye). Procedure and protocol for primary and secondary enucleation at our institution
have been published previously; primary enucleation is done without any other therapy
and secondary enucleation is for intraocular relapse after attempts to save the eye [27–29].
One eye in this study (Case 48) received one cycle of intra-arterial chemotherapy and
developed massive tumor growth less than 1 month from diagnosis; due to the timing, this
was classified as primary enucleation.

AH samples were processed and stored according to established protocols that are
detailed in previous publications [19,31,32]. Briefly, samples were stored on dry ice im-
mediately following extraction and placed into a −80 ◦C freezer within an hour after
extraction. Samples underwent cell-free DNA (cfDNA) isolation using the QIAamp Circu-
lating Nucleic Acid Kit (Qiagen, Germantown, MD, USA) within 72 h of extraction from
the eye (often the same day). CfDNA was constructed into whole genome libraries using
the QIAseq Ultralow Input library kit (Qiagen, Germantown, MD, USA) within 72 h of
cfDNA isolation. Shallow whole genome sequencing was performed on these constructed
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libraries at 0.3× depth for copy number profiling within 1 month of library preparation.
SCNAs were considered present at 20% deflection from a baseline human genome; the
bioinformatics protocols by Baslan et al. used on the AH platform have been previously
published [20,31,32].

Genomic instability was calculated as the sum of the absolute values of Log2-
transformed expression ratios for all segment bins, excluding chromosome X and Y, and
represented as the sum deviation from the median. Higher values indicate greater instability.

Mann–Whitney U, Fisher’s exact, logistic regression, and Poisson regression tests were
used to examine the relationship between SCNAs and clinical findings. All analyses were
conducted using Stata/SE 14.2 (StataCorp LLC, College Station, TX, USA).

3. Results
3.1. Patient Demographics and Clinical Outcomes

Sixty-four patients were included in the study; four patients with bilateral disease
had both eyes sampled, so a total of 68 eyes were included in the analysis. No patients
dropped out or withdrew consent over the study period. Demographics, clinical features,
and SCNA findings of all participants are summarized in Figures S1 and S2. The median
age at diagnosis for all patients was 15 months. Twenty-nine patients were RB1 positive
(45%), while the remaining 35 patients (55%) were negative for RB1 germline mutation. Of
all eyes, the most commonly diagnosed IIRC group [30] was D (46/68, 68%), although less
advanced (Groups B and C) eyes were also included.

Thirty-three eyes were enucleated (49%; 16 primarily; 17 secondarily after chemother-
apy) and 35 eyes (51%) were salvaged. No patients had complications secondary to AH
sampling, including infection, iris trauma, synechiae, hyphema, or cataract. No child
developed extraocular disease or metastatic disease throughout the follow-up period. Clin-
ical follow-up from diagnosis to final evaluation ranged from 6 to 84 months (median,
33.5 months).

3.2. Whole-Genome RB SCNA Analysis

As in previous studies [19–26], the most common RB SCNAs included highly recurrent
6p gain (33 eyes, 48.5%), 1q gain (33 eyes, 48.5%), 16q loss (28 eyes, 41.2%), 2p gain
(11 eyes, 16.2%), and 13q loss (8 eyes, 11.8%). The most common non-highly recurrent
RB SCNAs were 12p loss (8 eyes; 11.8%), 16p loss (8 eyes; 11.8%), 5p gain (7 eyes; 10.3%),
17q gain (6 eyes; 8.8%), 18q gain (6 eyes; 8.8%), 17p loss (5 eyes; 7.4%), 20q gain (5 eyes;
7.4%), and 22p gain (5 eyes; 7.4%). Eyes with a 6p gain at or above an amplitude of
1.5 ratio to the median showed significantly more chromosomal instability (mean 507.04, SD
231.95 sum deviation from the median) than eyes without a 6p gain (mean 272.19, SD
263.22 sum deviation from the median; p = 0.0002). A composite SCNA frequency plot for
all eyes can be seen in Figure 1.

Focal MYCN amplification was present in four eyes (6.3%; Cases 3, 10, 31, and 48);
the presence of MYCN amplification does not necessarily denote a MYCN-driven tumor
which clearly Case 10 is not (germline RB1 mutation present). All four of these eyes were
enucleated (Table 1). Two eyes (Cases 3 and 48) displayed SCNAs in addition to focal
MYCN amplification in both the AH and matched tumor tissue, while the other two eyes
(Cases 10 and 31) only displayed MYCN amplification. There was no somatic RB1 mutation
identified in either the AH or the tumor for any of these cases; on histopathologic review,
none of these eyes had characteristic features of primary MYCN amplified retinoblastoma
tumors [14].
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Figure 1. Composite SCNA plot for all eyes included in our study. Gains are represented by the red line and losses are
represented by the blue line. Besides previously determined highly recurrent RB SCNAs of 1q, 2p, and 6p gain as well as
16q loss, non-highly recurrent SCNAs were also seen. The most common were 12p loss, 16p loss, 5p gain, 17q gain, 18q gain,
17p loss, 20q gain, and 22p gain.

Table 1. Clinical and genomic characteristics of MYCN amplification tumors.

Case Laterality
Age at

Diagnosis
(months)

Germline
RB1

Mutation

Timing of
Enucleation Other SCNAs

Somatic
RB1

Mutation
in AH

Somatic
RB1

Mutation
inTumor

Distinct
Histologic
Features

for MYCN
Amplified
Tumors *

3 Unilateral 38 Negative Primary 1q and 6p gain, 16p
and 16q loss None None None

10 Bilateral 2 Positive Secondary for
persistent seeding None None None None

31 Unilateral 9 Negative Primary None None None None
48 Unilateral 18 Negative Primary 1q gain None None None

* distinct histologic features in MYCN-amplified tumors include large prominent undifferentiated cells with multiple nucleoli, necrosis,
apoptosis, and minimal calcification [14].

3.3. Clinical Correlates of RB SCNAs

We also aimed to evaluate associations between clinical presentation and genomic
instability, measured either as whole integer number of SCNAs present or total deviation
from median copy number amplitude. In general, eyes with higher chromosomal instability
tended to display more advanced clinical disease. Less advanced IIRC Group B eyes had
lower genomic instability (n = 3, mean 315.90, SD 347.85 sum deviation from the median)
than more advanced eyes IIRC Groups C-E, although this was not statistically significant
(n = 65, mean 338.82, SD 274.02 sum deviation from the median, z = −0.34, p = 0.73).

In terms of seeding, eyes with either dust or no seeding displayed significantly less
chromosomal instability compared to eyes with more advanced seeding morphologies
of sphere or cloud (p = 0.007; Figure 2A). Sphere seeding was associated with the largest
whole integer number of SCNAs, followed by cloud, dust and no seeding, but only
the comparison between sphere and no seeding was statistically significant (p = 0.024;
Figure 2B). There was no significant difference in presence or absence of seeding between
eyes with or without a 16q loss (p = 0.46).
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Figure 2. Box and whisker plot showing (A) genomic instability based on seeding classification and (B) integer numbers of
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As shown in Figure 3, based on laterality, eyes with unilateral RB displayed sig-
nificantly more chromosomal instability compared to bilateral RB eyes (p = 0.03). This
corresponded to a difference in age at diagnosis, with unilateral eyes diagnosed at sig-
nificantly older ages (mean 19.44 months, SD 12.06) compared to bilateral eyes (mean
12.67 months, SD 10.21, p = 0.022). When run in Poisson regression, the effects of later-
ality (IRR = 0.69, 95%CI = 0.40–1.17, p = 0.17) and its interaction with age (IRR = 1.01,
95%CI = 0.99–1.04, p = 0.20) were non-significant, leaving age at diagnosis as the predictor
of chromosomal instability (IRR = 1.04, 95%CI = 1.03–1.05, p < 0.001). For each month
increase in age at diagnosis, the rate at which SCNAs are detected in patients increases
1.04 times. Similarly, there was no significant difference in the genomic instability based on
heritability (presence or absence of RB1 germline mutation (p = 0.23).
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Figure 3. Box and whisker plot showing genomic instability based on laterality, heritability (+ RB1 indicates a germline
mutation), growth pattern, and height. x indicates the median value.

Eyes with an endophytic tumor growth pattern (without retinal detachment) dis-
played significantly more chromosomal instability than an exophytic growth pattern
(p = 0.03; Figure 3). However, after controlling for the effects of seeding, the effect was no
longer significant (p = 0.18). Regarding main tumor size, eyes with initial (pre-treatment)
tumor height ≥10 mm had marginally greater instability than eyes with initial tumor
height <10 mm (p = 0.05; Figure 3).

3.4. RB SCNAs in Enucleated Eyes

There was no difference in chromosomal instability between eyes that were treated
versus primarily enucleated (treated eyes mean 320.16, SD 295.71 sum deviation from the
median; primarily enucleated eyes mean 395.17, SD 186.34 sum deviation from the median;
z = −1.81, p = 0.07). However, the prevalence of specific non-highly recurrent SCNAs
does differ between primarily and secondarily enucleated eyes (Figure 4). For example,
four eyes demonstrated 20q gain and three eyes demonstrated 8p loss in the secondary
enucleation group; these SCNAs were not seen in the primary enucleation group, and this
difference approached significance for 20q gain (p = 0.10).
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Figure 4. The prevalence of specific non-highly recurrent SCNAs differed between primarily and
secondarily enucleated eyes. Note, not all secondarily enucleated eyes had AH sampled prior to
enucleation to be used for comparison of new SCNAs.

Of secondarily enucleated eyes, six had AH sampled during conservative management
and immediately following enucleation. For these six eyes, AH samples obtained at
secondary enucleation had a higher number of SCNAs (mean 5.67, SD 7.17) compared
to their corresponding AH samples taken during conservative management (mean 1.00,
SD 1.26), and this difference approached statistical significance (p = 0.055). Four eyes
demonstrated new SCNAs at secondary enucleation that were not present in earlier AH
samples (Figure 5). The first samples taken from cases 11, 15, and 17 were during IVM
injection, whereas the first sample taken from case 33 was at diagnosis.

There was no significant difference in the age at diagnosis of treated versus primarily
enucleated eyes (treated eyes mean 15.6 months, SD 12.5; primarily enucleated eyes mean
20.4, SD 8.5; z = −1.82, p = 0.07).



Cancers 2021, 13, 3340 9 of 16Cancers 2021, 13, 9 of 16 
 

 

 
Figure 5. Four eyes demonstrated new SCNAs at secondary enucleation that were not present during conservative man-
agement. New SCNAs were as follows: Case 11 (8q loss, 16q loss, 20q gain), Case 15 (1q gain, 6p gain, 17p loss, 19p gain), 
Case 17 (1p loss, 1q gain, 4p loss, 4q loss, 5p gain, 5q gain, 8p loss, 8q loss, 12p loss, 12q loss, 15q loss, 16p loss, 16q loss, 
18p gain, 18q gain, 19p gain, 19q gain, 20p gain, 20q gain, 21q gain), and Case 33 (2p gain, 19q loss). Other focal changes 
seen are at the centromeres and not true SCNAs. The first samples taken from cases 11, 13, and 17 were during IVM 
injection, whereas the first sample taken from case 33 was at diagnosis. Treatment courses for these cases are as follows. 
Case 11 underwent systemic chemotherapy treatment (six cycles of carboplatin, etoposide, and vincristine (CEV)), fol-
lowed by four IVM injections over three months for recurrent dust seeding; the eye was enucleated 14 months after diag-
nosis due to primary tumor recurrence. Case 15 began treatment with three monthly intra-arterial melphalan injections, 
followed by three weekly IVM injections for dust seeding; the eye was enucleated 22 months after diagnosis due to pri-
mary tumor recurrence. Case 17 underwent systemic chemotherapy treatment (six cycles CEV), followed by three IVM 
injections over one month for recurrent sphere seeding; the eye was enucleated two months later due to primary tumor 
recurrence. Finally, Case 33 was treated with two cycles of CEV as a bridge and three cycles of intra-arterial melphalan, 
followed by four IVM injections over six weeks to treat persistent dust seeding; the eye was enucleated six months after 
diagnosis due to apical tumor recurrence with persistently active seeding despite ongoing therapy. 

4. Discussion 
Herein we present the first comprehensive, whole-genome RB SCNA analysis using 

the AH liquid biopsy. Although previous genome-wide studies of RB SCNAs were lim-
ited exclusively to enucleated tumor tissue [10,11,14–16], the AH liquid biopsy for RB has 
facilitated the investigation of RB SCNAs in all eyes—including those that are actively 
undergoing therapy or even treatment-naïve [19–26]. The implementation of this organ-
specific liquid biopsy allows for evaluation of tumoral information from less advanced 
eyes (such as Group B eyes), and importantly, with longitudinal sampling of the same eye, 
the potential to detect impactful new genomic alterations that arise under therapeutic 

Figure 5. Four eyes demonstrated new SCNAs at secondary enucleation that were not present during conservative
management. New SCNAs were as follows: Case 11 (8q loss, 16q loss, 20q gain), Case 15 (1q gain, 6p gain, 17p loss, 19p
gain), Case 17 (1p loss, 1q gain, 4p loss, 4q loss, 5p gain, 5q gain, 8p loss, 8q loss, 12p loss, 12q loss, 15q loss, 16p loss, 16q
loss, 18p gain, 18q gain, 19p gain, 19q gain, 20p gain, 20q gain, 21q gain), and Case 33 (2p gain, 19q loss). Other focal
changes seen are at the centromeres and not true SCNAs. The first samples taken from cases 11, 13, and 17 were during IVM
injection, whereas the first sample taken from case 33 was at diagnosis. Treatment courses for these cases are as follows.
Case 11 underwent systemic chemotherapy treatment (six cycles of carboplatin, etoposide, and vincristine (CEV)), followed
by four IVM injections over three months for recurrent dust seeding; the eye was enucleated 14 months after diagnosis due
to primary tumor recurrence. Case 15 began treatment with three monthly intra-arterial melphalan injections, followed
by three weekly IVM injections for dust seeding; the eye was enucleated 22 months after diagnosis due to primary tumor
recurrence. Case 17 underwent systemic chemotherapy treatment (six cycles CEV), followed by three IVM injections over
one month for recurrent sphere seeding; the eye was enucleated two months later due to primary tumor recurrence. Finally,
Case 33 was treated with two cycles of CEV as a bridge and three cycles of intra-arterial melphalan, followed by four IVM
injections over six weeks to treat persistent dust seeding; the eye was enucleated six months after diagnosis due to apical
tumor recurrence with persistently active seeding despite ongoing therapy.

4. Discussion

Herein we present the first comprehensive, whole-genome RB SCNA analysis using
the AH liquid biopsy. Although previous genome-wide studies of RB SCNAs were limited
exclusively to enucleated tumor tissue [10,11,14–16], the AH liquid biopsy for RB has
facilitated the investigation of RB SCNAs in all eyes—including those that are actively
undergoing therapy or even treatment-naïve [19–26]. The implementation of this organ-
specific liquid biopsy allows for evaluation of tumoral information from less advanced eyes
(such as Group B eyes), and importantly, with longitudinal sampling of the same eye, the



Cancers 2021, 13, 3340 10 of 16

potential to detect impactful new genomic alterations that arise under therapeutic pressure.
The findings of this and past studies [19–26] suggest that the AH liquid biopsy is a safe
and minimally invasive approach to whole-genome SCNA analysis. With additional larger,
prospective studies, results from the AH liquid biopsy may help us better understand the
relationships between RB genomics, clinical features, and outcomes.

Although the previously identified highly recurrent RB SCNAs remained the most
prevalent among the 68 eyes analyzed here, specific non-highly recurrent RB SCNAs
were also seen albeit at far lower rates; this is similar to past publications on tumor
tissue [3,4,8,11,33]). Identifying candidate genes in these regions is an important next step
given that the ultimate goal of characterizing SCNAs is to uncover their role—if any—in
the tumorigenesis, disease severity, and treatment response of RB. This has been done
for highly recurrent RB SCNAs in enucleated RB tumor samples [3,4,8,11,33]; however,
there have been no candidate gene studies performed on non-surgically removed eyes or
non-highly recurrent RB SCNAs, and there is little understanding of the evolution of these
SCNAs during treatment as tumoral information was previously unattainable until the time
of enucleation. Based on comprehensive analyses of SCNAs in pan-cancer cohorts, there
are known cancer driver genes within the non-highly recurrent RB SCNA regions that may
contribute to RB tumorigenesis [34–36]. For example, within chromosome 5p, amplified
in 10% of eyes studied here, the Telomerase Reverse Transcriptase (TERT) gene has been
identified as an oncogene [34–36]. TERT is responsible for stabilizing telomere length and
when amplified, prevents the permanent growth arrest phase that cells normally enter once
telomeres become too short, ultimately leading to uncontrolled proliferation [37–40]. TERT
gains have been previously identified in three of 83 enucleated RB tumors examined by
targeted sequencing [41]. Another candidate gene is Ataxin 2 Binding Protein 1 (A2BP1,
also known as RBFOX1) located in the chromosome 16p [35,36], which was suppressed
in 12% of the eyes analyzed here and is frequently a result of whole chromosome 16 loss
in RB [11]. A2BP1 interacts with the known tumor suppressor gene Tropomyosin-1 to
promote cytoskeletal organization that leads to terminal differentiation [42–46]. Several
genes within the 20q11–13 region have also been identified as potential oncogenes that
become amplified in breast and bladder carcinogenesis [47,48] and may play a role in
immortalization of human uroepithelial cells [49]. However, the specific role of these genes
in cancer development is not fully understood. Candidate gene studies on non-surgically
removed RB eyes that include RB SCNAs, other non-highly recurrent SCNAs, and new
alterations that arise longitudinally during therapy represent an interesting area of future
study using the AH liquid biopsy platform to improve understanding of the broad clinical
spectrum of RB.

Comprehensive RB SCNA analysis also provides the opportunity to investigate how
genomics relate to clinical features and outcomes. While it is well established that a
variety of clinical features affect ocular prognosis [28,30,50–53], it is not clear whether these
clinical features are the result of a genetically ‘high risk’ RB, or if they arise independently
of genomics. It bears emphasizing that the clinical characteristics were correlated to
genomic alterations in AH samples taken both at time of diagnosis and at later stages
throughout treatment. Preliminary data presented herein suggests that clinical features may
be associated with RB genomics, however further study is needed before direct causality
can be established. In general, eyes with more chromosomal instability displayed higher
risk clinical features than eyes with less chromosomal instability. More advanced (IIRC
Groups D and E) [30] eyes and eyes diagnosed at older ages tended to have more SCNAs
than less advanced eyes and those diagnosed at younger ages. Accordingly, increased
age at diagnosis has previously been associated with development of more advanced
disease [54]. Although prior studies have reported relationships between chromosomal
instability and laterality as well as heritability [6,16,33,55], we postulate that the differences
in age at diagnosis, even when controlling for Group classification and heritability, remain
the driving factor. This is supported by the finding that any differences in chromosomal
stability based on laterality or heritability disappeared when controlling for age at diagnosis.
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Consistent with previously published work [11,24], this suggests that the number of SCNAs
a tumor develops is dependent on the length of time from initial tumorigenesis (biallelic
RB1 loss or RB1-null cone precursor proliferation) to diagnosis. Interestingly, eyes with 6p
gain, a biomarker of poor ocular prognosis, [20,22] display more SCNAs than eyes without
6p gain, suggesting that once bi-allelic loss of RB1 initiates genomic instability within a cell,
6p gain may be the first large-scale genomic change that occurs; this may lead to further
chromosomal instability. However, the mechanism by which this occurs is not yet clear.
Prior studies have identified E2F3 and DEK as candidate genes in the 6p minimum region
of gain [3,9,11,20,22]. DEK encodes a DNA-binding protein that is a known oncogene in
multiple other cancers [56,57], while E2F3 is crucial for transcriptional cell cycle control
and is regulated by the RB protein pRB [58].

In terms of seeding, eyes with cloud or sphere morphologies displayed significantly
more chromosomal instability than eyes with dust or no seeding. Cloud and sphere
morphologies are higher risk, as eyes with these seeding patterns demonstrate poorer
outcomes than those with dust or no seeding [28,53]. Differing chromosomal stability
observed among seeding morphologies could be due to their underlying histopathologic
differences. Cloud seeds are known to be largely necrotic, thus likely releasing high
amounts of ctDNA, while sphere seeds contain several layers of viable tumor cells that
can undergo clonal evolution and contribute to higher SCNA counts [59]. However, the
seeding morphology a tumor develops could also be driven by RB genomics. We previously
demonstrated that each increase in seeding class (from none to dust, from dust to sphere,
and sphere to cloud) was significantly associated with two-fold increased odds of having
6p gain, an SCNA that multiple studies have theorized to be an important driver of RB
tumorigenesis and aggressive disease [3,20,22]. Although 16q loss has previously been
associated with the presence of seeding [60], implicating a functional role for cadherin 13
or cadherin 11 [61] which promotes cellular adhesion, this association with 16q loss was
not observed in this comprehensive analysis. This may be due to the fact that enucleated
eyes are a different cohort than the eyes included herein and likely have a larger seeding
burden than eyes undergoing salvage. Larger studies with the statistical power to control
for underlying genomic differences are needed to clarify the relationship between genomics
and seeding morphology.

This comprehensive analysis also revealed that eyes with an endophytic tumor growth
pattern (i.e., without retinal detachment) showed more chromosomal instability than eyes
with retinal detachment, or with an exophytic tumor growth pattern. This did not remain
significant when controlling for seeding, as endophytic RB tumors have a higher risk of
seeding into the vitreous than exophytic tumors [62]. In addition to the contribution of
seeding, the pathophysiology underlying this finding may be the death of normal retina
cells that occurs during retinal detachment; the subsequent lysis of these cells causes the
release of cell-free DNA (cfDNA) that is not tumor-derived, thus potentially diluting the
tumor fraction below the assay’s sensitivity. However, even if the primary tumor decreases
in size, the tumor fraction can remain high in the presence of active seeding [21]. Future
study with cfDNA quantification and fragment size analysis is encouraged to further
elucidate the relationship between tumor growth pattern and SCNA development.

Our previously published work showed high concordance between tumor tissue and
AH as well as overall stability of AH SCNA profiles within the same eye during intrav-
itreal chemotherapy treatment [20,22]. This comprehensive analysis shows that a small
number of eyes gained additional SCNAs seen at the time of secondary enucleation when
compared to samples taken from the same eye during earlier conservative management.
This increased chromosomal instability at time of secondary enucleation may reflect clonal
evolution of the tumor, with newly arising SCNAs potentially indicating genes that proffer
treatment resistance and signaling a worsening prognosis for these eyes. However, it is also
possible that the tumor fraction in the first AH samples for these eyes (particularly cases
11, 15, and 17, with no SCNAs identified in their first samples which were taken during
IVM treatment) was too low for SCNA detection given treatment response, as we have
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previously demonstrated that low tumor fraction correlates with disease regression [25].
Conversely, we have also shown that approximately one-third of RB tumors do not display
SCNAs when AH is sampled during IVM [20,22,25]. Our recent publication evaluated
AH samples taken at time of diagnosis [21], with a significantly higher concentration of
cfDNA than AH samples taken during treatment, and found that three out of seven eyes
demonstrated no detectable large scale SCNAs even at diagnosis. Thus, it may still be
that cases 11, 15, and 17 truly did not display any tumoral SCNAs at time of initial AH
sampling. With regard to case 33, the first AH sample was taken at time of diagnosis,
when ctDNA concentrations are usually highest [21]. The presence of ctDNA in case 33′s
first sample is confirmed by the four SCNAs seen in this genomic profile. With this in
mind, the additional SCNAs of 2p gain and 19q loss in case 33′s secondary enucleation
sample offer future targets of study for molecular treatment resistance. There were also
differences in SCNAs between primarily and secondarily enucleated eyes, which may
suggest alterations conferred during the course of therapy. In particular, 8p loss and 20q
gain, seen almost exclusively in secondarily enucleated eyes, represent interesting targets
of study for treatment resistance genes if proven to be present at statistically significant
increased rates (Figure 3). Alterations in chromosome 8 are rarely reported in the literature,
but 20q gain has been seen both in RB [16,63] and other cancers [64]. Further studies with
longitudinal evaluation of the AH ctDNA from diagnosis throughout treatment will allow
us to better clarify these findings.

MYCN driven tumors remain of interest to the RB community, given that they are
described to be aggressive and non-responsive to treatment particularly in the setting of
wild type RB1 (i.e., no RB1 mutation) [14,65]. In this study population, we present four eyes
(Cases 3, 10, 31, and 48) with MYCN amplification identified; all four eyes were enucleated.
Focal MYCN amplification in the setting of biallelic RB1 inactivation has been previously
described [41,65–68] and can be seen in case 10 of this study population (germline RB1
mutation). Although additional SCNAs in MYCN driven tumors are rare [14,69], cases
3 and 48 displayed highly recurrent RB SCNAS (plus 16p loss in case 3) in addition to
MYCN amplification. Longitudinal samples within more MYCN eyes would be helpful
to better understand the genomic basis of both the rare, primarily MYCN-driven tumors
in the setting of wild-type RB, as well as ‘secondary’ MYCN amplification in the setting
of RB1 loss. This includes whether the development of additional SCNAs portends any
increased risk to these eyes. Regardless, the potential utility of applying the AH liquid
biopsy to identifying MYCN driven tumors at diagnosis remains clear.

5. Conclusions

We present the first comprehensive, genome-wide analysis of RB eyes using the AH
liquid biopsy, along with a preliminary investigation into the relationships between RB
genomics, clinical features, and outcomes. Compared to past publications, identification
of these alterations via the AH liquid biopsy platform allows for a more comprehensive
analysis as it includes not only enucleated eyes, but also less advanced eyes that have
been salvaged and longitudinal evaluation during therapy. Furthermore, this allows
for the detection of changes longitudinally during treatment such as new alterations at
the time of secondary enucleation. In general, eyes with high chromosomal instability
tended to have more advanced seeding morphologies, significantly larger tumor heights,
significantly older ages at diagnosis, and were significantly more likely to demonstrate 6p
gain, a biomarker of poor ocular prognosis. We emphasize that further studies—including
more eyes and across multiple treatment centers—are needed before the AH liquid biopsy
can be clinically applied and in order to clarify many of the associations reported here
with statistical significance. In addition to advancing understanding of the RB genomic
landscape, potential applications of the AH liquid biopsy include guiding clinical decision
making and the opportunity to provide precision cancer care to RB patients in the future.
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6. Patents

Drs. Berry, Xu, and Hicks have filed a patent application entitled, Aqueous Humor
Cell Free DNA for Diagnostic and Prognostic Evaluation of Ophthalmic Disease.

Supplementary Materials: The following are available online at https://www.mdpi.com/article/
10.3390/cancers13133340/s1, Figure S1: Demographic and Diagnostic Patient Information, Figure
S2: Genomic Information.
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