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There is ample evidence regarding the health benefits of red wine consumption due to
its content of phenolic compounds, as an alternative to improve the state of health
and prevent various diseases, being the implementation of procedures that allow a
greater extraction and stability of phenolic compounds during the elaboration a key
aspect. The first part of this review summarizes some studies, mostly at the preclinical
level, on the mechanisms by which phenolic compounds act in the human organism,
taking advantage of their antioxidant, anti-inflammatory, antitumor, antithrombotic,
antiatherogenic, antimicrobial, antiviral, and other activities. Although the migration of
grape components into the must/wine occurs during the winemaking process, the
application of new technologies may contribute to increasing the content of phenolic
compounds in the finished wine. Some of these technologies have been evaluated on
an industrial scale, and in some cases, they have been included in the International Code
of Oenological Practice by the International Organization of Vine and Wine (OIV). In this
sense, the second part of this review deals with the use of these novel technologies
that can increase, or at least maintain, the polyphenol content. For example, in the
pre-fermentative stage, phenolic extraction can be increased by treating the berries or
must with high pressures, pulsed electric fields (PEF), ultrasound (US), e-beam radiation
or ozone. At fermentative level, yeasts with high production of pyranoanthocyanins
and/or their precursor molecules, low polyphenol absorption, and low anthocyanin-β-
glucosidase activity can be used. Whereas, at the post-fermentative level, aging-on-lees
(AOL) can contribute to maintaining polyphenol levels, and therefore transmitting health
benefits to the consumer.

Keywords: red wine, polyphenols, antioxidant, anti-inflammatory, disease prevention, emerging technologies,
extraction

INTRODUCTION

In recent years, the consumption of foods rich in bioactive compounds, whose intake has been
related to protection against certain diseases, has gained relevance. Red wine is one of the foods
that has aroused greater interest, and around which several studies have been developed to
elucidate the mechanisms of action and its potential benefit to the consumer’s health. Most of
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the benefits are attributable to phenolic compounds, which
are generally classified into flavonoids (anthocyanins, flavanols,
flavonols, among others) and non-flavonoids (stilbenes, phenolic
acids, among others) (1, 2). These compounds are attributed
with antioxidant, anti-inflammatory, antitumor, antithrombotic,
antiatherogenic, antimicrobial, and antiviral activity, among
other benefits (1–4).

Antioxidant and anti-inflammatory activities are the basis of
most of the mechanisms of action involved in the protection
of phenolic compounds. Antioxidant activity, observed, for
example, in non-alcoholic red wine, by increasing the activity
of the catalase, superoxide dismutase (SOD), and glutathione
reductase (GR) enzymes (5), or increasing the production of
nitric oxide (NO), with a consequent lower cardiovascular risk
(6), is particularly interesting.

Quantitatively, the most abundant polyphenols are
anthocyanins, which are mainly located in the grape skin
and account for 50–60% of the phenolic fraction (7, 8) and
flavanols, which are mainly found in the seeds and stalk (8).

Another group of interest, from a qualitative point of view, are
the stilbenes, mainly resveratrol (trans-3,4′,5-trihydroxystilbene)
and its glycoside, polydatin (9), to which a large part of the
protective effects against various diseases are attributed (4, 6, 8, 9).

Antioxidant and Anti-inflammatory
Activities of Phenolic Compounds
Phenolic compounds may prevent oxidative damage caused by
free radicals that may cause damage to proteins, carbohydrates,
lipids, or nucleic acids (10, 11). Polyphenols can generate less
reactive species (12) by capturing unpaired electrons present in
free radicals, in addition to chelating Fe and Cu (13), preventing
the consequent production of new free radicals.

Other mechanisms of action include the interruption of
autooxidation chain reactions, deactivation of singlet oxygen,
mitigation of nitrosative stress, activation of antioxidant
enzymes, or inhibition of oxidative enzymes (10). The synergy
between antioxidant compounds also contributes, e.g., between
tannins (14) or between tannins and compounds such as
quercetin and resveratrol (15).

The chemical structure has also been shown to influence
antioxidant activity. For example, the presence of a greater
number of hydroxyl (−OH) groups in epicatechin gallate and
epigallocatechin gallate, concerning the non-galloyl tannins
(catechin and epicatechin) (14), as well as the presence
of −OH and methoxyl (−OCH3) groups in the B-ring of
anthocyanins (16).

One of the most studied compounds is resveratrol,
which has been shown capacity to inhibit the so-called
“oxidative burst” (production of O2

− and H2O2), to
inhibit the expression of NADPH oxidase, to inhibit the
uncoupling of the endothelial nitric oxide synthase (eNOS)
(17–19), to regulate catalase, superoxide dismutase (SOD),
glutathione peroxidase (GPx), glutathione reductase (GR),
glutathione-S-transferase (GST) and NAD (P) H: quinone
oxidoreductase 1 (NQO1) activities (20), as well as to induce
endogenous antioxidant defenses such as the nuclear factor

(erythroid-derived 2)-like 2 (Nrf2) pathway (21). The
Nrf2 pathway regulates the expression of inflammatory
biomarkers inducible NO synthase, interleukin 6 (IL-6), tumor
necrosis factor-alpha (TNF-α) (22), as well as the microglial
function and neuroinflammation as in cases of Parkinson’s
disease (23).

Free radicals such as reactive oxygen species (ROS) can trigger
the production of inflammatory mediators such as the cytosine
TNF-α, which in turn can lead to increased oxidative stress,
in a cycle that contributes to the genesis of pathologies such
as cancer, atherosclerosis, neurodegenerative disorders, among
others (4, 22, 24). Figure 1 summarizes the main antioxidant and
anti-inflammatory activities of red wine polyphenols reported in
previous studies.

EFFECT OF PHENOLIC COMPOUNDS
ON SPECIFIC PATHOLOGIES

The following sections summarize the most important
mechanisms through which polyphenols exert their protective
action against the development of various diseases.

Cardioprotective Effect
It has been observed that red wine consumption can decrease
the level of inflammatory biomarkers related to cardiovascular
disease (CVD) such as intercellular adhesion molecule-
1 (ICAM-1), IL-6 (25, 26), interleukin 1α (IL-1α) (27)
or C-reactive protein (CRP) (26, 28), besides decreasing
plasma insulin levels and insulin resistance in patients with
high cardiovascular risk and diabetes (29, 30). The latter
effects were also observed in non-alcoholic red wine (31).
Table 1 summarizes some of the beneficial effects of red wine
consumption on biomarkers of cardiovascular risk in various
clinical studies.

Red wine has also been shown to affect plasma lipoproteins.
Proposed mechanisms include decreasing levels of low-density
lipoprotein (LDL) or “bad” cholesterol (32), responsible for
transporting and depositing cholesterol in tissues (initiation
of atherosclerotic plaque formation), and increased levels of
high-density lipoprotein (HDL) or “good” cholesterol (33, 34),
responsible for removing cholesterol from tissues (35). These
benefits have been observed in patients who have previously
suffered a myocardial infarction (36) and in patients with carotid
atherosclerosis (37).

It is considered that oxidized LDL is responsible for the
atherogenic process so that the function of phenolic compounds
would be to protect them against oxidation, showing greater
activity quercetin and resveratrol, which bind to LDL through
glycosidic bonds, protecting them against free radicals and
reducing oxidation induced by metal ions (13, 38). Anthocyanins
have also been shown to reduce LDL levels, for example, in
patients with dyslipidemia (39).

Another mechanism includes the effect on nitrous oxide
(NO), an important vasodilator, with potential benefits in
smokers. Quercetin, tannic acid, malvidin, and resveratrol may
contribute to improving endothelial NO production, reducing
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FIGURE 1 | Main involved mechanisms in the antioxidant and anti-inflammatory activities of the phenolic compounds of red wine.

TABLE 1 | Some clinical studies on the effect of red wine on biomarkers of cardiovascular risk and related pathologies.

Volunteers
(study)

Red wine doses Main results References

19 women and 21 men 125 mL/day (women)
and 250 mL/day (men)

Higher total antioxidant capacity
Higher levels of vitamin E
Higher vitamin E/total cholesterol ratio
Lower LDL/HDL ratio

(32)

52,367 women and 97,406 men
(Paris-Ile-De-France Cohort, France)

Equivalent to
10–30 g/day of ethanol

Higher total antioxidant capacity
Higher levels of vitamin E
Higher vitamin E/total cholesterol ratio
Lower LDL/HDL ratio

(33)

1,896 men
(Italian Longitudinal Study on Aging,
Italy)

Equivalent to
26.7 g/day of ethanol

Higher HDL levels
Higher apolipoprotein Apo A1 levels
Lower fibrinogen levels
Lower insulin resistance

(34)

10 men
(Spain)

Daily doses of 272 mL
of red wine, or 272 mL
of non-alcoholic red
wine, or 100 mL of gin

Lower blood pressure
Lower total cholesterol levels
Lower triglyceride levels
Lower C-reactive protein (CRP) levels
Increased probiotic bacteria count

(28)

35 women
(Spain)

1 glass of red wine or
white wine, equivalent
to 20 g/day of ethanol

Higher HDL levels
Lower CRP levels
Lower levels of intercellular adhesion molecule-1 (ICAM-1)
Greater effect with red wine

(26)

23,349 (women and men)
(Greek segment of the European
Prospective Investigation into Cancer
and Nutrition EPIC, Greece)

Equivalent to
10–50 g/day of ethanol
in men, and 5–25 g/day
in women.

Lower mortality with the Mediterranean diet, with red wine contributing to this
effect by 23.5%.
Other factors evaluated (low consumption of meat, high consumption of fruits,
vegetables, legumes, and monounsaturated lipids), contributed to a lesser degree

(178)

oxidative stress, vascular inflammation, and platelet aggregation
(Figure 2) (40).

Neuroprotective Effect
Among the main benefits of red wine consumption are the
prevention of memory loss, thus attenuating cell death and
the development of diseases such as Alzheimer’s disease. The
involved mechanisms include the ability of quercetin against cell
aging, by activating the proteasome complex (41). Resveratrol
has been used to suppress the activation of nuclear transcription
factor-kappa B (NF-kB) and the production of prostaglandins

(42), reducing the expression of interleukin 1 beta (IL-1β) and
TNF-α factor (4, 43), increase the activity of the telomerase
enzyme, involved in the prevention of cellular senescence and
delay of cognitive decline (44), or promote the activity of sirtuins
and peroxisome proliferator-activated receptor-γ co-activator
1-α (PGC-1α) (4, 45). In addition to activating anti-apoptotic
Bcl-2 proteins and inactivating pro-apoptotic Bax proteins in the
hippocampus (46). Other mechanisms reported in the literature
are summarized in Figure 2.

Also, moderate consumption of red wine has been associated
with a reduction of up to 50% in the risk of death from
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FIGURE 2 | Main cardioprotective and neuroprotective effects of the phenolic compounds of red wine.

stroke (Figure 2) (47) due to the increase in cerebral blood
flow, which would be related to the action of resveratrol (48).
Resveratrol can also regulate the function of estrogen receptors
α and β, reducing cholesterol levels (49) and the formation of
atherosclerotic plaque, and thus the risk of ictus due to circulatory
failure (50).

Another benefit of red wine consumption is related to its
antidepressive effect. Resveratrol, for example, can regulate
the monoaminergic system, increasing the levels of serotonin,
noradrenaline, and dopamine (51). Likewise, resveratrol,
quercetin, ferulic acid, ellagic acid, and proanthocyanidins can
modulate the activity of the hypothalamic-pituitary-adrenal
axis (HPA axis), as well as serotonergic neurotransmission
(52, 53), mechanisms that play an important role against
anxiety and depression.

Anticancer Activity
The main involved mechanisms in the anticancer activity of
phenolic compounds are described below.

Action Against Oxidative Damage
Anthocyanins and tannins have shown protection against UV-B
radiation-induced damage by acting on the free radicals produced
(54), besides suppressing the activity of cyclooxygenase-2 (COX-
2) induced by this radiation (55). Quercetin has shown
activity against the myeloperoxidase (MPO) enzyme induced
by UV-B radiation (56), contributing to preventing the
development of skin cancer.

On the other hand, during lipid peroxidation, unstable
intermediate compounds are generated, which in turn may act
as “new toxic messengers” in successive reactions (57). For
example, malondialdehyde, that at high plasma concentrations
may be considered a prognostic factor in ovarian cancer
(58). Red wine consumption may regulate plasma levels of
malondialdehyde (30).

Interference on Basic Cellular Functions
Resveratrol has shown activity in key stages of carcinogenesis: as
an antioxidant and antimutagen in the initiation phase, and as
an anti-inflammatory and inhibitor of COX and hydroperoxidase
in tumor cells in the promotion phase, besides inducing cell
differentiation in the progression phase (59). Resveratrol has
also shown activity against the enzyme tank-binding kinase 1
(TBK1), related to carcinogenic inflammatory processes (60),
besides reducing the protein methylation related to breast
cancer (61) and the ornithine decarboxylase (ODC) activity
responsible for the synthesis of polyamines linked to colorectal
carcinogenesis (62).

At a clinical level, it has been possible to reduce the
proliferation of tumor cells in patients with colon cancer by
5% with doses of 1 g of resveratrol, and it has also been
possible to detect resveratrol-3-O-glucuronide, resveratrol-4′-
O-glucuronide, resveratrol-3-O-sulfate, resveratrol-4′-O-sulfate,
resveratrol sulfate glucuronide, and resveratrol disulfate, which
would indicate a joint anticancer action between resveratrol and
its derivatives (63).

Proanthocyanidins have been shown to reduce DNA
methylation levels and inhibit DNA-methyltransferase and
histone deacetylase (HDAC) activities, promoting the re-
expression of tumor suppressor genes in skin cancer cells
(64). While quercetin has been shown to inhibit the growth of
melanoma cells by blocking the transducer protein and inhibiting
the activation of signal transducer and activator of transcription
3 (STAT3) proteins (65).

Cancer Cell Apoptosis
The induction of cancer cell apoptosis involves mechanisms such
as cell cycle stop, blockade of c-Jun N-terminal kinase (JNK),
NF-kB factor inhibition, kinase C suppression (66), deregulation
of fatty acid synthase (FAS), activation of DAPK2 and BNIP3
genes that encode proapoptotic enzymes (67), among others.
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Resveratrol at low doses can be useful for maintaining health,
while at high doses it can be useful for inducing cell apoptosis
(68), and therefore a therapeutic alternative against cancer.

For its part, the ellagic acid has been shown capacity
to stimulate apoptosis in prostate carcinoma (PC3) cells by
activating the caspase enzyme, besides a decrease in the levels of
antiapoptotic protein Bcl-2 and an increase in the proapoptotic
protein Bax (69). Delphinidin has shown apoptotic activity in
colon cancer cells (70), in addition to retarding growth of liver
cancer cells (71) and PC3 cells (72).

Action on Migration, Invasion and Metastasis
Processes
Proanthocyanidins can alter migration and invasion processes
in pancreatic cancer cells (73) by inhibiting phosphorylation
of extracellular signal-regulated kinase 1/2 (ERK1/2) and the
inactivation of NF- kB factor. While delphinidin, cyanidin, and
resveratrol have shown anti-metastatic activity in human colon
cancer cells (74, 75).

The use of resveratrol in synergy with zinc and other
compounds for the treatment of prostate cancer has also been
suggested (76), which requires further studies to elucidate the
action mechanisms, as well as the conditions under which the
treatment is clinically effective.

Prevention of Oral Diseases
Phenolic compounds in red wine have shown effectiveness
against microorganisms involved in the development of caries
and periodontitis. Proanthocyanidins act on Streptococcus
mutans, responsible for the formation of dental plaque, by
inhibiting the enzyme glucosyltransferase (GTF), which catalyzes
the conversion of sucrose into glucans (base of dental plaque)
(77), besides inhibiting the enzyme F-ATPase, responsible for
protecting S. mutans from acidic environmental stress generated
in the environment of dental plaque (78). For their part,
Fusobacterium nucleatum, Streptococcus oralis, and Actinomyces
oris have shown sensitivity to red wine, non-alcoholic red wine,
and red wine solutions enriched with grape seed extracts, an effect
attributed to catechin and procyanidin B2 from the seeds (79).

Regarding quercetin, it has shown effects against alveolar
bone loss in rodents affected by periodontitis, by reducing the
production of inflammatory mediators such as IL-1β, IL-17,
TNF-α, of the receptor activator of NF-κB ligand (RANKL) and
ICAM in gingival tissue (80). Resveratrol has shown a similar
effect against oxidative stress and the progression of periodontitis
through the activation of sirtuins and the Nrf2 pathway, besides
helping to improve alveolar bone resorption (81).

Prebiotic Effect
An increase in the bacteria Enterococcus, Bacteroides,
Bifidobacterium, Eggerthella tarda, Blautia coccoides, among
others, has been observed in the intestinal microflora after the
consumption of red wine and non-alcoholic red wine (28).
Similar results were subsequently obtained with Enterococcus,
Bifidobacterium, and E. lenta, proposing the interaction of
anthocyanins with these bacteria, especially with Bifidobacterium,
whose growth was positively correlated with the presence of

syringic and 4-hydroxybenzoic acids, both anthocyanin
derivatives (82). Thus, the prebiotic effect of red wine would be
related to the catabolism of phenolic compounds.

Antiviral Activity
The action mechanisms include the antioxidant capacity of
phenolic compounds, as well as their capacity to inhibit essential
viral enzymes, activate self-defense mechanisms, and prevent the
attachment and penetration of the virus into the host cell (83).
The latter is of vital importance to inhibiting the synthesis of
viral DNA. Quercetin and myricetin have been shown to inhibit
DNA and RNA polymerase activity (84), involved in the process
of DNA replication and RNA synthesis in viruses (85).

Of special relevance are the recent publications about effect of
phenolic compounds against severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2), which causes coronavirus disease
2019 (COVID-19). The tannic acid has shown capacity to inhibit
the activity of two proteases that play a key role in cellular
entry and replicating of SARS-CoV-2: transmembrane protease
serine 2 (TMPRSS2, in the host cell) and 3-chemotrypsin-
like protease (Mpro or 3CLpro, in the virus) (86). At clinical
level, quercetin has shown positive effects in the treatment of
COVID-19 patients by decreasing the serum levels of alkaline
phosphatase (ALP), quantitative C-reactive protein (q-CRP), and
lactate dehydrogenase (LDH), as critical markers involved in
COVID-19 severity. Besides, earlier discharge time was observed
in the patients who were taking quercetin. In general, those
patients showed better clinical improvements in terms of the
COVID-19 symptoms (87).

The synergistic effect of phenolic compounds with other
substances can also be used. Resveratrol can improve the action
of decitabine in treatments against human immunodeficiency
virus (HIV), by inhibiting the enzyme ribonucleotide reductase,
thereby blocking viral DNA synthesis and subsequent virus
replication (88). For its part, since cytokine storm and sepsis
are major causes of death in severe COVID-19, in patients
who had received a combined treatment of resveratrol and
copper (preprint: observational study), the number of deaths in
resveratrol-Cu group was 1.9-fold lower respect to patients with
standard care. Although the mechanism of action is unclear, it
could be related to the generation of free radicals, which can
inactivate or degrade cell-free chromatin released from dying
cells and contributing to the sepsis cascade. However, according
to the authors, although these results are promising, these need
to be confirmed in a randomized clinical trial (89).

However, the antimicrobial and antiviral activity shown by
red wine and/or its constituents cannot be comparable to that
shown by antibiotics and antivirals, so it should not be used
for this purpose.

TECHNOLOGICAL IMPROVEMENTS ON
THE CONTENT OF PHENOLIC
COMPOUNDS

Various investigations have focused in recent years on increasing
the content of phenolic compounds in red wine. Although most

Frontiers in Nutrition | www.frontiersin.org 5 May 2022 | Volume 9 | Article 890066

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-890066 May 19, 2022 Time: 14:25 # 6

Vejarano and Luján-Corro Improve Polyphenols in Red Wines

of them are aimed at improving the physicochemical stability
and the sensory profile, they can also be used to improve the
bioactive profile.

It is estimated that around 50% of polyphenols are extracted
into the must/wine during vinification (90), that is, almost a half
remain in the grape pomace. These polyphenols are not always
used, for example, for the development of new foods and other
applications (91).

Traditional practices such as the use of pre-fermentative
enzymes and cold maceration can help improve the extraction of
anthocyanins and tannins (92). On the other hand, the contact
time between the skins and the must/wine is an important
aspect during the transfer of polyphenols, as in the case of
resveratrol, which in some cases reaches its maximum extraction
after 10 days (93).

However, the use of non-conventional technologies applicable
in the different stages of winemaking process may increase
the extraction of polyphenols. These technologies include high
pressures, ultrasound (US), pulsed electric fields (PEF), e-beam
irradiation, and ozone, all of them applicable in the pre-
fermentative stage (in grape berries or grape must), in addition
to biotechnological strategies at fermentative level and during the
aging of red wine (Figure 3).

At Pre-fermentative Level
The so-called emerging technologies have been studied mainly
for the control of microbial load in food. However, they may
also be useful to improve the extraction of phenolic compounds,
with the advantage of reducing maceration times, not generating
thermal damage to the treated product, inactivating oxidative
enzymes, and reducing SO2 doses (94). SO2 is an additive that
has been related to health problems in the consumer (95) and to
generate aromatic defects related to its excessive use (96).

Emerging technologies can also be used to improve extraction
in grapes with low phenolic content, as a complementary
treatment, or as an alternative to the traditional use of pectolytic
enzymes or the “blended” with grape varieties with higher
phenolic content, allowing, for example, the elaboration of wines
with higher levels of resveratrol (up to 16 mg/L in Pinot noir
wines) (97) and quercetin (up to 13 mg/L in Shiraz-grape
wines) (90).

High-Pressure Technologies
High pressures are one of the promising alternatives
for the treatment of grapes and/or musts, highlighting
high hydrostatic pressure (HHP) and ultra-high pressure
homogenization (UHPH), which have been implemented in the

FIGURE 3 | Technological strategies to improve the content of phenolic compounds during red winemaking.
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development of equipment for industrial applications [more
details in Morata et al. (98)].

High Hydrostatic Pressure
HHP is a discontinuous flow technique. Besides reducing the
microbial load and preserving aroma, HHPs can improve the
extraction of phenolic compounds into the must/wine, as well
as protect them against oxidation by partially inhibiting the PPO
enzyme at pressures greater than 600 MPa (99), which makes it
possible to keep the antioxidant properties of wine and reduce
the necessary doses of SO2.

Another advantage of HHP is that once applied it allows to
keep the integrity of the berry (100), thus facilitating the handling
of the grape, without loss of raw material or risk of microbial
contamination. On the contrary, the diffusion of anthocyanins
to the pulp and the external surface of the seeds is facilitated,
because of the rupture of the cell walls of the skin (Table 2) (101).

HHP improves the selective extraction of phenolic
compounds, for example, acylated anthocyanins, which would
be related to a better solubility of acylated anthocyanins (less
polar than the non-acylated ones), due to the effect of HHP on
must polarity (decrease in the dielectric constant of water), and
the decrease in pH (molecular deprotonation at high pressures),
improving the content of p-coumaroylated anthocyanins, color
intensity (CI), and total polyphenol index (TPI) (101).

A better extraction of polyphenols from red grape residues
at 600 MPa has also been observed (Table 2), increasing
the extraction of acylated anthocyanins, besides increasing the
extraction of phenolic compounds with HHP, US (35 KHz), and
PEF (3 kV cm−1), and improving the antioxidant capacity with
HHP and PEF, regarding the control. In the latter case, it may be
related to the inactivation of oxidative enzymes (102).

On the other hand, HHPs can favor the formation of
pyranoanthocyanins, mainly derivatives of vitisin A at 600 MPa

and 70◦C (103), while at 500 MPa (5 min at 20◦C) levels of
pyranoanthocyanins, prodelphinidins, and polymerized tannins
similar to those found in samples obtained with micro-
oxygenation and in contact with wood, have been observed
(104). However, the content of anthocyanins such as cyanidin
may decrease, as occurs with other techniques such as
e-beam irradiation (101, 105), thus being able to affect the
antioxidant activity.

HHP has also been applied on wines to maintain stability
and reduce the necessary doses of SO2. However, a decrease in
the content of aromatic compounds, phenolic compounds, and
antioxidant capacity has been reported in red wines stored for
12 months and treated with HHP at 350 MPa, in which it is
necessary to keep a minimum SO2 concentration of 60 mg/L
(Table 2) (106). So that, HHP can be applied as a complementary
treatment to reduce the necessary doses of SO2.

Ultra-High Pressure Homogenization
UHPH is a technology that is arousing interest in winemaking,
mainly for microbial inactivation and inactivation of oxidative
enzymes in white musts (107–109), acceleration of yeast autolysis,
and production of yeast derivatives for oenological use (108).
However, few publications have addressed their applicability in
red winemaking processes.

UHPH is a continuous flow technique applicable to liquid
samples, for example, musts, at pressures between 200 and
600 MPa, followed by instantaneous depressurization to
atmospheric pressure with the consequent generation of 100–
300 nm nanofragmentations in the treated sample (94). It is
characterized by having a total process time of 0.2 s, with the
advantage of not generating damage at the level of vitamins,
aromatic compounds, and pigments, even at temperatures
close to 80◦C (94, 107, 110). Another advantage of UHPH is a
greater release of nitrogenous compounds for the nutrition of

TABLE 2 | Applications of high-pressure technologies to improve the extraction of phenolic compounds during red winemaking.

High pressure technology Sample (volume) Operation parameters Main results respect to control treatment Reference

HHP
Discontinuous process

Red grape berries
(Tempranillo)
300 g

200 MPa, 10 min, < 30◦C Treated grape berry:
• Migration of anthocyanins to pulp and seeds
• No external modifications of fruit appearance (integrity)
Wine:
• ↑ extraction of p-coumarylated anthocyanins at (> 68%)
• ↑ TPI (> 43%)
• ↑ CI (> 26%)

(101)

HHP
Discontinuous process

Red grape by-products 600 MPa, 60 min, 70◦C • ↑ total phenolic content (> 1.5-fold higher)
• ↑ extraction of acylated anthocyanins (> 10.7-fold higher)
• ↑ antioxidant activity (> 2.75-fold higher)

(102)

HHP
Discontinuous process

Red wine
(Agiorgitiko)
1 L

350 MPa, 10 min, 8◦C
The wine was dosed with 30,
60 and 100 mg/L SO2

Wines with < 60 mg/L SO2 (6 months of storage):
• ↓ flavanols
• ↓ monomeric anthocyanins
• ↓ antioxidant activity

(106)

UHPH
Continuous process

Red grape must
(Cabernet Sauvignon)
100 L at 60 L h−1

300 MPa, 77◦C, < 0.2 s Red grape must:
↑ protection against oxidation (> 2.5-fold higher) after
6 days of exposure to air (without SO2)*
Red wine:
Maintains the total anthocyanins content

(110)

*Oxidative process: monitored by the evolution of the hue (evolution from red-blue to red-brown tonalities).
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the yeast in the treated musts, besides allowing the synthesis of
fermentative esters with a positive impact on the aroma of the
wine compared to the conventional treatment with SO2 (109).

The application of UHPH allows an almost complete
inactivation of the enzyme polyphenoloxidase (PPO) (> 90%)
(107, 109), with the consequent protection of phenolic
compounds, besides maintaining the antioxidant capacity
of the must, and color stability, even when exposed to air
(Table 2) (110), being greater its capacity to inactivate oxidative
enzymes concerning high hydrostatic pressure (HHP).

Although it has not been reported in the literature the effect
of UHPH on other grape enzymes with a direct impact on
wine quality, such as β-glucosidase, β-lyase, protease, pectinase,
hydroxycinnamate decarboxylase (HCDC), cellulase, among
others (111, 112), the effect of UHPH at the level of quaternary
structure denaturation in proteins should be considered (113).
However, the use of exogenous enzymes can help counteract the
effect of UHPH on these grape enzymes.

Unlike HHP, which works under static conditions, high-
pressure homogenization is a dynamic technology, and its effect,
besides high pressure, depends on phenomena such as cavitation,
turbulence, and shearing (108). Initially, UHPH would not be
applicable for the processing of red grape mash due to the
presence of peels and seeds, which can clog the homogenizer
valves, considering that particle sizes smaller than 500 µm have
been suggested (94). Thus, the application of UHPH would be
limited only to musts free of peels, seeds, and other solids.
Previously, the application of high-pressure homogenization, at
200 MPa at a flow rate of 120 L h−1, to Trepat red grape must has
been reported, in order to reduce the microbial load and evaluate
the impact on the sensory profile. However, the article does not
mention whether the red must was treated together with seeds
and peels (grape mash), or whether these solids were previously
separated (114).

Considering that one of the main advantages of UHPH is
its inhibitory effect on PPO (107, 109, 110), an interesting
alternative has recently been reported in Cabernet Sauvignon
red must (110), which, after a maceration process at 0◦C for
15 days, was separated from peels and seeds, and subsequently
treated with UHPH at 300 MPa (Table 2). Among the most
important results, the maintenance of anthocyanin levels in the
wine produced stands out.

Another alternative could include the application of
technologies that allow greater extraction of phenolic compounds
during maceration from the grape mash, such as ultrasound,
pulsed electric fields, irradiation, or ozone, following the
methodology developed by Vaquero et al. (110), with the
subsequent draining of the must to separate seeds and peels,
followed by the application of UHPH to reduce the microbial
load and inactivate the PPO, protecting the polyphenols
against oxidation.

Pulsed Electric Fields
Through Resolution OIV-OENO 634-2020, the International
Organization of Vine and Wine (OIV) included the use of pulsed
electric fields (PEF) for treatment of red grapes destemmed
and crushed in order to facilitate and increase the extraction

of polyphenols and other valuable substances located inside
the grape cells and reduce maceration time. The text has been
included in the International Code of Oenological Practices.

Several works have reported the application of pulsed electric
fields (PEF) to reduce the microbial load in winemaking
processes, in which their efficacy for the extraction of polyphenols
is also highlighted (Table 3). Among the advantages of PEFs,
the reduction of SO2 doses during must sterilization stands out
(115), besides improving the extraction of phenolic compounds
and preserving color at doses of up to 41 kV cm−1 (116).

This technology has shown high efficiency in the extraction
of phenolic compounds, at rates higher than 50% (102), due to
its action on the cell walls of the skin, producing fragmentation
at the nanometric scale, besides reducing maceration time up to
50% at doses of 5–10 kV cm−1 (117) and 75% at doses of 33–
41 kV cm−1 (116), being the efficacy variable depending on the
intensity of the PEF, duration of the pulse or number of pulses
(118), as well as the variety of treated grape (117).

The application of PEF (0.8 kV cm−1, 100 ms, 42 kJ kg−1 and
5 kV cm−1, 1 ms, 53 kJ kg−1, respectively) in Cabernet Franc
musts (119) has allowed obtain higher yields of: anthocyanins
(46 and 62%, respectively, concerning the control) and tannins
(50 and 59%, respectively), besides increasing the antioxidant
capacity (51 and 52%, respectively) at the end of fermentation.
In a similar study with Cabernet Franc and Cabernet Sauvignon
musts (120), the application of PEF (5 kV cm−1, 1 ms) during
cold maceration improved the extraction of quercetin 3-β-D-
glucoside (100 and 74%, respectively, concerning the control),
anthocyanins (98 and 60%, respectively) and proanthocyanidins
by more than 35% in both varieties, in addition to increasing
antioxidant activity by more than 100%.

Subsequently, the application of PEF (0.8 kV cm−1,
100 ms and 5 kV cm−1, 1 ms) during cold maceration
and alcoholic fermentation in Cabernet Sauvignon musts
was studied, obtaining a better extraction of anthocyanins
and proanthocyanidins in the maceration stage with 0.8 kV
cm−1 (121).

Furthermore, the application of PEF (7.4 kV cm−1) to
Tempranillo, Graciano, and Grenache musts (122) improved
anthocyanin extraction by up to 49, 87, and 163%, respectively,
concerning the control. However, the most remarkable feature of
this study was the improvement of total stilbene content, up to
60, 200, and 50%, respectively, mainly the trans- and cis-piceido
fractions (glycosidic forms of resveratrol). No significant effect
was observed in the extraction of trans-resveratrol, which would
be related to the absence of ethanol in the maceration stage (123).

Regarding the antioxidant capacity, improvements of more
than 25% were obtained in the viability of Caco-2 cells incubated
in digested grape must, against H2O2-induced stress. The
digested grape must was obtained by digestion of Pinot Noir
must treated with PEF (1.5 kV cm−1) and macerated for 8 days
(Table 3) (124).

PEFs can also increase the selective extraction of acylated
anthocyanins by more than 7 times at a dose of 3 kV cm−1 in
comparison to the control (Table 3) (102), besides contributing
to the depolymerization of the skin tannins, improving the
permeability and diffusion through the cell walls fragmented by
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TABLE 3 | Applications of pulsed electric fields to improve the extraction of phenolic compounds during red winemaking.

Technology Sample (volume) Operation parameters Main results respect to control treatment References

PEF
Discontinuous
process

Red grape must (Garnacha,
Mazuelo, and Graciano)
25 g

2–10 kV cm−1, 0.4–6.7 kJ
kg−1,
50 pulses, 1 Hz, < 30◦C

Must from three varieties:
Extraction of anthocyanins and total phenols increase as PEF
intensity increases
Mazuelo grape must: Maximum extraction at 120 h (10 kV cm−1):
• Anthocyanins: 41.8% higher than control
• Total phenols: 31% higher than control
Red wines (Garnacha, Mazuelo, Graciano):
• Anthocyanins: 11.3, 16.3, 7.6% higher control, respectively
• Total phenols: 14.2, 14.2, 12.1% higher control, respectively

(117)

PEF
Continuous
process

Red grape must
(Cabernet Sauvignon)
118 kg h−1

2–7 kV cm−1, 0.56–6.76 kJ
kg−1, 50 pulses, pulse width
3 µs, 0.41 s, 122 Hz, < 23◦C

Must/wine: Maximum extraction at 96 h (5 kV cm−1):
• Anthocyanins: 40% higher than control
• Total phenols: 30% higher than control

(179)

PEF
Continuous
process

Red grape must
(Garnacha)
4,500 kg at 1,900 kg h−1

4 kV cm−1, 1.5 kJ kg−1, 20
pulses, pulse width 3 µs,
60 µs, 0.41 s, 250 Hz

Must/wine: After 7 days of maceration:
• Color intensity: 12.5% higher
• Anthocyanin content: 25% higher
• Polyphenol index: 23.5% higher

(174)

PEF
Discontinuous
process

Red grape must (Pinot Noir)
200 g

1.5 kV cm−1, 14.48 and
69.99 kJ kg−1, 243 and 1,033
pulses, pulse width 20 µs,
50 Hz, < 25◦C

• Maximum extraction of malvidin-3-O-glucoside (224% higher)
after 8 days of maceration
• Maximum extraction of total phenols (61% higher) after 4 days of
maceration
• Bioprotective capacity of Caco-2 cells against H2O2 exposure
(> 25% for cell viability) after 8 days of maceration

(124)

PEF
Discontinuous
process

Red grape must
(Pinot Noir and
Merlot)
5 kg

7 kV cm−1, 178 Hz Grape must (Merlot/Pinot Noir):
• Total phenols: 1.54- and 3.16-fold higher, respectively
• Total flavonoids: 1.42- and 4.96-fold higher, respectively
• Monomeric anthocyanins: 1.14- and 2.35-fold higher, respectively
• Antioxidant capacity: up to 5.93- and 3.90-fold higher,
respectively
Red wine (Merlot/Pinot Noir):
• Total phenols: 1.72- and 2.98-fold higher, respectively
• Total flavonoids: 2.66- and 6.21-fold higher, respectively
• Monomeric anthocyanins: 1.05- and 1.11-fold higher, respectively
• Antioxidant capacity: up to 2.18- and 5.77-fold higher,
respectively

(180)

PEF
Continuous
process

Red grape must
(Grenache)
600 kg h−1

0.7–7.8 kV cm−1,
78–5,000 µs, 12–290 Hz

Red wines from PEF treated musts
Fresh fermented wine/after 12 months of bottle storage
• Anthocyanins: up to 61%/44% higher, respectively
• Condensed tannins: up to 30%/10% higher, respectively
Reduction of maceration time up to 37%

(118)

PEF
Continuous
process

Red grape must
(Merlot)
500 kg h−1

33.1–41.5 kV cm−1, 4.7–49.4
kJ L−1, 2–25 Hz

Grape must:
• ↑ total phenolic content (23–162% higher)
• ↑ malvidin-3-O-glucoside (17–636% higher)
Must/wine: Equivalent contents of malvidin-3-O-glucoside and
phenolic content at:
• PEF-treated: after 1 day of cold maceration
• PEF-untreated: after 4 days of cold maceration

(116)

PEF
Continuous
process

Red grape must (Sangiovese)
50 kg at 200–300 L h−1

0.9–3.0 kV cm−1, 10.4–32.5 kJ
kg−1, 712–1,069 pulses,
0.48–0.71 s, 1,500 Hz

Must*:
• PEF: ↑ total phenolic content (25%)
• PEF + dm: ↑ total phenolic content (27%)
• PEF + dm + sm: ↑ total phenolic content (42%)
Wine from PEF + dm + sm musts (3 months of storage):
• ↑ total phenolic content (40%)
• ↑ Fe-reactive polyphenols (29%)
• ↑ tannins (61%)
• ↑ protection against oxidation (> 1.4-fold higher) **

(130)

PEF
Continuous
process

Red grape must
(Rondinella)
200 kg at 250 L h−1

Rondinella: low-color red
grape

1.5 kV cm−1, 2–20 kJ L−1,
pulse width 3 µs, 400 Hz

Red wine from PEF treated must (10 and 20 kJ kg−1)
2 months of bottle storage
• ↑ content of anthocyanins (32 and 36% higher, respectively)
• ↑ content of tannins (64 and 64% higher, respectively)
12 months of bottle storage
• ↑ content of anthocyanins (3.8 and 50% higher, respectively)
• ↑ content of tannins (38 and 50% higher, respectively)

(129)

(Continued)
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TABLE 3 | (Continued)

Technology Sample (volume) Operation parameters Main results respect to control treatment References

PEF
Continuous
process

Red grape must
(Grenache)
12,000 kg at 2,500 kg h−1

4.3 kV cm−1, 6.2 kJ kg−1, 3.7
square pulses of 100 µs

Fresh fermented wine
• Anthocyanins: up to 37% higher
• Tannins content: up to 40% higher
24 months of bottle aging
• Total anthocyanins: up to 110% higher
• Total hydrocinnamic acids: up to 167% higher
• Total flavonols: up to 200% higher
• Total flavanols: up to 28% higher
6 months of oak barrel aging + 18 months of bottle aging
• Total anthocyanins: up to 81% higher
• Total hydrocinnamic acids: up to 152% higher
• Total flavonols: up to 189% higher
• Total flavanols: up to 96% higher

(128)

PEF
Continuous
process

Red grape must
(Grenache)
100 kg at 120 kg h−1

5–17.5 kV cm−1, 63.4–115 kJ
kg−1, 45 pulses, 0.38–0.24 s,
120 kg/h

Red wine fermented by non-Saccharomyces yeasts
Depending on the used yeast-strain:
• ↑ content of pyranoanthocyanins (up to 30% higher)
• ↑ content of vitisin A (up to 89% higher)

(115)

PEF
Discontinuous
process

Red grape pomace 3 kV cm−1, 10 kJ kg−1, 30
pulses, 15 s, 2 Hz,
70◦C

• ↑ total phenolic content (> 1.5-fold higher)
• ↑ extraction of anthocyanin monoglucosides (> 1.4-fold higher)
• ↑ extraction of acylated anthocyanins (> 7.9-fold higher)
• ↑ antioxidant activity (> 4-fold higher)

(102)

*Results respect to control for each treatment (without PEF application). dm, dynamic maceration 2 h; sm, static maceration 12 h.
** Oxidative process: monitored by the evolution of the hue (evolution from red-blue to red-brown tonalities).

the PEF (4 kV cm−1, 1 ms) (125). Although from a sensory point
of view smaller tannins can increase the sensation of astringency
and bitterness in the wine (125, 126), the application of processes
such as aging-on-lees may help reduce their impact.

Respect to aging of wine, a higher content of flavanols,
flavonols, anthocyanins, and hydroxycinnamic acids has also
been reported after 12 and 24 months of aging in Cabernet
Sauvignon and Grenache wines (respectively) made from grapes
treated with PEF at doses of 5 and 4.3 kV cm−1, respectively
(Table 3) (127, 128). Intensities lower than 4 kV cm−1 followed
by macerations for 6 days allowed higher anthocyanin and tannin
extractions than treatments at intensities > 5.5 kV cm−1 with 4-
day macerations (Table 3) (118), conditions that could be applied
to reduce maceration time and improve phenolic content and
other parameters of red wine at the end of the fermentation
and aging process.

PEFs also improve the extraction of anthocyanins and total
phenols in grape varieties considered to have a low red color,
such as Rondinella, being possible to increase anthocyanin
contents by more than 50% in comparison to wines made
with untreated must, and by more than 30% in comparison to
wines made with musts treated with pectolytic enzymes (129).
An alternative to improve the extraction of polyphenols is the
combined application of PEF and pre-fermentative maceration
(immediately after destemming and crushing the grapes), in
order to obtain a higher content of polyphenols and a greater
antioxidant capacity (130).

Ultrasound
Ultrasound (US) is a technology that can be used for the
extraction of phenolic compounds thanks to the mechanical
action that produces the successive compression and expansion
of the bubbles formed by the ultrasonic waves, which, when

collapsing, release energy, reaching localized temperatures of up
to 5,000 K and pressures up to 200 MPa (131).

Through Resolution OIV-OENO 616-2019, the International
Organization of Vine and Wine (OIV) included the use of
US during pre-fermentative maceration, after destemming and
crushing, to improve the extraction of phenolic compounds,
besides shortening the maceration time and limiting the
excessive extraction of tannins in grapes with deficient phenolic
maturation. The text has been included in the International Code
of Oenological Practices.

The treatment of red musts with US is an effective alternative
to increase the extraction of tannins and total phenols by up
to 58 and 27%, respectively (132), and to maintain anthocyanin
levels by up to 97% (133), without affecting its chemical
stability. The treatment with US may also generate a greater
increase in the content of polymeric anthocyanins in wines
stored for 12 months (132) compared to the increase observed
in the same fresh fermented wines (at the end of alcoholic
fermentation) (Table 4).

It is also possible to take advantage of the application of
US together with other treatments (Table 4), for example, in
sequential applications with pectolytic enzymes (134). Although
the decrease in monomeric anthocyanins and the increase in
polymeric forms is a normal phenomenon during red wine
aging, the treatment of musts with US has made it possible to
obtain red wines (after 3 months of bottle storage) with a higher
content of polymeric anthocyanins and tannins compared to the
control wine produced through the traditional process (134). The
increase in these phenolic compounds was even greater when the
musts were treated sequentially with pectolytic enzymes and US.
Although in both cases a decrease in the monomeric anthocyanin
content was reported, the application of US to the must reduced
the loss of anthocyanins in the elaborated wine.
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TABLE 4 | Applications of ultrasound and irradiation to improve the extraction of phenolic compounds during red winemaking.

Technology Sample (volume) Operation parameters Main results respect to control treatment Reference

US Red grape berries
(Monastrel)
800 g

40 Hz, 280 W, 90 min,
18◦C

Fresh fermented red wine: US alone and sequential
enzyme + US
• Total phenols: 9 and 28% higher, respectively
• Total tannins: 19 and 42% higher, respectively
• Anthocyanins: 7.5 and 13% higher, respectively
• Polymeric anthocyanins: 9 and 31% higher, respectively
Red wine 3 months of bottle storage: US alone and
sequential enzyme + US
• Total phenols: 12.5 and 27% higher, respectively
• Total tannins: 14 and 59% higher, respectively
• Anthocyanins: 9.5 and 9.5% higher, respectively
• Polymeric anthocyanins: 13 and 50% higher, respectively

(134)

US Red grape berries
(Tempranillo and Monastrell)
400 kg at 400 kg h−1

28 kHz, 2,500 W, 8 W
cm−2

Tempranillo red wine (fresh fermented and 5 months of bottle
storage):
• Total phenols: 12 and 9% higher, respectively
• Anthocyanins: 18 and 48% higher, respectively
Monastrell red wine (fresh fermented and 12 months of bottle
storage):
• Total phenols: 27 and 34% higher, respectively
• Total tannins: 58 and 46% higher, respectively
• Polymeric anthocyanins: 12 and 21% higher, respectively

(132)

US Red grape pomace 35 KHz, 60 min, 70◦C • ↑ total phenolic content (> 1.5-fold higher)
• ↑ extraction of acylated anthocyanins (> 6-fold higher)
• ↑ antioxidant activity (> 1.5-fold higher)

(102)

US Red grape pomace
(Tannat)

Bath mode: 50–100 W,
50 min, 30◦C

Extraction in fresh/freeze-dried pomace
• Total phenols (100%/180% higher, respectively)
• Total monomeric anthocyanins (100%/180% higher, respectively)
• Antioxidant capacity (180% higher in freeze-dried)

(181)

γ -irradiation Red grape berries
(Cabernet sauvignon and
Shiraz)
500 g

0.5–2 kGy Better results: wines from irradiated grapes at 1.5 kGy:
Cabernet Sauvignon wines (fresh and 4 months of bottle storage)
• Total anthocyanin content: 97 and 77% higher, respectively
• Total phenolic content: 23 and 31% higher, respectively
• Total antioxidant capacity: 42 and 37% higher, respectively
Shiraz wines (fresh and 4 months of bottle storage)
• Total anthocyanin content: 29 and 45% higher, respectively
• Total phenolic content: 16 and 18% higher, respectively
• Total antioxidant capacity: 21 and 19% higher, respectively

(137)

e-beam
irradiation
Continuous
process

Red grape berries
(Tempranillo)
700 g

0.5–10 kGy,
10 MeV, 50 kW, 100 Hz

• Grape berry: No external modifications of appearance (integrity)
• Grape must: Total anthocyanins 70% higher at 10 kGy
•Wine: Vinylphenolic pyranoanthocyanins and vitisins were more
stable

(136)

Ozone Red grape berries
(Pignola)
6 kg
Red grape subject to
dehydration for wine
production

Shock treatment:
1.5 g/h of O3 for 18 h
followed by dehydration in
normal atmosphere by
24 days

Grape must after 24 days of dehydration:
• Total phenolic content: 16% higher
• Anthocyanins: 14% lower

(142)

Long exposure:
1.5 g/h of O3 for 18 h
followed by dehydration in
normal atmosphere with
0.5 g/h of O3 for 4 h each
day by 22 days

Grape must after 22 days of dehydration:
• Total phenolic content: 67% lower
• Anthocyanins: 14% lower

Ozone Red grape berries
(Petit Verdot)
500 kg

1.2 g/h of O3 for 12 h at
4◦C

Grape must:
• Anthocyanins: 19% higher
• Tannins: 16% higher
During fermentative process:
Maximum extraction of grapes O3-treated and untreated:
• Anthocyanins: 5 and 11 days, respectively
• Phenolics: 7 and 16 days, respectively
Wine after malolactic fermentation and stabilization
Anthocyanins: 14% higher

(140)

(Continued)
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TABLE 4 | (Continued)

Technology Sample (volume) Operation parameters Main results respect to control treatment Reference

Ozone Red grape berries
(Nebbiolo)
500 kg

30 µL/L at 20◦C Extraction yields in must of Nebbiolo at the end of
maceration (240 h)
Anthocyanins:
• 24 h O3-treated grapes: 87%
• 72 h O3-treated grapes: 64%
• Control (no-treated grapes): 60%
Oligomeric flavanols:
• 24 h O3-treated grapes: 86%
• 72 h O3-treated grapes: 91%
• Control (no-treated grapes): 79%
Polymeric flavanols:
• 24 h O3-treated grapes: 89%
• 72 h O3-treated grapes: 90%
Control (no-treated grapes): 81%

(141)

Like other technologies, the efficiency in the extraction of
phenolic compounds depends on the intensity of US. For
example, an optimal range between 12 and 37.5 kHz has been
reported to increase anthocyanin extraction by up to 18%. Higher
doses can alter the content of anthocyanins (135).

Electron Beam Irradiation
Electron beam irradiation (e-beam) is characterized by the
use of high-energy accelerated electrons and can be applied
continuously on an industrial scale without increasing the
temperature of the treated product, even at doses of 10 kGy (100),
with the advantage of reducing the necessary doses of SO2 as a
preservative and antioxidant.

Doses of 10 kGy may improve the extraction of anthocyanins
by more than 70% (Table 4) (136), also improving the fruity
smell of the produced wine. Doses of less than 10 kGy affect
the pectin structure, allowing a greater diffusion of phenolic
compounds into the must/wine, besides reducing the necessary
doses of exogenous pectins (98). Lower doses (0.5–3 kGy) have
also shown improvements in the extraction of anthocyanins and
phenolic compounds in general (137, 138), and doses of 2 kGy
have allowed obtaining better antioxidant capacity in wines made
from irradiated grapes (137).

A recent study has reported the decrease in the content of
flavonols, flavanols, anthocyanins, and phenolic acids in red
wines treated directly with e-beam radiation, at doses between 1
and 10 kGy, as an alternative to the use of SO2 (139). However,
another study reported a higher content of flavonols, flavanols,
anthocyanins, total phenols, and higher antioxidant capacity in
wines made from grapes irradiated at a dose of 1.5 kGy, compared
to wines made from non-irradiated grapes (137).

Furthermore, although the content of phenolic compounds,
mainly anthocyanins, decreases during aging, it has been reported
that after 4 months in bottle, red wines made from irradiated
grapes maintain anthocyanins, total phenols, and antioxidant
capacity at higher levels than the respective wines made from
non-irradiated grapes (Table 4) (137). Likewise, greater stability
of vinylphenolic pyranoanthocyanins and vitisins has been
reported in wines made from irradiated grapes at doses of
10 kGy (136). Which indicates that the advantage of this

technology would be focused on its applicability on the raw
material (grape berry).

Ozono
It has been possible to increase the extraction of anthocyanins and
tannins by up to 19 and 16%, respectively, in Petit Verdot grapes
treated with ozone, besides shortening the fermentation time in
large-scale vinifications (Table 4) (140). On the other hand, has
been showed higher extractability of flavanols in musts from
Nebbiolo grapes treated with ozone (short exposures: < 72 h,
30 µL L−1) during maceration (141).

One aspect to optimize is the treatment time, considering that
prolonged exposure, even at low concentrations, can induce a
decrease in the total phenolic content due to oxidation caused
by ozone activity (141, 142). However, short treatments may
increase the levels of anthocyanins and tannins in the berry, as a
response to mild to moderate ozone-induced stress, activating the
protective antioxidant response through the synthesis of phenolic
substances (140, 141).

Moreover, the prolonged exposure can harden the skin of
the berries (143), which would be related to a reduction of
the disassembly phenomena of the pectic structure of the cell
wall (less solubilization of pectins, less depolymerization of
polyuronides, and less pectin methylesterase activity) (144),
generating a slow extraction of polyphenols, for example, of
high-molecular-weight flavanols, whose affinity with cell walls
increases when the berry is treated with ozone (141). On the other
hand, in shorter ozone treatments, higher polygalacturonase
and pectin methylesterase activity has been observed (142),
whose action contributes to degrading the pectins of cell walls,
facilitating the diffusion of polyphenols into the must/wine. The
effect of ozone on the hardening of the cell wall of treated berries,
and, therefore, on the extractability of polyphenols, also depends
on the stage of grape ripeness, ozone concentration (140), and
grape variety (Table 4) (141).

During maceration, di-substituted anthocyanins (cyanidin-
3-glucoside and peonidin-3-glucoside) are the first ones to
migrate into the must, followed by tri-substituted anthocyanins
(malvidin-3-glucoside, delphinidin-3-glucoside, petunidin-3-
glucoside) (145). It has been proposed that the hardening of
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ozone-treated berries may result in slower extraction of di-
substituted anthocyanins, which are also more easily lost due to
oxidation during the early stages of winemaking when oxidative
enzymes are more active and dissolved oxygen levels are higher.
That is, the slow extraction would help to maintain the content
of these anthocyanins at the end of maceration, especially
peonidin-3-glucoside (141). In this regard, higher contents of
peonidin-3-glucoside (di-substituted) and malvidin-3-glucoside
(tri-substituted) have been reported at the end of maceration of
Barbera and Nebbiolo grape musts treated with ozone (141). In
other words, the application of ozone would make it possible to
maintain the final levels of anthocyanins (143).

Finally, the application of ozone would be recommended only
on the raw material, that is, in the grape before crushing and
destemming, considering that the direct application to red wine
at a dose of 3.5 g/h, as an alternative to the use of SO2, may lead
to the loss of flavonols, flavanols, anthocyanins and phenolic acids
(139), thus affecting the bioactive profile of the wine.

Strategies at Fermentative Level
During alcoholic fermentation, one aspect to consider is
the use of yeasts with low expression of anthocyanin-β-
glucosidase (anthocyanase) activity, which causes anthocyanin
hydrolysis (146), although this enzyme can contribute to
improving the varietal aroma of the wine through the release
of aromatic compounds from non-aromatic precursors of the
grape (112). The use of yeasts with low adsorption capacity
for phenolic compounds, such as anthocyanins (126) and
resveratrol (147), should also be taken into account, due to
their adsorption by the cell walls of yeasts, which due to their
non-polar character, have shown greater adsorption capacity
for acylated anthocyanins (from higher to lower adsorption:
coumarilated > caffeinated > acetylated) compared to the non-
acylated ones (148, 149), indicating an inverse relationship
between the polarity of anthocyanins and their adsorption.
This would also explain the adsorption of resveratrol (with low
hydrophilic character) (123, 150), by the cell walls of yeasts.

The adsorption capacity has also been related to the degree of
methoxylation and hydroxylation of the B-ring of anthocyanins.
Malvidin and peonidin, with a higher degree of methoxylation
(more non-polar), are adsorbed to a greater extent than
delphinidin and petunidin, with a higher degree of hydroxylation
(more polar) (148). On the contrary, a lower adsorption capacity
has been observed with vitisins A and B (149).

It is estimated that some Saccharomyces strains can adsorb
up to 5.8% of anthocyanins (149), while the use of certain non-
Saccharomyces yeast strains, such as Metschnikowia pulcherrima
and Lachancea thermotolerans can contribute to retaining a
higher amount of anthocyanins in wine (151). Therefore, the
selection of yeast strains with low anthocyanin adsorption and
low anthocyanin-β-glucosidase activity is of utmost importance,
in addition to other characteristics such as high production of
pyranoanthocyanins.

Increased Content of Pyranoanthocyanins
Although many of the technologies applicable to the grapes,
must, or even wine, may lead to losses in the content

of anthocyanins, at the fermentation level the content
of more stable polyphenols may be increased (Table 5).
Vinylphenolic pyranoanthocyanins are formed by the
condensation of vinylphenols and anthocyanins. The use
of yeasts with hydroxycinnamate decarboxylase (HCDC +)
activity is an interesting strategy to increase vinylphenolic
pyranoanthocyanins in wine since they can release precursor
vinylphenols from grape hydroxynamic acids (152). For their
part, vitisins A and B come from the condensation of malvidin-
3-O-glucoside (M3G) with pyruvic acid and acetaldehyde,
respectively, during the fermentation process or aging (153).
These pyranoanthocyanins have shown high chemical stability
due to the presence of the fourth heteroaromatic ring in their
structure, formed from the integration of a non-anthocyanin
molecule (vinylphenols, pyruvate, or acetaldehyde) in the
structure of the precursor anthocyanin (152), resulting in greater
resistance to oxidation.

The synthesis of vinylphenolic pyranoanthocyanidins also
contributes to improving anthocyanin protection against
degradation by microorganisms such as Dekkera/Brettanomyces
(154, 155), since this yeast cannot degrade these
pyranoanthocyanins (156), allowing their content to be
maintained in the wine.

Pyranoanthocyanins have shown antioxidant and anti-
inflammatory activity against prooxidant (H2O2) and
pro-inflammatory (TNF-α) molecules, besides neutralizing
the secretion of inflammatory biomarkers such as interleukin
8 (IL-8) in human colon adenocarcinoma cell cultures
(24). Vitisin A has shown a protective effect against the
secretion of the biomarker monocytic chemoattractant
protein-1 (MCP-1) induced by the TNF-α factor in human
endothelial cell cultures (157). Furthermore, vitisin A has
shown good stability under simulated gastrointestinal conditions
(in vitro) (158).

An increase in the content of vinylphenolic
pyranoanthocyanins has been reported in mixed fermentation
of S. cerevisiae with Pichia guillermondii (159), and the
synthesis of vitisins in mixed fermentations of S. cerevisiae with
Schizosaccharomyces pombe and with Torulaspora delbruecki
(Table 5) (160, 161). Species with high acetaldehyde production
such as Saccharomycodes ludwigii (162, 163) can also be used to
increase the synthesis of vitisin B.

Another alternative could be the use of metabolic inhibitors
during alcoholic fermentation, to increase the production of
acetaldehyde by S. cerevisiae (164, 165), because of the inhibitory
effect on the enzyme alcohol dehydrogenase (ADH), responsible
for converting the aldehyde into ethanol (166), which could
increase the substrate available for the synthesis of vitisin B.

Strategies at Post-fermentative Level
Traditional Aging Wines
During aging, a series of physicochemical processes occur
that, individually or together, may modify the content of
bioactive compounds, because of isomerization, hydrolysis,
polymerization, condensation, or even degradation reactions
that may have effects on the bioavailability and bioactivity of
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TABLE 5 | Strategies applied at the fermentative level and during the aging of red wines to improve and/or maintain the content of phenolic compounds.

Winemaking
stage

Technological strategy Wine Main results respect to control treatment References

Fermentative
stage

Mixed fermentation
S. cerevisiae + Schizosaccharomyces
pombe
and
S. cerevisiae + Torulaspora delbruecki

Syrah
(70 mL)

S. cerevisiae + S. pombe
↑ Total anthocyanins (up to 1.2-fold higher)
↑ Vitisins (up to 1.75-fold higher)
S. cerevisiae + Torulaspora delbruecki
↑ Total anthocyanins (up to 1.4-fold higher)
↑ Vitisins (up to 1.2-fold higher)

(161)

Sequential fermentation
Lachancea
thermotolerans + Schizosaccharomyces
pombe
and
Lachancea
thermotolerans + S. cerevisiae

Tempranillo
(5 L)

↑ Total anthocyanins (> 1.6 respect to AF + MLF)
↑ Vitisins A and B (> 1.5 and > 2.6, respectively, respect to
AF + MLF)

(182)

Addition of mannoprotein before
fermentation

Cabernet Sauvignon
(100 L)

• ↑ Total polyphenols content (up to 1.2-fold higher)
• ↑ Total tannin content (up to 3.4-fold higher)
• ↑ Proanthocyanidin B1 and B2 (up to 1.13- and 1.17-fold higher,
respectively)
• Maintains petunidin-3-5-O-diglucoside and
malvidin-3-5-O-diglucoside levels.
• ↑ Antioxidant capacity (up to 1.18-fold higher)

(171)

Wine aging
stage

Application of AOL Tempranillo
(2 L)

Maintains the total anthocyanins content (183)

Addition of mannoprotein during storage Cabernet Sauvignon
(100 L)

↑ Cyanidin-3,5-O-diglucoside (up to 10.8-fold higher)
↑ Petunidin-3,5-O-diglucoside (up to 5.4-fold higher)

(171)

AF + MLF: traditional winemaking process involving alcoholic fermentation (AF) + malolactic fermentation (MLF).

polyphenols. In general, the content of anthocyanins, resveratrol,
and flavonols tends to decrease (7, 126, 167), as a consequence of
their transformation into other molecules, so that greater health
benefits from consuming young red wines would be expected.

On the contrary, the content of monomeric flavanols may
increase due to the hydrolysis of tannins (7). These monomers
have shown high antioxidant capacity (13, 14), as well as
antimicrobial activity (79). Although from a sensory point of
view monomeric tannins can increase bitterness and astringency
(126), the application of processes such as aging-on-lees may help
reduce their impact.

The synthesis of vitisins may occur during alcoholic
fermentation by the action of yeasts, although their synthesis
mostly occurs during wine aging. Vitisins have shown a lower
capacity to neutralize free radicals, such as the O2

− anion, than
their precursor anthocyanins (16), although the pyruvic adduct
of delphinidin-3-O-glucoside has shown a greater capacity
to neutralize OH− and O2

− anions in comparison to other
pyranoanthocyanins, but to a lesser extent than its precursor
delphinidin-3-O-glucoside.

During the synthesis of vitisin A, pyruvic acid is incorporated
in positions 4 and 5 of the A ring of the precursor anthocyanin,
which may reduce its antioxidant capacity. This phenomenon
would be related to the loss of the −OH group of carbons 5 and
7 of the anthocyanin, which contributes to its antioxidant activity
(168). Thus, greater health benefits would be expected from
the consumption of young red wines, where the anthocyanin
content is higher.

However, these condensations, according to traditional
vinification, are necessary to confer physicochemical and

microbiological stability to the wine (152, 156). Although
the increase in the content of pyranoanthocyanins does not
contribute to increasing the antioxidant capacity concerning the
antioxidant capacity conferred by the precursor anthocyanins,
the greater stability of the pyranoanthocyanins may contribute to
counteracting the loss of antioxidant capacity throughout aging.

Aging-on-Lees
One of the red wine aging techniques that has gained importance
in recent years is aging-on-lees (AOL), which is characterized by
the release of polysaccharides from the cell walls of yeast lees to
the wine during aging (169). These polysaccharides can improve,
among other attributes, the protection of phenolic compounds
against oxidation, allowing, among other benefits, to maintain
their antioxidant and anti-inflammatory capacity. In addition,
the lees have a higher affinity for oxygen (170), so that in their
presence the polyphenols can be protected against oxidation.

Although the content of anthocyanins may decrease during
AOL (126, 171) due to adsorption by the lees (126), the
application of lees of species such as S’codes ludwigii and
S. pombe (169) may reduce the loss of anthocyanins. However,
the lees must come from yeasts with low or no β-glucosidase
activity, which can generate hydrolysis, and, therefore, the loss
of anthocyanins (146).

Although most studies have focused on the quality of red wine
in the aging phase, it has been reported that the addition of
polysaccharides before alcoholic fermentation also has a positive
effect (Table 5), increasing the content of anthocyanins, phenolic
acids, tannins, and antioxidant capacity in the produced red
wine (171).

Frontiers in Nutrition | www.frontiersin.org 14 May 2022 | Volume 9 | Article 890066

https://www.frontiersin.org/journals/nutrition
https://www.frontiersin.org/
https://www.frontiersin.org/journals/nutrition#articles


fnut-09-890066 May 19, 2022 Time: 14:25 # 15

Vejarano and Luján-Corro Improve Polyphenols in Red Wines

CURRENT AND FUTURE CHALLENGES

The procedures described can be very useful in the winemaking
process in order to improve the content and availability of
phenolic compounds in the red wine, which once ingested may
contribute to improving the health state of the consumer, without
neglecting that these compounds cannot replace medicines, since
their nature is not curative, but rather as components of the diet
that, mainly, can help prevent certain pathologies.

Most of these technologies are mainly aimed at reducing
the microbial load in the grape must and improving the
physicochemical stability and sensory profile of red wine.
However, they can be used to improve the content of bioactive
compounds, considering that around 50% of the phenolic
compounds are trapped in the red grape residue (pomace) (90)
and that not always is used, for example, for food purposes (91).

It is also important to mention that, in most studies,
the content of anthocyanins and derivatives, flavanols, and
total polyphenols have been evaluated. However, the literature
regarding the impact of these technologies on the content of other
polyphenols is scarce. For example, in the case of resveratrol,
which, according to the existing evidence, is the polyphenol that
would provide the most health benefits.

Industrial Scalability
The scaling up of these technologies is still a pending issue,
considering that only high pressures, PEF and US, have been
evaluated at the industrial level.

Regarding ultrasound, the OIV, through the Resolution OIV-
OENO 616-2019, included its use for the pre-fermentative
maceration stage to improve the extraction of phenolic
compounds, among other benefits. In the market, it is possible
to find systems based on this technology for applications
in liquid foods, such as those commercialized by Industrial
Sonomechanics (172).

In the case of PEFs, also the OIV (Resolution OIV-OENO 634-
2020) has included their use in the pre-fermentative maceration
stage, and there is currently industrial equipment for the
processing of liquid foods up to 10,000 L h−1 and solid foods
up to 70,000 kg h−1, commercialized by Elea Technology (173).
At the winery level, PEF has been applied at intensities between
4.0 and 4.3 kV cm−1 on Garnacha musts with workflows up to
2,500 kg h−1 (128, 174) obtaining wines with better phenolic
contents (Table 3). Regarding PEF intensity, it has applied high
intensities between 17 and 30 kV cm−1 (Table 3), obtaining
improvements in phenolic content and reduction of maceration
time (115, 116). However, most of the studies have applied
intensities lower than 7 kV cm−1 with good results (Table 3),
which, in addition, would allow better adaptability at the
industrial level, considering that the energy needed to produce
high-intensity electric fields determines the characteristics of
the PEF generator and, therefore, the cost of the PEF system
(118, 130).

Commercially, UHPH systems, such as those offered by
Homogenizing Systems, can be found with production capacities
up to 1,000 L h−1 (175). However, on the company website
it is not reported its specific application for winemaking. It

is also possible to find the UHPH system patented by the
Universidad Autónoma de Barcelona (176) and exploited by
Ypsicon Advanced Technologies (177), equipped for winemaking
with flow rates up to 50,000 L h−1. However, one of the
challenges to overcome with this technology is its applicability
in red musts containing peels and seeds (grape mash),
considering that this technology has been evaluated in liquid
foods with particle sizes of less than 0.5 mm (94). An
alternative to taking advantage of the benefits of UHPH
would be its sequential application in processes that include
maceration in the presence of peels and seeds, with subsequent
draining, for the later application of UHPH to the pure
must, according to the methodology proposed by Vaquero
et al. (110). It could also include the application of US, PEF,
irradiation, or ozone in the maceration stage, with subsequent
draining of the must and application of UHPH to reduce
the microbial load and inactivate PPO, protecting polyphenols
against oxidation.

Although the technologies described have shown efficacy to
improve the extraction of phenolic compounds in the pre-
fermentation stage, the decrease in anthocyanin content in
wines made from grapes/must treated with HHP and e-beam
irradiation is a disadvantage in the small-scale studies, which
must be overcome for its industrial applicability, mainly by
optimizing winemaking conditions that reduce the decrease in
the general content of polyphenols (101, 105, 136).

Although the available literature reports that most of the
studies have been carried out with small sample volumes and at
the laboratory level, the results obtained have shown the potential
of these technologies to improve the phenolic content in red wine,
not without highlighting the need for further studies to optimize
winemaking conditions with large volumes and in continuous
flow systems, for their full implementation in the winery.

Finally, greater dissemination of the benefits of these
technologies is necessary, allowing consumers to be aware of their
advantages in the production of red wines, such as the reduction
of the necessary doses of SO2, which has been related to different
health problems in the consumer (95).

CONCLUSION

There is ample evidence regarding the benefits of wine on
health, especially red wine, due to its higher content of phenolic
compounds, which can help maintain good health and prevent
diseases, being moderate consumption vitally important. The
first part of the review summarizes some studies conducted,
mostly with information available on the preclinical level, which
contributes to a better understanding of the mechanisms by
which phenolic compounds could act in the human body (clinical
level), taking advantage of their antioxidant, anti-inflammatory,
antitumor, antithrombotic, antiatherogenic, and antimicrobial
activity, among others. According to the bibliography consulted,
in the last years various studies address specific procedures aimed
at improving the bioactive profile of red wine. In this sense,
the second part of the review describes technological strategies
that can contribute to increasing or at least maintaining, the
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content of polyphenols in red wine. In the pre-fermentation
stage, extraction can be increased by treating the grape berries
with high pressures, PEF, US, e-beam radiation, and ozone,
while, at the fermentative level, yeasts with low adsorption
of polyphenols, low anthocyanin-β-glucosidase (anthocyanase)
activity, and high production of pyranoanthocyanins and/or
their precursor molecules could be very useful. During aging,
although in most cases the content of polyphenols can be
reduced, AOL can maintain the levels of these compounds in the
wine, in addition to chemical processes that modify its structure,
such as the synthesis of pyranoanthocyanins, polymerization of

anthocyanins and flavanols, anthocyanin-tannin condensation,
among others, maintaining to a certain extent the bioactive
profile of red wine, and, therefore, transmitting its health benefits
to the consumer.
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