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Abstract

The primary goal of precision medicine is to minimize side effects and optimize efficacy of

treatments. Recent advances in medical imaging technology allow the use of more

advanced image analysis methods beyond simple measurements of tumor size or radio-

tracer uptake metrics. The extraction of quantitative features from medical images to char-

acterize tumor pathology or heterogeneity is an interesting process to investigate, in order to

provide information that may be useful to guide the therapies and predict survival. This

paper discusses the rationale supporting the concept of radiomics and the feasibility of its

application to Non-Small Cell Lung Cancer in the field of radiation oncology research. We

studied 91 stage III patients treated with concurrent chemoradiation and adaptive approach

in case of tumor reduction during treatment. We considered 12 statistics features and 230

textural features extracted from the CT images. In our study, we used an ensemble learning

method to classify patients’ data into either the adaptive or non-adaptive group during che-

moradiation on the basis of the starting CT simulation. Our data supports the hypothesis

that a specific signature can be identified (AUC 0.82). In our experience, a radiomic signa-

ture mixing semantic and image-based features has shown promising results for personal-

ized adaptive radiotherapy in non-small cell lung cancer.

Introduction

According to the National Institute of Health (NIH) definition, precision medicine refers to

new prevention and treatment strategies that take individual variability into account; it is a

method based on understanding of individual genes, environment and life-style [1].

Precision medicine has been introduced into routine clinical care to minimize iatrogenic

damage and reach an optimal therapeutic effect [2]. The possibility to achieve this result is

strictly related to modern technologies such as genomics, proteomics and radiomics because

they identify the “biomarkers”, characteristics that are objectively measured and evaluated as

indicators of normal biological processes, pathogenic processes or pharmacologic responses to
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a therapeutic intervention. In the last years, much of the discussion regarding personalized

medicine has focused on molecular characterization using genomic and proteomic technolo-

gies. As these need to acquire tissue samples through invasive approaches, and often these sam-

ples are only a small portion of heterogeneous lesions, they may not accurately represent the

lesion’s anatomic, functional and physiologic properties. This limits the use of biopsy based

molecular assays, but in contrast it provides a huge potential for non-invasive imaging tech-

niques which take into account the entire volume of disease [3]. Recent advances in medical

imaging technology allow the use of more advanced image analysis methods beyond simple

measurements of tumor size or radiotracer uptake metrics. Radiomics is the extraction of quan-

titative features (Quantitative Biomarkers) from medical images to characterize tumor pathol-

ogy or heterogeneity (phenotype). It is an emerging field of quantitative imaging that aims to

extract quantitative data from medical images to characterize tumor pathology or heterogeneity

using a large set of advanced imaging features [4]. The goal of radiomics is to provide informa-

tion that can be used to predict survival, as a prognostic marker, but more interestingly to

guide treatment thanks to its predictive value. The possibility of predicting response to a treat-

ment would allow for re-adaptation or intensification of therapy for the patient, in order to

offer him greater chances of better outcome, at the aim to change his prognosis.

Radiomics has several implications in lung cancer. There is incontrovertible evidence for

intra-tumoral heterogeneity on lung CT image for lung cancer patients and these heterogene-

ities can be captured with radiomic features. The first radiomic application explored by some

papers refers to the diagnostic issue, such as the reduction of not-otherwise-specified tumor

(NOS) in unclassified tumors of non-small-cell lung cancer [5] and the possibility to differenti-

ate lepidic predominant adenocarcinoma [6]. Moreover, it was reported that somatic muta-

tions drive distinct imaging phenotypes in lung cancer and a radiomic signatures was able to

successfully discriminate between EGFR+ and EGFR- cases [7]. These artificial intelligence

methods could be proposed to assist pathologists and clinicians in cases of unresectable tumors

or scant biopsy materials for histological subtyping and cancer therapy.

The second point for evaluating radiomics is in the prediction of outcome. Clinical deci-

sions for the treatment of lung cancer are largely based on patient characteristics such as per-

formance status, stage at diagnosis and tumor histology. In metastatic non small cell lung

cancer (NSCLC) patients, molecular information has brought remarkable results thanks to tar-

geted therapies. On the other hand, in locally-advanced disease, standard treatment is concur-

rent chemoradiation which is not guided by molecular data in clinical practice.

Several papers have shown that the combination of clinical, genomic, and radiomic fea-

tures, provides a prognostic signature for overall survival [8] or for prediction of distant metas-

tasis in lung adenocarcinoma treated with chemoradiation [9] and with stereotactic radiation

treatment (SBRT) [10–11]. Radiation therapy is by definition a personalized medicine because

the anatomy is proper of each patient and dose distribution is tailored on the target volume

and organs at risk. We do not know at the treatment start if that particular patient will achieve

a response or not. We know from literature data that about 30–40% of patients who perform

chemoradiation undergo a significant reduction of the tumor during treatment [12–17]. In

this study, we investigated the feasibility of a system where the radiomic features of the

patient’s initial imaging were able to predict tumor reduction during chemoradiation.

Materials and methods

Patient and CT imaging

We studied 91 stage III patients treated with concurrent chemoradiation. As reported in a pre-

vious prospective study of our group [18], 50 patients with stage IIIA/IIIB NSCLC were
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enrolled from November 2012 to July 2014 and treated with concurrent chemoradiation at

radical dose with adaptive approach.

It was defined as a reduction in tumor volume (assessed by two radiation oncologists on

weekly chest CT simulations) leading to the implementation of a new treatment plan with

which the patient would continue radiation therapy. Other 41 patients with the same initial

characteristics (PS, stage, age, etc.) who underwent radical concurrent chemoradiation in the

same period, but who did not achieve target reduction, were added to the initial group in

order to investigate the predictive power of the radiomic features on tumor shrinkage

(Table 1). The characteristics investigated were extracted from the initial simulation CT on

which the Clinical Volume was manually delineated by expert radiation oncologists, providing

a 3D ROI (Figs 1A, 1B, 2A and 2B). The adaptive protocol was approved by Ethical Committee

Campus Bio-Medico University on 30 October 2012 and registered at ClinicalTrials.gov on 12

July 2018 with Identifier NCT03583723 after an initial exploratory phase.

The Institutional review board approved this review. A written informed consent was

obtained in all patients.

The authors confirm that all ongoing and related trials for this intervention are registered.

Semantic features

Two experienced radiation oncologists (RO) independently reviewed all CT images and

assigned scores to each tumor for nine semantic imaging features, divided into personal data

(age, sex and smoking attitude), staging scores of the tumour (T, N and tumor stage), and his-

tology and gene mutations evaluation.

All RO blindly assigned staging scores, in case of disagreement, they reviewed the CT images

together and any discrepancy was resolved through discussion until consensus was reached.

Table 1. Patients’ characteristics.

Adaptive patients (%) (n = 50) Non-Adaptive patients (%) (n = 41) Total (n = 91)

Age: median: 71 years

std deviation: 10.3

median: 72 years

std deviation: 8.6

median: 71 years

std deviation: 9.6

< 70 years 19 (38%) 18 (44%) 37 (41%)

� 70 years 31 (62%) 23 (56%) 54 (59%)

Sex:

Male 39 (78%) 30 (73%) 69 (76%)

Female 11 (22%) 11 (27%) 22 (24%)

Histology:

Adenocarcinoma 16 (32%) 23 (56%) 39 (43%)

Squamous 28 (56%) 15 (37%) 43 (47%)

NOS 3 (6%) 3 (7%) 6 (7%)

No histologic subtype available 3 (6%) 0 (0%) 3 (3%)

Stage:

IIIA 29 (58%) 26 (63%) 55 (60%)

IIIB 21 (42%) 15 (37%) 36 (40%)

Chemo before RTCT:

Yes 23 (46%) 28 (68%) 51 (56%)

No 27 (54%) 13 (32%) 40 (44%)

Concurrent chemo:

Duplets 19 (38%) 20 (49%) 39 (43%)

Mono 31 (62%) 21 (51%) 52 (57%)

https://doi.org/10.1371/journal.pone.0207455.t001
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Radiomic feature extraction

Given each 3D ROI in the images, we computed the following radiomic features using our in-

house software tool coded in MATLAB (Mathworks Inc, MA, U.S.A.), taking into consider-

ation 12 statistics features and 230 textural features extracted from the CT images. Statistical

features consist of the moments up to the fourth-order of the first-order image histogram, i.e.,

the mean, the standard deviation, the skewness and the kurtosis. Furthermore, the picture of

grey-level distribution is also grasped by the histogram width, the energy, the entropy, the

value of the histogram absolute maximum and the corresponding grey-level value, the energy

around such maximum, the number of relative maxima in the histogram and their energy

[19]. Texture feature are derived from the 3D gray-level co-occurrence matrix (GLCM) and

from the Local Binary Patterns-TOP (LBP-TOP) [20]. The former represents the distribution

of co-occurring values between neighbouring pixels according to different displacements, and

its statistics correlate well with the image structure.

Fig 1. Example of ROI (Region of Interest) in 2D and 3D images for a patient in the adaptive group (lung

window).

https://doi.org/10.1371/journal.pone.0207455.g001
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TOP-LBP are descriptors which assign to each pixel of the image a label comparing it with

its neighbourhood matrix computed from three orthogonal planes. Histograms of LBP distri-

butions in such planes are then concatenated.

Radiomic feature selection

For each ROI, both semantic and radiomic features were grouped in a single array, which con-

tains 251 features. In machine learning, as in this case, it is common to have a feature vector

composed by so many elements: the rationale is that practitioners and researchers should

define measures that go beyond the human interpretation of the images, as several discrimina-

tive features could be not directly mined by visual analysis. The set of features is then explored

Fig 2. Example of ROI (Region of Interest) in 2D and 3D images for a patient in the non-adaptive group

(mediastinal window).

https://doi.org/10.1371/journal.pone.0207455.g002
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by the wrapper method to identify the most discriminative features [21]. A wrapper is a feature

selection method that embeds the model hypothesis search within the feature subset search.

Indeed, after defining a search procedure for all the possible feature subsets, the various subsets

are generated and evaluated by training and testing a specific classification model. We selected

this approach, as it is able to discover both feature dependencies, as well as to exploit the inter-

action between feature subset search and model selection.

In practice, we applied a leave-one-out (LOO) cross validation approach to evaluate the

subsets: in this procedure at each iteration one single instance is removed from the data, creat-

ing a fold, then the model is trained on all the remaining instances and the removed instance is

used for independent validation. The procedure is then iterated among all the instances of the

data, processing a same number of folds.

In particular in the variable selection process, we used an LOO loop where at each iteration

a wrapper method selected a subset of descriptors. To this aim, such a wrapper is based on a

Random Forest and it used an inner 2-fold cross validation loop for performance evaluation.

Such a procedure, therefore, returned the frequency of each feature among all the iterations of

the external LOO loop. The final set of descriptors contained all the features that were selected

at least in the 10% of the LOO iterations. This choice was motivated by the guidelines reported

in [22] and by our prior knowledge on the problem domain.

After this selection procedure, five semantic features (sex, N, histology, EGFR mutation,

and smoking attitude), two GLCM (“absolute_-1,1,-1” representing the textural variability in

the direction given by the (-1, 1, -1) versor and “inertia_0–10” representing the textural homo-

geneity in the direction given by the (0, -1, 0)), four LBP-TOP measures (“range_LBP3_ri”

showing the range of possible patterns in the image without considering their rotation, “skew-

ness_LBP3_u” measuring the asymmetry of distribution of all patterns discharging noisy pat-

terns, “mean_LBP3_u” measuring the mean pattern discharging noisy patterns ad

“range_LBP3” showing the range of possible patterns in the image) and one Statistical measure

(“numMaxRel” counting the number of local maximum in the histogram of the image) were

included in the analysis (Fig 3).

Classifier

In our experiments, we used a Random Forest (RF) to classify patients’ data into either the

adaptive or non-adaptive group. RF is an ensemble learning method for classification that

builds a multitude of decision trees at training time and provides the class that is the model of

the classes of the individual trees. The number of features is denoted as p. The decision trees

are built on bootstrapped training samples and, each time a split in a tree is considered, a ran-

dom subset of m features is chosen, with m < p. All the experiments were conducted accord-

ing to a leave-one-out cross validation, which provides a nearly unbiased estimate using only

the original data, and a .632+ bootstrap validation, that on the contrary provides a measure

with low variance [23].

Results

Fig 4 displays the Receiver Operating Characteristic curve (ROC) of the proposed system,

whereas Table 2 shows the results, reporting the following performance measures: the area

under the receiver operating characteristic curve (AUC), the classification accuracy, the preci-

sion, the sensitivity and the Positive and Negative predictive values. Each of these metrics was

computed collecting all the predictions at the end of the leave-one-out cross validation. More-

over we also reported the 95% Confidence Intervals (CIs) computed as reported in [24–26,27].
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Fig 3. The chart shows the occurrence percentage of each feature obtained during the feature selection procedure. Due to the limited space, we report only those

features selected in more than the 3% of the folds of the feature selection procedure for a total of 41 features. Moreover, we highlighted in bold style the names of the

descriptors constituting the final signature. The different colors in the histogram represent the different features, as explained in the legend in the upper right corner,

whilst a vertical line indicates the threshold used for defining the final signature.

https://doi.org/10.1371/journal.pone.0207455.g003
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While the second row of the table shows the performance achieved by the radiomic

approach described hereinbefore, the following rows show what happens if some types of fea-

tures are removed from the original set. In this case we repeated the same procedure explained

in the previous sections for feature selection and classification; for the sake of comparison, we

kept the threshold for the best subset selection equal to 10%, as before.

Fig 4. ROC curve of the proposed system.

https://doi.org/10.1371/journal.pone.0207455.g004

Radiomics and radiotherapy in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0207455 November 21, 2018 8 / 14

https://doi.org/10.1371/journal.pone.0207455.g004
https://doi.org/10.1371/journal.pone.0207455


In particular, the third row of Table 2 reports the performance when semantic features are

neglected, the fourth row shows the scores when GLCM features are discarded and the fifth

row shows the scores when LBP-TOP are not used. A particular interest can be addressed to

the last row where we reported the scores considering only the semantic descriptors used in

clinical practice: as it is possible to notice the semantic features alone get performance which

are considerably lower than the corresponding ones achieved by the radiomic signature.

Indeed, using only semantic features the AUC of the system is about 4% lower than the one

with the final radiomic signature, whereas the accuracy measure is about 6% lower than those

of the proposed system.

For the sake of comparison, in Table 2 we also reported the Positive and Negative Predictive

Values (PPV and NPV) [28] for all the experiments. It is worth noting that the PPV is consid-

erably lower than the metrics reported in Table 2, however the Proposed system still outper-

forms the other experiments.

Moreover, first row of Table 3 shows the error rate computed with the bootstrap .632+,

which is a method for error estimation with a lower variance than the leave-one-out cross vali-

dation [23]. The second row reports the error rate of the LOO cross validation which can be

easily calculated from the accuracy measures in Table 2. Comparing the two experiments, it is

clear that results with .632+ bootstrap are more biased than those computed with LOO cross

validation. This could be expected since bootstrap error is usually more biased than the cross

validation one, despite its lower variance [23]. It is also worth noting that the accuracies com-

puted from bootstrap errors coherently fall in the CIs as presented in the Table 3.

Finally, it is worth noticing that in all the experiments presented in Tables 2 and 3 the pro-

posed system shows performance higher than the other experiments presented, confirming

the potential and feasibility of a radiomics-based approach.

Discussion

To the best of our knowledge, this is the first trial for feasibility and hypothesis generation of a

radiomic strategy to predict tumor shrinkage during chemoradiation and our data suggests

that a specific signature can be identified (AUC 0.82). Medical imaging can provide a lot of

information beyond volumetric measurements and this process is referred to as image-based

phenotyping. With the term phenotype refers to the set of all the characteristics manifested by

a living organism, comprising its morphology, its development and its biochemical and

Table 2. Performance of the radiomic approach.

Features AUC Accuracy Precision Sensitivity PPV NPV

Proposed

system

.820

(95% CI, 73.0% to

91.0%)

.780

(95% CI, 69.5% to

86.5%)

.778

(95% CI, 69.5% to

86.0%)

.840

(95% CI, 75.7% to

92.2%)

.657

(95% CI, 60.7% to

70.7%)

.869

(95% CI, 83.4% to

90.4%)

No semantic .705

(95% CI, 59.6% to

81.4%)

.692

(95% CI, 59.8% to

78.7%)

.690

(95% CI, 59.7% to

78.2%)

.800

(95% CI, 70.7% to

89.2%)

.549

(95% CI, 49.7% to

60.1%)

.808

(95% CI, 76.7% to 84.

%)

No GLCM .759

(95% CI, 65.8% to

86.0%)

.736

(95% CI, 64.6% to

82.7%)

.732

(95% CI, 64.4% to

82.0%)

.820

(95% CI, 73.2% to

90.1%)

.599

(95% CI, 54.8% to

65.0%)

.841

(95% CI, 80.3% to

87.9%)

No LBP-TOP .761

(95% CI, 66.0% to

86.1%)

.736

(95% CI, 64.6% to

82.7%)

.741

(95% CI, 65.1% to

83.1%)

.800

(95% CI, 71.0% to

89.0%)

.610

(95% CI, 55.9% to

66.1%)

.832

(95% CI, 79.3% to

87.1%)

Only semantic .776

(95% CI, 67.8% to

87.4%)

.725

(95% CI, 63.4% to

81.7% )

.736

(95% CI, 64.4% to

82.8%)

.780

(95% CI, 68.8% to

87.2%)

.604

(95% CI, 55.3% to

65.5%)

.818

(95% CI, 77.8% to

85.8%)

https://doi.org/10.1371/journal.pone.0207455.t002
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physiological properties, including behaviour. This means that behaviour could be predicted

starting from how the thing appears to us, from its image, from the phenotype. Somehow this

idea seems to make our minds echo the idea of the Greek "kalòs kai agathòs", literally "beautiful

and good", which are the characteristics of beauty according to the archaic Greek conception.

With regard to lung cancer we should speak of ugly and bad, but also in this case, the radio-

mics signature computed from rountinary imaging has been unravelling tumor heterogeneity.

As reported in the Introduction, this would be useful in many fields, from diagnosis [5–7] to

prediction of outcome as a prognostic factor [8–11].

However, the predictive power of radiomics could be very useful for daily practice decision-

making process. An example of the predictive power for radiomics application is the possibility

to announce pathological response. It is a direct measure of tumor response to neoadjuvant

chemoradiation assessed at time of surgery. It has the potential to be used as a surrogate end-

point for survival/local control and has been shown to be prognostic for survival in early and

advanced stages for NSCLC patients. It is well known that clinical response very often is not

related to pathological response after neoadjuvant therapies, due to the low value of traditional

reevaluating imaging (CT and PET-TC) in this setting. A recent study investigated if pre-treat-

ment radiomics data is able to predict pathological response after neoadjuvant chemoradiation

in patients with locally advanced NSCLC [29]. One hundred and twenty-seven NSCLC

patients were included in this study. Fifteen radiomic features were selected and evaluated for

their power to predict pathological response. No conventional imaging features were predic-

tive. Seven features were predictive for pathologic gross residual disease (AUC>0.6, p-

value<0.05), and one for pathologic complete response (AUC = 0.63, p-value = 0.01). Tumors

that did not respond well to neoadjuvant chemoradiation were more likely to present a

rounder shape (AUC = 0.63, p-value = 0.009) and heterogeneous texture (AUC = 0.61, p-

value = 0.03). The proven ability of radiomics to predict pathologic response on pre-treatment

imaging may allow adaptation to a different therapy, if required, for those patients who may

not have a complete pathological response to the initial therapy.

Results of the present study should be interpreted in the same way. Prediction of response

during treatment is probably the most stimulating challenge because it would allow modifying

therapy in progress. We know from literature data that about 30–40% of patients who perform

chemoradiation undergo a significant reduction of the tumor during treatment [12–17]. Being

able to predict this data rather than the prediction of the classical response that is obtained

about a month after the end of the therapy would allow a change in therapeutic strategy, for

example by intensifying the treatment itself, which would obviously not be possible once the

therapy was delivered as planned at the initial time. Moreover, it would be a great advantage to

know before starting chemoradiation if that particular patient is going to meet or not a tumor

reduction that requires the execution of a new treatment plan, in order to optimize the work-

flow. Recently, also prediction using radiomics analyses of cone-beam CT images has been

reported [30]. It could, therefore, be possible to modulate treatment strategy thereby offering the

patient the chance to change a poor prognosis. In our experience, a radiomics signature mixing

semantic and image-based features is able to predict with good performance whether a particu-

lar patient will meet or not the reduction of the target volume during chemoradiation. In future,

the availability of this data before treatment could allow the specialist to intensify treatment for

Table 3. Leave-one-out cross validation and Bootstrap .632+ estimator errors per features set.

Errors Proposed system No Semantic No GLCM No LBP-TOP Only Semantic

Bootstrap .632+ error .254 .280 .278 .306 .360

Cross-validation error .220 .308 .264 .264 .275

https://doi.org/10.1371/journal.pone.0207455.t003
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instance by modifying total dose, fractionation or drugs in combination with radiotherapy or

even selecting consolidation therapy such as immunotherapy [31]. In the PACIFIC trial, pro-

gression-free survival was significantly longer with durvalumab than with placebo after radical

chemoradiation. However, until now, no biomarkers have been identified to select patients who

could benefit from this treatment that is not free from side effects. If radiomic signature is vali-

dated in future studies as a biomarker to predict response and outcome, patients at high risk for

recurrence could be identified early on and become candidates for consolidation therapy. The

identification of the external validation dataset is actually ongoing, even if some literature data

support the use of the cross validation method [29] as applied in our work. In conclusion, the

idea behind this study and the initial results obtained are certainly an original and innovative

topic that opens up new research in the field of personalized medicine.

Supporting information

S1 File. Complete dataset. File containing the entire dataset of the extracted features and the

labels for each patient; the “.arff” file format is the input file format for the Machine Learning

software “Weka” used in the experimental process.

(ARFF)

S2 File. Feature selection log file—Proposed system. Log file containing the results of the

Wrapper Feature Selection procedure performed on the Complete dataset. It reports in detail

the input parameters and the output ranking of the descriptors.

(TXT)

S3 File. Selection log file—Semantic. Log file containing the results of the Wrapper Feature

Selection procedure performed on the dataset considering only the semantic features. It

reports in detail the input parameters and the output ranking of the descriptors.

(TXT)

S4 File. Feature selection log file—NoSemantic. Log file containing the results of the Wrap-

per Feature Selection procedure performed on the dataset excluding only the semantic fea-

tures. It reports in detail the input parameters and the output ranking of the descriptors.

(TXT)

S5 File. Feature selection log file—NoGLCM. Log file containing the results of the Wrapper

Feature Selection procedure performed on the dataset excluding only the GLCM features. It

reports in detail the input parameters and the output ranking of the descriptors.

(TXT)

S6 File. Feature selection log file—No LBP. Log file containing the results of the Wrapper

Feature Selection procedure performed on the dataset excluding only the LBP features. It

reports in detail the input parameters and the output ranking of the descriptors.

(TXT)

S7 File. Performance log file—Proposed system. Log file containing the results of the perfor-

mance achieved after the Classification procedure executed on the dataset containing only the

final signature features for the Proposed system.

(TXT)

S8 File. Performance log file—Semantic. Log file containing the results of the performance

achieved after the Classification procedure executed on the dataset containing only semantic

features.

(TXT)

Radiomics and radiotherapy in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0207455 November 21, 2018 11 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s001
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s002
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s003
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s004
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s005
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s006
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s007
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s008
https://doi.org/10.1371/journal.pone.0207455


S9 File. Performance log file—NoSemantic. Log file containing the results of the perfor-

mance achieved after the Classification procedure executed on the dataset containing all the

features excluding the semantic descriptors.

(TXT)

S10 File. Performance log file—NoGLCM. Log file containing the results of the performance

achieved after the Classification procedure executed on the dataset containing all the features

without GLCM descriptors.

(TXT)

S11 File. Performance log file—NoLBP. Log file containing the results of the performance

achieved after the Classification procedure executed on the dataset containing all the features

without LBP descriptors.

(TXT)

Author Contributions

Conceptualization: Sara Ramella, Michele Fiore, Ermanno Cordelli, Rolando Maria D’Angel-

illo, Paolo Soda.

Data curation: Sara Ramella, Michele Fiore, Carlo Greco, Rosa Sicilia, Elisabetta Molfese,

Marianna Miele, Patrizia Cornacchione, Edy Ippolito, Paolo Soda.

Formal analysis: Sara Ramella, Michele Fiore, Ermanno Cordelli, Rosa Sicilia, Edy Ippolito,

Rolando Maria D’Angelillo, Paolo Soda.

Investigation: Sara Ramella, Michele Fiore, Carlo Greco, Ermanno Cordelli, Rosa Sicilia,

Paolo Soda.

Methodology: Sara Ramella, Michele Fiore, Ermanno Cordelli, Mario Merone, Paolo Soda.

Resources: Ermanno Cordelli, Paolo Soda.

Software: Ermanno Cordelli, Rosa Sicilia, Giulio Iannello, Paolo Soda.

Supervision: Giulio Iannello.

Writing – original draft: Sara Ramella, Michele Fiore, Ermanno Cordelli, Rosa Sicilia, Paolo

Soda.

Writing – review & editing: Sara Ramella, Michele Fiore, Carlo Greco, Edy Ippolito, Giulio

Iannello, Rolando Maria D’Angelillo.

References
1. Collins FS, Varmus H. A new initiative on precision medicine. New Engl J Med. 2015; 372; 793–795.

https://doi.org/10.1056/NEJMp1500523 PMID: 25635347

2. Aerts HJ. The Potential of Radiomic-Based Phenotyping in Precision Medicine: A Review. JAMA Oncol.

2016; 2(12):1636–1642. https://doi.org/10.1001/jamaoncol.2016.2631 PMID: 27541161

3. Burrell RA, McGranahan N, Bartek J, Swanton C. The causes and consequences of genetic heteroge-

neity in cancer evolution. Nature2013; 501(7467):338–45. https://doi.org/10.1038/nature12625 PMID:

24048066

4. Lambin P, Rios-Velazquez E, Leijenaar, Carvalho S, van Stiphout RG, Granton P, et al. Radiomics:

Extracting more information from medical images using advanced feature analysis. Eur J Cancer 2012;

48:441–6. https://doi.org/10.1016/j.ejca.2011.11.036 PMID: 22257792

5. Saad M, Choi TS. Deciphering unclassified tumors of non-small-cell lung cancer through radiomics.

Comput Biol Med. 2017; 91:222–230. https://doi.org/10.1016/j.compbiomed.2017.10.029 PMID:

29100116

Radiomics and radiotherapy in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0207455 November 21, 2018 12 / 14

http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s009
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s010
http://www.plosone.org/article/fetchSingleRepresentation.action?uri=info:doi/10.1371/journal.pone.0207455.s011
https://doi.org/10.1056/NEJMp1500523
http://www.ncbi.nlm.nih.gov/pubmed/25635347
https://doi.org/10.1001/jamaoncol.2016.2631
http://www.ncbi.nlm.nih.gov/pubmed/27541161
https://doi.org/10.1038/nature12625
http://www.ncbi.nlm.nih.gov/pubmed/24048066
https://doi.org/10.1016/j.ejca.2011.11.036
http://www.ncbi.nlm.nih.gov/pubmed/22257792
https://doi.org/10.1016/j.compbiomed.2017.10.029
http://www.ncbi.nlm.nih.gov/pubmed/29100116
https://doi.org/10.1371/journal.pone.0207455


6. Wang H, Schabath MB, Liu Y, Berglund AE, Bloom GC, Kim J, et al. Semi-quantitative Computed

Tomography Characteristics for Lung Adenocarcinoma and Their Association With Lung Cancer Sur-

vival.Clin Lung Cancer. 2015; 16(6):e141–63. https://doi.org/10.1016/j.cllc.2015.05.007 PMID:

26077095

7. Rios Velazquez E, Parmar C, Liu Y, Coroller TP, Cruz G, Stringfield O, et al. Somatic Mutations Drive

Distinct Imaging Phenotypes in Lung Cancer. Cancer Res. 2017; 77(14):3922–3930. https://doi.org/10.

1158/0008-5472.CAN-17-0122 PMID: 28566328

8. Grossmann P, Stringfield O, El-Hachem N, Bui MM, Rios Velazquez E, Parmar C, et al. Defining the

biological basis of radiomic phenotypes in lung cancer. Elife. 2017; 6. https://doi.org/10.7554/eLife.

23421 PMID: 28731408

9. Coroller TP, Grossmann P, Hou Y, Rios Velazquez E, Leijenaar RT, Hermann G, et al. CT-based radio-

mic signature predicts distant metastasis in lung adenocarcinoma. Radiother Oncol. 2015; 114(3):345–

50. https://doi.org/10.1016/j.radonc.2015.02.015 PMID: 25746350

10. Huynh E, Coroller TP, Narayan V, Agrawal V, Hou Y, Romano J, et al. CT-based radiomic analysis of

stereotactic body radiation therapy patients with lung cancer. Radiother Oncol. 2016; 120(2):258–66.

https://doi.org/10.1016/j.radonc.2016.05.024 PMID: 27296412

11. Li Q, Kim J, Balagurunathan Y, Qi J, Liu Y, Latifi K, et al. CT imaging features associated with recur-

rence in non-small cell lung cancer patients after stereotactic body radiotherapy. Radiat Oncol. 2017;

12(1):158. https://doi.org/10.1186/s13014-017-0892-y PMID: 28946909

12. Lim G, Bezjak A, Higgins J, Moseley D, Hope AJ, Sun A, et al. Tumor regression and positional changes

in non-small cell lung cancer during radical radiotherapy. J Thorac Oncol. 2011; 6: 531–536. https://doi.

org/10.1097/JTO.0b013e31820b8a52 PMID: 21258244

13. Fox J, Ford E, Redmond K, Zhou J, Wong J, Song DY. Quantification of tumor volume changes during

radiotherapy for non-small-cell lung cancer. Int J Radiat Oncol Biol Phys. 2009; 74:341–348. https://

doi.org/10.1016/j.ijrobp.2008.07.063 PMID: 19038504

14. Kupelian PA, Ramsey C, Meeks SL, Willoughby TR, Forbes A, Wagner TH, et al. Serial megavoltage

CT imaging during external beam radiotherapy for non-small cell lung cancer: observations on tumor

regression during treatment. Int J Radiat Oncol Biol Phys. 2005; 63: 1024–1028. https://doi.org/10.

1016/j.ijrobp.2005.04.046 PMID: 16005575

15. Siker ML, Tome WA, Mehta MP. Tumor volume changes on serial imaging with megavoltage CT for

non-small-cell lung cancer during intensity-modulated radiotherapy: How reliable, consistent, and

meaningful is the effect? Int J Radiat Oncol Biol Phys. 2006; 66:135–141. https://doi.org/10.1016/j.

ijrobp.2006.03.064 PMID: 16839704

16. Woodford C, Yartsev S, Dar R, Bauman G, Van Dyk J. Adaptive radiotherapy planning on decreasing

gross tumor volume as seen on megavoltage computed tomography images. Int J Radiat Oncol Biol

Phys. 2007; 69:1316–1322. https://doi.org/10.1016/j.ijrobp.2007.07.2369 PMID: 17967322

17. Knap MM, Hoffmann L, Nordsmark M, Vestergaard A. Daily cone-beam computed tomography used to

determine tumour shrinkage and localisation in lung cancer patients. Acta Oncol. 2010; 49:1077–1084.

https://doi.org/10.3109/0284186X.2010.498434 PMID: 20831499

18. Ramella S, Fiore M, Silipigni S, Zappa MC, Jaus M, Alberti AM, et al. Local Control and Toxicity of Adap-

tive Radiotherapy Using Weekly CT Imaging: Results from the LARTIA Trial in Stage III NSCLC.J

Thorac Oncol. 2017; 12(7):1122–1130. https://doi.org/10.1016/j.jtho.2017.03.025 PMID: 28428149

19. Duda RO, Hart PE, Stork DG. Pattern Classification ( 2nd Edition). Wiley-Interscience, 2000.

20. Zhao G, Pietikainen M. Dynamic texture recognition using local binary patterns with an application to

facial expressions. IEEE transactions on pattern analysis and machine intelligence 2007; 29(6): 915–

928. https://doi.org/10.1109/TPAMI.2007.1110 PMID: 17431293

21. Saeys Y, Inza I, Larrañaga P. A review of feature selection techniques in bioinformatics. Bioinformatics

2007; 23(19):2507–2517. https://doi.org/10.1093/bioinformatics/btm344 PMID: 17720704

22. Hua J., Xiong Z., Lowey J., Suh E. and Dougherty E. R., "Optimal number of features as a function of

sample size for various classification rules," Bioinformatics, vol. 21, pp. 1509–1515, 2004.

23. Kohavi Ron. "A study of cross-validation and bootstrap for accuracy estimation and model selection."

Ijcai. Vol. 14. No. 2. 1995.

24. Agresti Alan. Categorical data analysis. Vol. 482. John Wiley & Sons, 2003.

25. Mackinnon Andrew. "A spreadsheet for the calculation of comprehensive statistics for the assessment

of diagnostic tests and inter-rater agreement." Computers in biology and medicine 30.3 (2000): 127–

134. PMID: 10758228

26. Hanley James A., and Barbara J. McNeil. "The meaning and use of the area under a receiver operating

characteristic (ROC) curve." Radiology 143.1 (1982): 29–36. https://doi.org/10.1148/radiology.143.1.

7063747 PMID: 7063747

Radiomics and radiotherapy in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0207455 November 21, 2018 13 / 14

https://doi.org/10.1016/j.cllc.2015.05.007
http://www.ncbi.nlm.nih.gov/pubmed/26077095
https://doi.org/10.1158/0008-5472.CAN-17-0122
https://doi.org/10.1158/0008-5472.CAN-17-0122
http://www.ncbi.nlm.nih.gov/pubmed/28566328
https://doi.org/10.7554/eLife.23421
https://doi.org/10.7554/eLife.23421
http://www.ncbi.nlm.nih.gov/pubmed/28731408
https://doi.org/10.1016/j.radonc.2015.02.015
http://www.ncbi.nlm.nih.gov/pubmed/25746350
https://doi.org/10.1016/j.radonc.2016.05.024
http://www.ncbi.nlm.nih.gov/pubmed/27296412
https://doi.org/10.1186/s13014-017-0892-y
http://www.ncbi.nlm.nih.gov/pubmed/28946909
https://doi.org/10.1097/JTO.0b013e31820b8a52
https://doi.org/10.1097/JTO.0b013e31820b8a52
http://www.ncbi.nlm.nih.gov/pubmed/21258244
https://doi.org/10.1016/j.ijrobp.2008.07.063
https://doi.org/10.1016/j.ijrobp.2008.07.063
http://www.ncbi.nlm.nih.gov/pubmed/19038504
https://doi.org/10.1016/j.ijrobp.2005.04.046
https://doi.org/10.1016/j.ijrobp.2005.04.046
http://www.ncbi.nlm.nih.gov/pubmed/16005575
https://doi.org/10.1016/j.ijrobp.2006.03.064
https://doi.org/10.1016/j.ijrobp.2006.03.064
http://www.ncbi.nlm.nih.gov/pubmed/16839704
https://doi.org/10.1016/j.ijrobp.2007.07.2369
http://www.ncbi.nlm.nih.gov/pubmed/17967322
https://doi.org/10.3109/0284186X.2010.498434
http://www.ncbi.nlm.nih.gov/pubmed/20831499
https://doi.org/10.1016/j.jtho.2017.03.025
http://www.ncbi.nlm.nih.gov/pubmed/28428149
https://doi.org/10.1109/TPAMI.2007.1110
http://www.ncbi.nlm.nih.gov/pubmed/17431293
https://doi.org/10.1093/bioinformatics/btm344
http://www.ncbi.nlm.nih.gov/pubmed/17720704
http://www.ncbi.nlm.nih.gov/pubmed/10758228
https://doi.org/10.1148/radiology.143.1.7063747
https://doi.org/10.1148/radiology.143.1.7063747
http://www.ncbi.nlm.nih.gov/pubmed/7063747
https://doi.org/10.1371/journal.pone.0207455


27. Fleiss Joseph L., Levin Bruce, and Paik Myunghee Cho. Statistical methods for rates and proportions.

John Wiley & Sons, 2013.

28. Manrai Arjun K., et al. "Medicine’s uncomfortable relationship with math: calculating positive predictive

value." JAMA internal medicine 174.6 (2014): 991–993. https://doi.org/10.1001/jamainternmed.2014.

1059 PMID: 24756486

29. Coroller TP, Agrawal V, Narayan V, Hou Y, Grossmann P, Lee SW, et al. Radiomic phenotype features

predict pathological response in non-small cell lung cancer. Radiother Oncol. 2016; 119(3):480–6.

https://doi.org/10.1016/j.radonc.2016.04.004 PMID: 27085484

30. van Timmeren JE, Leijenaar RTH, van Elmpt W, Reymen B, Oberije C, Monshouwer R, et al. Survival

prediction of non-small cell lung cancer patients using radiomics analyses of cone-beam CT images.

Radiother Oncol. 2017; 123(3):363–369. https://doi.org/10.1016/j.radonc.2017.04.016 PMID:

28506693

31. Antonia SJ, Villegas A, Daniel D, Vicente D, Murakami S, Hui R, et al. Durvalumab after Chemora-

diotherapy in Stage III Non-Small-Cell Lung Cancer. N Engl J Med. 2017; 377(20):1919–1929. https://

doi.org/10.1056/NEJMoa1709937 PMID: 28885881

Radiomics and radiotherapy in NSCLC

PLOS ONE | https://doi.org/10.1371/journal.pone.0207455 November 21, 2018 14 / 14

https://doi.org/10.1001/jamainternmed.2014.1059
https://doi.org/10.1001/jamainternmed.2014.1059
http://www.ncbi.nlm.nih.gov/pubmed/24756486
https://doi.org/10.1016/j.radonc.2016.04.004
http://www.ncbi.nlm.nih.gov/pubmed/27085484
https://doi.org/10.1016/j.radonc.2017.04.016
http://www.ncbi.nlm.nih.gov/pubmed/28506693
https://doi.org/10.1056/NEJMoa1709937
https://doi.org/10.1056/NEJMoa1709937
http://www.ncbi.nlm.nih.gov/pubmed/28885881
https://doi.org/10.1371/journal.pone.0207455

