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Abstract: The use of linear methods, for example, the Combined Synthetic Aperture Focusing
Technique (C–SAFT), does not allow one to obtain images with high resolution and low noise,
especially structural noise in all cases. Non-linear methods should improve the quality of the
reconstructed image. Several examples of the application of the maximum entropy (ME) method
for ultrasonic echo processing in order to reconstruct the image of reflectors with Rayleigh
super-resolution and a high signal-to-noise ratio are considered in the article. The use of the complex
phase-shifted Barker code signal as a probe pulse and the compression of measured echoes by the
ME method made it possible to increase the signal-to-noise ratio by more than 20 dB for the image of
a flat-bottom hole with a diameter of 1 mm in a model experiment. A modification of the ME method
for restoring the reflector image by the time-of-flight diffraction (TOFD) method is considered, taking
into account the change of the echo signal shape, depending on the depth of the reflector. Using the
ME method, 2.5D-images of models of dangling cracks in a pipeline with a diameter of 800 mm were
obtained, which make it possible to determine their dimensions. In the object with structural noise,
using the ME method, it was possible to increase the signal-to-noise ratio of the reflector image by
more than 12 dB. To accelerate the acquisition of echoes in the dual scan mode, it is proposed to use
code division multiple access (CDMA) technology based on simultaneous emission by all elements of
the array of pseudo-orthogonal signals. The model experiment showed the effectiveness of applying
the ME method.

Keywords: antenna array; full matrix capture (FMC); triple scanning; structural noise; maximum
entropy (ME); C–SAFT; total focusing method (TFM); time-of-flight diffraction (TOFD); code division
multiple access (CDMA)

1. Introduction

At present, in the practice of ultrasonic testing (UT), flaw detectors using antenna arrays are
widely used. Two technologies are used to visualize the internal volume of objects: phased antenna
array (PAA) technology [1], which is by far the most widely used technology and digital focusing
with an antenna (DFA) technology [2,3]. In the paper [4] devoted to the comparison of the capabilities
of PAA and DFA flaw detectors, it was concluded that DFA technology is more promising from an
algorithmic point of view, and therefore the paper is devoted to the processing of echoes measured by
DFA flaw detectors. One can afford such an analogy: PAA technology can be compared with dough,
from which one can quickly bake only bread, and DFA technology is flour, salt and other ingredients
that will allow one to knead the dough for any bakery or confectionery, but in this case, one need more
time to get the final result.

With single-sided access, typical for ultrasonic inspection practice, it is effective to use two antenna
arrays of Ne elements mounted on prisms and placed on the left (N–side) and on the right (P–side) from
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the welded joint to obtain a high-quality image of the reflectors. At the first stage of the application of
the DFA-technology, echo signals are measured during the emission and reception by all combinations
of pairs of elements of the antenna array [5]. In the paper [6], this mode of echo recording is called
the dual scan mode, and in [7] the full matrix capture (FMC) mode. Echoes, radiated by one element
and accepted by all elements, are called a shot. The equipment should support work on the N–(arrow
with a blue fill in Figure 1), P–(arrow with a green fill) and NP–(arrows with a yellow fill) acoustic
channels. The acquisition of echoes by an antenna array operating in the dual scan mode when it
is mechanically moved is called a triple scan mode [6], or the migration of the antenna array [8].
Joint coherent processing of echoes by the C–SAFT method for different positions of the antenna
array allows obtaining a high-quality image of the reflectors, which fundamentally distinguishes the
algorithmic capabilities of DFA–flaw detectors from PAA-flaw detectors [4]. For echoes measured in
triple-scan mode, it is possible to obtain focused images beyond the near-range of the antenna array,
which is especially important for objects with a thickness of more than 70 mm and for objects with
high structural noise.
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Figure 1. Scheme of measurements of echoes by two antenna arrays on prisms. Black rectangles
schematically show the elements of the antenna array.

In the second stage, the image of the reflectors ε(ri) is reconstructed by the Combined Synthetic
Aperture Focusing Technique (C–SAFT) [5,8], based on the measured echoes, which can be modified
to take into account the multipath propagation of ultrasound in the object with uneven boundaries
and the presence of regions with different acoustic properties [9,10]. Sometimes the C–SAFT algorithm
is called the Total Focusing Method (TFM) [7]. In the Born approximation, the measured echo signals p
can be represented as a system of linear Equations [7]:

p = Gε+ n, (1)

where G is the matrix which describes the propagation of the ultrasonic pulse, n—the additive
noise of the measurements. Note that the vector p and ε can be lexically formed from the matrices,
and vice versa.

A fragment of the image having a maximum amplitude in the region of a sharp measurement
of the acoustic properties of the monitoring object, for example, the boundary of the discontinuity,
is called an indication. A false indication is an indication that does not correspond to the discontinuity
boundary and is formed due to the limitations of the acoustic path model.

The higher the resolution of the reflector image and the lower the noise level, thus the number of
reflectors, their sizes and type can be determined more accurately. This increases the reliability of the
UT. The maximum entropy method, which is a nonlinear method, should increase the resolution and
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reduce the image noise level. The paper considers several options of the ME method application for
obtaining high-quality image of reflectors and for increasing the speed of echo signal acquisition.

Section 2 summarizes the principles of reflectors image reconstruction from measured echoes.
Section 3 describes a model experiment in which the possibility of increasing the signal-to-noise ratio
of reflectors in materials with high attenuation when compressing complex signals by the ME method
is demonstrated. In Section 4 a modification of the ME method for the case of a variable waveform
measured in the TOFD mode is considered. Section 5.1 describes the results of a model experiment
for obtaining a super-resolution image for a set of point-type reflectors and for a pipeline fragment
of 800 mm diameter with fracture models. Section 5.2 presents the results of a model experiment to
improve the image quality of flat-bottomed holes with a diameter of 1 mm. Section 5.3 demonstrates
the effectiveness of the ME method to produce an image of side drilled holes in a composite weld with
a high level of structural noise. Section 6 is devoted to improving the speed of echo acquisition in FMC
mode using CDMA technology and the ME method.

2. ME Method in Ultrasonic Nondestructive Testing

2.1. Restoring the Reflectors Image

There are many ways to solve the classical problem by the Formula (1) from the point of view
of solving the system of linear algebraic expressions. Because the matrix is typically ill-conditioned,
in addition to a simple treatment of the matrix there are other solutions. One of them is to find an
estimate as a solution of the unconditional optimization problem when the square of the solution
residual is chosen as a criterion of the quality of the recovered image:

χ2(ε̂) = ‖Gε̂− p‖ = (Gε̂− p)T(Gε̂− p), (2)

where the symbol T means the matrix transpose operation. The reconstructed estimate ε̂ can be
written as:

ε̂ = argmin
ε̂∈RNi,x ·Ni,z

(χ2(ε̂)). (3)

The solution of the inverse problem in the form (3) is called the least squares method. To search
with the maximum speed of the minimum by Equation (3), one needs to use second order optimization
methods [11]. Their application requires knowledge of gradient and Hessian, which for Equation (2) is
calculated as follows:

∇χ2(ε) = 2GT(Gε− p), ∇∇χ2(ε) = 2GTG (4)

In terminology [12], the solution of a degenerate system of linear algebraic Equation (1) with
respect to providing the minimum of residual χ2(ε) is called a pseudo-solution. There can be infinitely
many pseudo-solutions and such parameters as resolution, speckle noise level, etc., may be far from
ideal in general. Thus, in the work [13] the images of the reflectors based on the echo signals in the
numerical experiment were found by the least square method. The image recovery algorithm was
named extended synthetic aperture focusing technique (ESAFT).

There is an explicit regularized solution to Equation (3), which is presented below:

ε̂ =
GT

GGT + γE
p, (5)

where E is the diagonal matrix, and γ is the spectral power density of the interference n. This formula
is equivalent in structure to the formula that describes the Wiener filter in the frequency domain [14].
With the help of (5), it is possible to obtain high-quality images, but in the case of a low level of
interference n.

Finally, the function ε̂ estimate can be represented by analogy with the correlation formula in the
matrix form:



Entropy 2018, 20, 621 4 of 22

ε̂c = GTp, (6)

To solve ill-conditioned problems a method of regularization was developed by Tikhonov [12],
which justifies the replacement of the problem in the form of (1) by the problem of optimization of
input data p resistant to small changes:

ε̂ = argmin
ε̂∈RNi,x ·Ni,z

(
χ2(ε̂) + αΩ(ε̂)

)
, (7)

where Ω(ε̂) is the stabilizing functional. The purpose of using stabilizing functionals is to take
into account some a priori information about the solution when solving an ill-conditioned problem
and thereby narrow the search for solutions. This a priori information can range from the simplest
requirement for non-negativity of the solution, the minimality of the solution energy to restrictions on
a known auto-correlation function, a given spectrum structure, and so on.

The entropy value of vector ε̂ can be used as a stabilizing functional Ω(ε̂). The ME method is used
in spectral estimation problems. In 1967, Berg [15] derived a formula to estimate the spectral density
of the signal power by known samples of the autocorrelation function based on the requirement of
the maximum entropy corresponding to the time series in the form H(ε) = ∑ log εi. Moreover, it was
shown that the estimation of the spectral density of the signal power obtained by the autoregressive
(AR) model and the spectral power density obtained by the maximum entropy method is identical in
the case of the description of the signal as a Gaussian random process. Frieden in 1972 [16] showed
the possibility of using Shannon entropy as a stabilizing functional in the context of the Tikhonov
regularization method [12]. The possibility of achieving super-resolution in the image acquisition
system (one-dimensional images, a system with diffraction limit) is demonstrated. Researches have
shown the effectiveness of the practical application of the ME method in the reconstruction of images in
tomography [17–19], radio astronomy [20–22], nuclear magnetic resonance [23], as well as in ultrasonic
testing [24,25]. The paper [26] is devoted to the deconvolution of high-frequency (10–40 MHz) echoes
by the maximum entropy method in the measurement of the thickness of layered structures.

Thus, the method of maximum entropy as a solution of the optimization problem with the entropy
of image estimation as a stabilizing functional:

ε̂ = argmin
ε̂∈RNi,x ·Ni,z

(
χ2(ε̂)− αH(ε̂)

)
, (8)

where H is the entropy of a set of discrete independent random variables, which is defined for the case
of real, non-negative εi as:

H(ε) = −
Ni,x Ni,z

∑
i=1

εi ln εi = −Ω(ε), (9)

where Ni,x Ni,z is the number of pixels in the reconstructed image can be very useful for developing
methods for obtaining image reflectors. The entropy calculated by this formula coincides with
the entropy of a set of discrete independent random variables and is called Shannon entropy [27].
In practice, the so-called cross-entropy (other names: conditional entropy [27], relative entropy [20],
the Kulbek-Labler distance is used [28]:

H(ε) = −
Ni,x Ni,z

∑
i=1

εi ln
εi
mi

, (10)

where m is an a priori model or evaluation of the type of solution ε. As a simple model, one can use a
constant value eµ, in which µ is understood as an estimate of the average value of the background
intensity of the image. The calculation of cross-entropy allows one to bypass one of the problems
associated with the use of the maximum entropy criterion. The fact is that when some of the evaluation
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values ε̂i approach zero, the logarithm in the expression for entropy (9) takes too large negative values,
which makes it difficult to converge to images with zero background. For cross-entropy, its gradient
elements will be close to zero for ε̂i which are close to µ.

The logarithm in the maximum entropy criterion, as noted in [14], serves as an additional
opportunity to prevent the appearance of elements with negative values in the recovered image.
Since the recovered information ε about the reflector is considered as a real number, which can take
both positive and negative values, Equation (10) cannot be used. Different approaches exist to adapt
the maximum entropy criterion to data with negative values [29]. One can calculate the entropy of the
module of vector ε in the form:

zi = |εi| =
√

εi
2,

H||(ε) = −
Ni,x Ni,z

∑
i=1

zi ln zi
eµ .

(11)

The gradient and the Hessian in the entropy calculation of Equation (11) will look as follows:

∂H||(ε)
∂εi

= −
εi ln zi

µ

zi
,

∂2H||(ε)

∂(εi)
2 = − εi

z3
i

. (12)

In the article [30] it is proposed to calculate the entropy of the alternating function by the
following formula:

zi =
√

εi
2 − 4µ2,

H±(ε) = −
Ni,x Ni,z

∑
i=1

(
zi − 2µ− εi ln zi+εi

2µ

)
.

, (13)

In this case, the gradient and the Hessian of the entropy will look as follows:

∂H±(ε)
∂εi

= − ln
(

zi + εi
2µ

)
,

∂2H±(ε)

∂(εi)
2 = − 1

zi
. (14)

Considering that the entropy calculated by Equation (11) has two maxima, and the entropy
calculated by Equation (13) has one maximum, Equations (13) and (14) were used in this paper.
Note that in the Equations (12) and (14) the Hessian has the form of a diagonal matrix, which can
significantly accelerate the work of optimizing algorithms and reduce the requirements for the sizes of
the operative memory.

In the paper [31] for work with alternating sign functions the method of generalized entropy
is proposed, when the alternating sign function ε is represented as the difference of two positive
definite functions:

ε+− = ε+ − ε−, where

{
ε+ = ε+−, if ε+− ≥ 0
ε− = −ε+−, if ε+− < 0

, (15)

This approach has a technical drawback. Since the size of the vector ε+− is doubled, the memory
required for matrix G calculations is quadrupled.

2.2. Processing of Echo Signals Presented in a Complex Form

In the practice of ultrasonic testing, there are problems when it is necessary to increase the
resolution of the pulses present in the measured echo signal p. In this case, we will mean by ε the
type of the initial δ-pulses applied to the input of a linear system with a pulse response s. To solve the
deconvolution problem, the matrix G columns will be formed by the response s with a cyclic shift, that
is, the matrix G will be circulant.
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In general, the vectors s, p and the matrix G can be complex. Similar to how it was done in [29],
we introduce the following agreement: complex vector and the matrices will be written in the following
extended form:

p ≡
(

pRe

pIm

)
, G ≡

(
GRe −GIm

GIm GRe

)
. (16)

The gradient and Hessian of the residual criterion are calculated by Equation (4). The gradient
and Hessian of the criterion H will be as follows:

H(ε) = −
Nt
∑

i=1
zi ln zi

eµ , zi =
√(

εRe
i
)2

+
(
εIm

i
)2,

∂H(εi)

∂εRe
i

= − εRe
i ln(zi/µ)

zi
, ∂H(εi)

∂εIm
i

= − εIm
i ln(zi/µ)

zi
,

∂2 H(εi)

∂(εRe
i )

2 =
−εRe

i −εIm
i ln(zi/µ)

z3
i

, ∂2 H(εi)

∂(εIm
i )

2 =
−εIm

i −εRe
i ln(zi/µ)

z3
i

,

∂2 H(εi)

∂εRe
i ∂εIm

i
= ∂2 H(εi)

∂εIm
i ∂εRe

i
=

εIm
i εRe

i (ln(zi/µ)−1)
z3

i
.

2.3. The Choice of the Lagrange Coefficient and Background Coefficient

The main methodological problem of practical application of the ME method is the choice of
algorithm parameters: the evaluation of the background amplitude µ and the Lagrange coefficient α.
The role of α is to establish a consensus between obtaining an exact solution of the ill-posed problem
and satisfying the restriction caused by the stabilizing functional. There are precise and empirical
methods for choosing the regularization parameter: the residual method [12,32], the cross-validation
method [33], the generalized minimization problem [34], the L-curve method [35] and others. However,
some methods are iterative and therefore require significant computational resources, while others
require additional information, such as the noise dispersion value σ(n), which may not always be
estimated with sufficient accuracy.

In many practical works devoted to the application of the ME method, the problem (7) is solved for
the set of Lagrange coefficients α, and the best solution according to the given criterion is chosen from
the set of obtained estimates ε̂α. In this paper, from the set of estimates ε̂α for the set {α1, α2, . . . , αNα},
the estimate was chosen according to the L-curve criterion.

The introduction of another parameter µ and the need for its evaluation creates the additional
complexity of the entropy calculation by the Formula (10). Researches have shown that when model
and experimental data are restored, sufficiently close results ε̂ are observed for the values of the
background coefficient µ differing by several orders. In [30], it is recommended to choose a value µ

equal to one-hundredth of the mean square value of the reconstructed image ε̂.

3. Increasing the Signal-To-Noise Ratio of the Image Due to Deconvolution of Complex Signals

To increase the signal/noise ratio in objects with high absorption, complex signals can be
emitted [36] if the radiating electronics of the flaw detector support this mode. After the compression
procedure, which can be performed using matched filtering, the longitudinal resolution of the image
will be about the same as using simple signals of minimal duration, but the signal ratio increases many
times over. The compression of the echo signals using a matched filter can result in “side lobes”. In the
paper [37], it was proposed to use the ME method for the compression of complex signals to achieve
the effect of superresolution. Practical application of the ME method for compression of signals is
impossible without a demonstration of its stability to the influence of noise.

In the model experiment, the piezoelectric transducer (resonance frequency of 4.0 MHz, input
angle of 40 degrees, half the opening angle of 20 degrees) moved along the scanning line, which is
shown by the red arrow at Figure 2. Echo signals reflected from a 1.0 mm diameter flat-bottomed hole
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with a 45-degree slope at a depth of 40.0 mm were recorded (Figures 2 and 3). The phase-manipulated
signal according to the Barker code with a length of 13 was used as a probing signal.
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Figure 3. View of the reference block from the side of the holes with a diameter of 1 mm. The depth of
flat-bottomed holes with numbers from 1 to 4 following 2, 10, 20 and 40 mm.

Figure 4a shows the result of visualization of the image of a flat-bottomed hole when a simple
pulse is emitted. Visualization means finding the echo envelope and displaying it without spatial
processing along the central beam of the transducer for all points of the spatial aperture. On the picture,
the lines of black outline the boundaries of the hole and the sample. It can be seen that the indication
from the hole, the center of which is indicated by a cross-shaped marker, is barely detected because
of the noise level comparable with its amplitude. Figure 4b shows the result of the reconstruction of
the image by these echo signals by the method of projection in spectral space (PSS or FT–SAFT) [38].
The signal-to-noise image obtained by the PSS increased by more than 12 dB in comparison with the
visualization, and the front resolution decreased from 15 mm to 1 mm. Figure 4c shows the image
of the bottom of the hole recovered by the method of PSS in the signals, compressed by the matched
filtering, and Figure 4d—signals, compressed by the method of ME according to the Formula (8).
The use of a complex signal resulted in an additional increase in the SNR of more than 12 dB. After the
compression of the complex signal by the ME method, the noise level decreased by at least 20 dB,
and the beam resolution decreased from 0.7 mm to 0.2 mm. Since the Barker code was used, the level
of «side lobes» is insignificant after the compression of the echo signals by the matched filtration.
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Thus, the use of complex signals and their compression by the ME method can increase the
signal-to-noise ratio by more than 40 dB. This is a very large margin of sensitivity for ultrasonic testing
in materials with high absorption.

4. Reconstruction of the Image by Tofd-Echoes

In the practice of ultrasonic nondestructive testing, the time-of-flight diffraction (TOFD) [39]
method is widely used, when pulsing and receiving transducers with a wide beam spread pattern
move along the welded joint along an axis y perpendicular to the plane of Figure 5. The measured echo
signals p(t, y) are informative and allow to detect cracks quite effectively, since the diffraction echo
signals from the upper and lower edges of the crack differ in phase by about 180 degrees. The small
size of acquired echo signals data set allows monitoring at a very high speed.

In Figure 5, the green arrows schematically show the trajectory of the propagation of the
longitudinal wave pulse from the fragment of the radiating piezo crystal to the fragment of the
receiving piezo crystal. The point-type reflector at the point ri is shown in red ε(ri) = δ(r − ri).
To calculate the received echo signal, it is necessary to calculate the delay time and amplitude for all
the rays when the pulse is emitted when an electric pulse se(t) with a central frequency of 5 MHz
is applied to the piezo crystal and to integrate on the surface of the piezo crystal, which will allow
calculating the pulse strm(ri, t) at the point ri. A set of trajectories from the reflector to the surface of
the receiving piezo crystal can be used to estimate the echo signal p(ri, t) measured by the receiver.
The finite dimensions of the piezo crystal lead to the fact that the shape of the measured echo signal
will change. The pulse from the reflector (depth 25 mm) at the intersection of the acoustic axes of the
transducers practically the same as the probe pulse and is shown in Figure 5 by the balloon with the
red border. The echo signal from the point-type reflector at a depth of 45 mm is shown in Figure 5 by
the blue balloon. The scale of both graphs is the same along the time axis and is equal to 1 µs, and the
amplitudes are equalized. It can be seen that when the distance from the acoustic axis of the echo
shape changes significantly.
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Figure 5. Echoes measurement in the TOFD mode.

Thus, after calculating p(ri, t), it is possible to construct a matrix G and to reduce the problem
of estimation ε̂MME(zi) along the axis z by the measured echo signal p using the Equations (8) and
(10). If the propagation time of the pulse is calculated from the centers of the of piezo crystal tdel(zi) as
a function of the depth of the point reflector, then the form ε(z) can be estimated from the formula
ε̂del(zi) = p(tdel(zi)). This formula can be considered as a degenerate version of the C–SAFT method.

Figure 6 shows the calculated echo signal p(t) from the six point-type reflectors for a distance
between the front faces of the transducers is 120 mm. The first pair of reflectors with coordinates 2.5 mm
and 7.5 mm, the reflection coefficients 1 and −1 simulates a crack with a height of 5 mm, similarly,
the second pair has coordinates 22.5 and 27.5 mm, and the third one 42.5 and 47.5 mm. The pulse of
the head wave and one reflected from the object bottom of the sample were not calculated. Echoes
from the second and third pairs are resolved and have a phase shift of 180 degrees. Echo signals from
the first pair of reflectors will not be resolved, so at low depths tdel(zi) changes weakly. The amplitude
and shape of pulses from the reflectors are different due to the divergence of the ultrasonic beam and
the finite size of the piezoelectric plates.
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Figure 6. Echoes measurement in the TOFD mode.

Figure 7a shows the result of the evaluation of ε̂MME(zi) (black graph) and ε̂del(zi) (red graph)
when the matrix G is formed taking into account the echo shape p(zi, t) calculated for the depth of
45 mm. This led to the fact that the images of the third pair (reflectors 5 and 6) have the form of a
δ–function, and the image of the reflectors of the second pair has «side lobes» of the order of 40%.
Under ideal reconstruction of the values of the reflection coefficient ε̂(zi) in this example must be equal
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to 1 or −1. Figure 7b shows the result of the evaluation of ε̂MME(zi) and ε̂del(zi) at the calculation of
the matrix G of echo shape p(zi, t) for all depths. The ε̂del(zi) has no difference from the shape p(t)
except for the nonlinear scale transformation according to the dependency tdel(zi), but the ε̂MME(zi)

has a resolution of more than five times higher than for ε̂del(zi), which allows one to resolve reflectors
1 and 2. The amplitude of the reflector is 1 small since the calculation of p(zi, t) did not take into
account the feature of calculating the refractive index near the first critical angle [40]. It is clear that
such a convincing result (Figure 7b) obtained in the absence of measurement noise and operator
noise. To obtain better images of reflectors 1 and 2, it is necessary to bring together the emitting and
receiving converters.
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5. Improving the Image Quality of the Reflectors Reconstructed by the Me Method on a Set
of Echoes

This section provides examples of the use of the ME method to restore the reflectors image from
echo signals with super-resolution and increased signal/noise ratio (see section Restoring the image
of reflectors).

5.1. Increasing the Resolution of an Image

5.1.1. Four Side Drilled Holes

Figure 8 shows a sketch of the duralumin block with 0.5 mm diameter side drilled holes. Image
of holes located at a depth of 36 and 38 mm with a distance between centers about 2 mm was restored.
For the acquisition of the echo signals of the used antenna array (5 MHz, 32 elements, the size of
the piezo crystal is 0.9 × 10 mm, pitch 0.1 mm) on a plexiglass prism with a tilt angle of 20 degrees.
The antenna array and prism are schematically shown in Figure 8.
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Figure 8. Rescattering test consists from three groups of four holes of 0.5 mm diameter.

Figure 9 shows the result of the reconstruction of reflectors by the C–SAFT method using 1024
echoes pnm(t). Non-sufficient resolution of the image does not allow to determine not only the type of
the reflector but also their quantity. On the image lines of black color are plotted holes’ contour.
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Figure 9. The image of the group of the side drilled holes, closest to the surface, of the rescattering test,
reconstructed by the ME method.

Figure 9 shows the result of the reconstruction of the reflectors image by 400 echoes pnm(t) by the
ME method (α = 10.0, µ = 10−5) according to Equation (8). The longitudinal and frontal resolution of
the image increased more than twofold in comparison with the image of Figure 10. The image of the
three holes is clearly seen in the ME image. The amplitude of the indication of the fourth hole was not
large enough to detect it because of the shading effect.
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Figure 10. The image of the group of the side drilled holes, closest to the surface, of the rescattering
test, reconstructed by the C–SAFT method.

5.1.2. 2.5d–Image of Models of Two Cracks in Welded Joint of du800 Type

Model experiments were carried out with a welded joint of 800 mm diameter, in which seven
artificial reflectors were made. This type of pipelines is typical for the nuclear power industry of the
Russian Federation. Seven artificial reflectors were made in the weld. Reflectors with numbers 3 and 4
simulating the cracks have tilt 20 and −14 degrees to the axis z, a height of about 5 mm and the length
along the weld about 34 mm. Reflector are milled grooves with a width of 1 mm.

Figure 11 shows a picture of the weld, part of the scanning system and two antenna arrays installed
on the prism and located approximately at the location of the reflectors 3 and 4. The reinforcement
bead of the weld on the outer surface has been removed. The antenna array (5 MHz, 32 elements,
piezo crystal size 0.9 × 10 mm, pitch 0.1 mm) on a rexolite prism with a 35-degree angle of inclination
was used to acquire the echo signals.
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Figure 11. The weld from 800 mm diameter pipeline and two antenna arrays installed on the prisms
are located approximately at the location of the grooves 3 and 4. The balloon shows the image of the
end of the cutted weld.
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Figure 12 on the left shows the C–SAFT image, and on the right the ME image reconstructed
according to Equation (8) obtained by the P-side antenna array. The B-type images show the contours
of the grooves 3 and 4. It can be seen that the coordinates of the indications of the reflector 4 differ
from the contours of the grooves. This can be explained by the fact that, firstly, the weld surface is
rough. And, secondly, the welded joint can introduce additional distortions due to its special acoustic
properties. The resolution of the ME image in comparison with the C–SAFT image has more than
doubled. According to the D-type image, it can be assumed that the upper boundary of the groove 4 is
rough, despite the fact that it is milled.

Entropy 2018, 20, x  13 of 22 

 

 
Figure 11. The weld from 800 mm diameter pipeline and two antenna arrays installed on the prisms 
are located approximately at the location of the grooves 3 and 4. The balloon shows the image of the 
end of the cutted weld. 

 
Figure 12. C–SAFT images (a) and ME images (b) for the P-side for the TdT acoustic scheme (a transverse 
wave is emitted, a transverse wave, reflected from the defect, is received). The D- and C-type images are 
combined to the maximum. 

5.2. An Increase in the Signal-To-Noise Ratio of the Image for the Case of Large Absorption 

In Section 3, when using a complex signal, it was possible to increase the image signal-to-noise 
ratio by more than 20 dB for a 1 mm diameter planar hole at 40 mm depth by deconvolution of each 
echo signal. Reconstruction of the image by the method of ME from a set of echoes by Equation (8) 

Figure 12. C–SAFT images (a) and ME images (b) for the P-side for the TdT acoustic scheme
(a transverse wave is emitted, a transverse wave, reflected from the defect, is received). The D-
and C-type images are combined to the maximum.

5.2. An Increase in the Signal-To-Noise Ratio of the Image for the Case of Large Absorption

In Section 3, when using a complex signal, it was possible to increase the image signal-to-noise
ratio by more than 20 dB for a 1 mm diameter planar hole at 40 mm depth by deconvolution of each
echo signal. Reconstruction of the image by the method of ME from a set of echoes by Equation (8)
also allows one to increase its quality. To acquire echoes by FMC, a 16-element antenna array with an
operating frequency of 4 MHz and a step of 2.5 mm was used, each element of which was mounted on
an individual prism with an angle of 45 degrees.

Figure 13a shows the image obtained by the correlation method according to Equation (6).
The image is characterized by a high level of noise, where is not particularly clearly visible indications
of the flat-bottom holes. Signal to noise ratio in the ME image reconstructed according to Equation (8)
(Figure 13b), compared with Figure 13a, increased by 16 dB, when measured within the area marked
with a green square, and the resolution increased by at least by three times.
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Figure 13. SAFT-(a) and ME-images (b) for the TdT acoustic scheme.

5.3. An Increase in the Signal-To-Noise Ratio in Materials with Structural Noise

There are materials in which so-called structural noise occurs at the boundaries of crystal grains
due to multiple rescattering of the probing pulses [41]. For such materials, it is not possible to increase
the signal-to-noise ratio due to the increase in the energy input into the material, since simultaneously
with the increase in the amplitude of the pulse reflected from the defect, increases the amplitude of
the pulses reflected from the boundaries of the crystal grains. In coarse-grained materials, the main
factor affecting the size of the minimum detectable reflector is not a small sensitivity, but a high level
of structural noise. To reduce its level, it is recommended to measure using very short pulses [42].
The reconstruction of the image of the reflectors by the ME method should increase the resolution,
which is similar to the reduction of the echoes length and this should lead to a decrease in the level of
structural noise.

Let us demonstrate this by the example of austenitic weld joint testing. The sample on which the
measurements were carried out was a fragment of the pipeline with a thickness of 69 mm, with an
austenitic welded joint (Figure 14). From one edge on the border of the “weld seam-base metal
(perlite)” at depths of 8, 33 and 58 mm three 3.0 mm diameter side drilled holes were made, indicated
by numbers 4, 5 and 6. The weld area is marked with a translucent red polygon. The longitudinal
wave velocity in the weld joint was set to 5.6 mm/µs. The measurements were carried out in the mode
of triple scanning at five points with a step of 9.3 mm antenna array (5 MHz, 32 elements, piezocrystal
size 0.9 × 10 mm, 0.1 mm pitch) on a plexiglass prism with a 20-degree tilt angle. The scanning range
is schematically shown in Figure 14 with a red arrow. One LdL acoustic scheme (the longitudinal wave
is emitted, the longitudinal wave, reflected from the defect, is received) was used to reconstruct the
images of reflectors.

Figure 15a shows the C–SAFT image of the boundary of the hole 6. The structural noise has a
level of about 6 dB, against which one can see the indication of the hole, the contours of which are
shown as black ellipse. Figure 15b presents the result of processing the same signals by the ME method
according to Equation (8) after 15 iterations at the background coefficient µ = 10−6. In comparison
with the image obtained by the correlation method, the beam resolution of the image obtained by the
ME method increased approximately three times, and the signal/noise ratio increased by more than
30 dB. However, the indication of the hole boundary on the ME image is split, due to the fact that
when calculating the matrix G it is necessary to take into account different acoustic properties of the
base metal and the weld joint.
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6. Increasing of Echoes Acquisition Rate

The disadvantage of acquiring echoes by double scanning is a large amount of measured data.
With an increase in the number of elements Ne of the antenna array, the number of echoes increases
as a square. Therefore, in spite of the fact that the echoes are measured in Ne cycles of the probing
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signal, the transfer of a large volume of echoes from the measurement unit to the computer for image
reconstruction may take a long time.

From the point of view of the theory of multichannel communication, the dual scan mode is
similar to the situation where users send a message in turn which is received by all users. The consistent
nature of the radiation of the probe pulse allows us to answer the question: “Who is the source of
the message?” This communication mode, when each pair of receiver-transmitter is allocated the
whole spectrum or most of it for a selected period of time, is called time-division multiple access
(TDMA) [43]. If all users could send their messages at the same time, and at the reception, it would be
possible to select all the messages and understand: “Who sent the message?”—it would essentially
increase the rate of echo signal acquisition and decease their amount. To solve this problem in the
theory of multichannel communication, when the transmission channels have a common frequency
band but different code modulation, a code division multiple access technology has been developed,
which is called code division multiple access (CDMA) [43]. For its implementation, all elements of
the antenna array are simultaneously excited, each with its unique probing pulse sn(t), and echoes
are simultaneously received by all elements of the antenna array. Schematically, echoes measured in
CDMA mode pm(t) are shown in Figure 16 on the right and they can be represented by the expression:

pm(t) =
Ne

∑
n=1

pn,m(t). (17)
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The first way to use this approach is to decode the echo signals pm(t) so that the m-th subscriber
can make an evaluation of the echo signal p̃n,m(t) from the subscriber with the number n. For effective
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decoding of echo signals, the correlation function Rn,m(τ) of a set of coding signals sn(t) intended for
excitation of elements of the antenna array must have the following property:

Rn,m(τ) =

∞∫
−∞

sn(t)sm(t + τ)dt = δn,mδ(τ), n, m = 1, 2, . . . , Ne. (18)

where δn,m is the Kronecker symbol. The set of signals having the property (18) is called orthogonal.
Signals for practical use with this property are not known, but several sets of coding signals sn(t) have
been developed, which to some extent approach the ideal set with the property (18). Sets of such signals
are called pseudo-orthogonal. These include phase-manipulated signals encoded by a sequence of
length Nc. The law of change of the chip phase can be determined by the Kasami codes [44], Gold [45],
de Brain [46], in which the phase of each chip can take values 0 or 180 degrees. It is possible to use
Zadov–Chu sequences with arbitrary phase for each chip [47]. A set of sequences with a random phase
can also be considered as pseudo-orthogonal. Each chip can determine the phase of one period at the
carrier frequency fc, but the option of random frequency measurement fc + δ f from chip to chip is
possible. For the emitting of such signals to the arbitrary pulse generator of the flaw detector, higher
requirements are imposed, in comparison with the usual shock excitation generator.

The first way to restore the image is as follows. After selecting a set of code signals {sn(t)}Nk
n=1,

their simultaneous pulsing and reception in one cycle, the measured echoes pm(t) must be decoded
to evaluate the signals p(t), as if measurements were made in the FMC mode. By decoded echoes
p̃n,m(t) using the C–SAFT method, one can restore the image (arrow and rectangle with a yellow
fill in Figure 16). In Figure 16 the decoding procedure is likened to the passage of a beam of light
through a prism. If we use the color analogy in Figure 16, the decoding with the correct selection of
signals {sn(t)}Nk

n=1 will allow the signals pn,m(t) from the total set pm(t) to be “colored” only in one
color. Considering the circumstance that pulses of “different colors” can be very close to each other,
the algorithm of decoding should provide a high resolution in time domain.

A common method of decoding complex signals pm(t) is matched filtering with a code signal
sn(t). Given that matched filtering in the time domain is equivalent to convolution [43], the decoding
operation can be written as:

p̃n,m(t) =
∞∫
−∞

pm(τ)sn(τ − t)dτ (19)

This algorithm for compression of complex signals has a high speed and allows one to obtain
images with a frequency of more than 10 Hz, but it does not allow to obtain a low level of interchannel
noise and achieve the effect of super-resolution. For decoding of echoes by Equation (19), the level
of interchannel noise, i.e., the average value of the cross-correlation function of signals in the set

{sn(t)}Nk
n=1, can be estimated as the value of (Nc)

− 1
2 .

A more complex method of decoding simple or complex signals is based on the use of the
maximum entropy method [37] and was considered in the section Processing of echo signals presented
in a complex form. To obtain the estimation of echo signals by the ME method by measured p̃n,m(t)
for each sn(t) from a set of coding signals {sn(t)}Nk

n=1, it is necessary to form a matrix G. The time of
decoding of echoes pm(t) by the ME method is much longer than by the Formula (19), which will lead
to decreasing the frequency of image formation. But for an automated system with post-processing,
such a speed limit is not essential.

The second way to obtain the image is to get the image of the reflectors immediately using the ME
method without decoding pm(t), as described in section Restoring the image of reflectors. This method
in Figure 16 corresponds to an arrow and a rectangle with a green fill.

The efficiency of the algorithms for decoding echoes depends on the type of reflectors being
reconstructed and their quantity, since this depends on how close to each other the echoes are located.
That is, the quality of the decoding of echoes from a single point reflector can be very good [48],
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but when processing echoes from many reflectors, the reconstructed image may end up with an
unacceptably high level of inter-channel interference. Ideally, the use of CDMA technology will allow
to measure for an antenna array of 128 elements only in one cycle instead of 128, and decrease the
number of echoes from 16,348 to 128.

The model experiment was carried out on the sample described in Section 4 with drilled holes in
the rescattering test, but using the electronic unit of the AUGUR-ART system, which allows pulsing
complex signals. As a set of complex signals, 32 (Nk = Ne = 32) phase-manipulated signals according
to the Kasami code were used with length Nc = 15. Each period had a frequency randomly distributed
in the [5 ± 2] MHz band. To acquire echoes, an antenna array was used (5 MHz, 32 elements, crystal
size 0.9 × 10 mm, 0.1 mm pitch) on a rexolite prism with a slope angle of 35 degrees.

Figure 17 shows an example of one complex probing signal (red graph) prepared for study and
emitted and received by the equipment used (black graph). One can see that the limited bandwidth
of the antenna array distorts the ideal shape of the probing signal: in the received echo signal, sharp
phase jumps are actually lost when the chip changes and the signal amplitude changes from chip
to chip.
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Figure 17. An example prepared for emitting the complex probing signal (the graph in red) and the
measured echo signal (the graph in black).

Figure 18a shows the image of the four side drilled holes reconstructed by the C–SAFT method in
the set of echoes measured during the emission of a simple signal in the FMC mode. There are three
indications corresponding to the boundaries of the three holes, which are accurately resolved since the
reconstruction made for transverse wave. But apart from them, the pulses scattered between the holes
formed several false indications, which do not allow us to determine not just the type of reflectors,
but also their quantity. The signal-to-noise ratio of the image can be estimated as 28 dB. Figure 18b
shows the image reconstructed by the correlation method according to Equation (6) during decoding
by matched filtering. Due to the high level of inter-channel interference, the image quality due to
a low signal-to-noise ratio of 12 dB has an unacceptably low quality. Figure 18c shows the result of
the reconstruction of the image of the reflectors with 32 echoes pm(t) by the ME method according to
Equation (8) (α = 25.0, µ = 10−5). The longitudinal and frontal resolution of the image increased more
than twofold in comparison with the image of Figure 18a. On the ME image, the indications of the
four holes are clearly visible, and one false indication with a commensurate amplitude. It should be
recalled that the acquisition time of echoes pm(t) is in Ne times shorter than the measurement time in
FMC mode. The data set of the measured echo signals is as much smaller.
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Figure 18. The image recovered by the method from the set of echoes measured by the emission of a
simple signal in the FMC mode (a), by the correlation method with decoding by the matched filtering
(b) and the ME method without decoding (c).

7. Conclusions

The use of the maximum entropy method allows one to improve the quality of the reconstructed
image of the reflectors and thereby increase the reliability of ultrasonic non-destructive testing. The use
of the ME method in the model experiments increased the resolution of the image by a factor of
three in comparison with the linear reconstruction methods. This made it possible to more accurately
determine the type and number of reflectors.

Compression of complex signals by the ME method made it possible to increase the signal-to-noise
ratio more than by 20 dB for the imaging in materials with a high attenuation, which made it possible
to detect reflectors at a great depth with superresolution. The ME method is equivalent to reducing
the duration of echo signals length, and this should reduce the level of structural noise. In the model
experiment, it was possible to reduce the level of structural noise of the reflector image by 12 dB.

Since when processing echoes measured in TOFD mode, the shape of the echoes depends on
the depth of the reflectors, a variant of the ME method, taking this into account, was proposed. In a
numerical experiment, the effectiveness of this approach is shown.

The possibility of using the ME method for obtaining a 2.5D-image of the reflectors in a
reference block made from 800 mm diameter pipe. Application of the ME method together with
CDMA technology allowed to reduce the echoes acquisition time by FMC and obtain an image with
superresolution. In the model experiment it was possible to increase the rate of echo signal registration
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for the 32-element elemental array by 32 times. With the increase in the number of elements of the
antenna array, the proposed approach further increases the rate of registration of echoes. This can be
very important for ultrasound medical diagnosis.
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