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Abstract: A first-order optical system with arbitrary multiple masks placed at arbitrary positions
is the basic scheme of various optical systems. Generally, masks in optical systems have a non-
shift invariant (SI) effect; thus, the individual effect of each mask on the output cannot be entirely
separated. The goal of this paper is to develop a technique where complete separation might be
achieved in the common case of random phase screens (RPSs) as masks. RPSs are commonly used to
model light propagation through the atmosphere or through biological tissues. We demonstrate the
utility of the technique on an optical system with multiple RPSs that model random scattering media.

Keywords: random phase screen; rando phase mask; random medium

1. Introduction

An optical system with multiple arbitrary masks placed at arbitrary positions is the
core scheme of a variety of optical systems. A scheme where the masks are random phase
screens (RPSs) is an excellent model for the analysis, simulation, and interpretation of
optical systems that involve optical scattering due to refractive index fluctuations [1–4].
RPS models were first introduced to represent the fading of radio waves due to fluctuations
in the ionosphere layers, but were later found to be useful for modeling various other wave
scattering phenomena, including optical scattering. They have been extensively used to
analyze atmospheric light propagation, coherent imaging, speckle metrology, and optical
scintillations, amongst others [5].

In Figure 1a, a scheme of a paraxial optical system is illustrated, where there are
n sub paraxial systems, M1, M2 . . . Mk . . . Mn, and n− 1 masks, g1, g2 . . . gk−1, gk . . . gn−1,
between them, while Uin and Uout denote the input field and output field, respectively. For
example, in atmospheric propagation of light, the sub-systems might be free-space propaga-
tion combined with an optical scaling system where the masks are RPSs [4,6]. Figure 1b is a
specific case of Figure 1a for two masks and three sub-systems, showing a paraxial system
composed of intermittent lenses of focal length f and free-space propagation sections of
length L/2 with two masks in between. By choosing the masks as RPSs with properties
appropriate for the relevant medium, this figure represents a model [5] for the analysis
of the optical memory effect of scattered light in random media [7]. We use Figure 1b as
a case study throughout this paper. The basic principle behind the optical memory has
its roots in astronomy and was adapted to other fields using well-established astronomic
techniques [5,8]. Some other advanced optical memory effect applications might include
imaging through the atmosphere, dense fog, or biological tissues [9].

The first order paraxial sub-systems between the masks in Figure 1a might be any
combination of beam propagation forms with ideal optical elements between the stages,
such as ideal thin lenses, ideal graded-index fiber, etc. Such lenses and fibers are commonly
used for scaling [4], imaging [10], and spatial filtering [5] between the RPSs in the system.
For example, in Figure 1b, M1 is a free-space propagation section of length L/2, M2 is an
ideal 2 f focal length system, and M3 is an ideal 2 f focal length system with an additional
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free-space propagation section of length L/2. Thus, we define the optical system without
the masks as the “ideal core” optical system. The model may also contain a combination of
RSPs with random absorbing screens.
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an optical memory effect. 

Generally, masks in optical systems have non shift-invariant (SI) behavior; thus, the 
individual effect of each mask on the output cannot be entirely separated. However, we 
will show in this paper that the effect of each RPS in the system in Figure 1a can be fully 
separated under certain conditions. This separation facilitates the analysis of various sys-
tems, and helps to understand the relation between the input and the output. Further-
more, it enables separating the influence of each of the system’s parameters and enables 
modeling more complex systems, such as random media with varying behavior along the 
system path. 

This paper is structured as follows. In Section 2, we investigate the general case of 
two RSPs, and we demonstrate our approach for the specific case study illustrated in Fig-
ure 1b. For completeness of the analysis and for the purpose of comparison, we first re-
view the case of a deterministic mask (Section 2.1), and then we develop the main result 
of the RPS case and demonstrate it by simulation (Section 2.2). In Section 3, we generalize 
the approach to the multiple RPS case and its applications. Section 4 presents a discussion 
and conclusions.  

2. Separating the Influence of Individual Masks in an Optical System  
2.1. Review of Optical Systems with Deterministic Masks  

In Figure 2a, a special case of Figure 1a is shown for two masks and three sub-sys-
tems; here, the masks are considered to be any general known masks and are not neces-
sarily RPSs. General masks have various optical applications including incoherent holog-
raphy [11,12], compressive sensing [13], and spectral processing [14]. 𝑀 , 𝑀  and 𝑀  rep-
resent sub-paraxial systems before, between, and after masks 𝑔  and 𝑔 , where 𝑈  de-
notes the coherent input and 𝑈  denotes the coherent output. In Figure 2b, the scheme 
of the ideal core system, without the masks, is shown; its coherent output is denoted by 𝑈 . The output field 𝑈 in Figure 2c denotes the projection of the mask 𝑔  through the 
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Figure 1. (a) A first-order paraxial optical system with n sub paraxial systems M1, M2 . . . Mk . . . Mn with arbitrary multiple
masks g1, g2 . . . gk−1, gk . . . gn−1 placed at arbitrary positions. Uin and Uout denote the input field and output field. (b) A
private case of (a) for two random phase masks and three sub-systems. By choosing appropriate system properties, the
set-up represents a medium with an optical memory effect.

Generally, masks in optical systems have non shift-invariant (SI) behavior; thus, the
individual effect of each mask on the output cannot be entirely separated. However,
we will show in this paper that the effect of each RPS in the system in Figure 1a can
be fully separated under certain conditions. This separation facilitates the analysis of
various systems, and helps to understand the relation between the input and the output.
Furthermore, it enables separating the influence of each of the system’s parameters and
enables modeling more complex systems, such as random media with varying behavior
along the system path.

This paper is structured as follows. In Section 2, we investigate the general case of two
RSPs, and we demonstrate our approach for the specific case study illustrated in Figure 1b.
For completeness of the analysis and for the purpose of comparison, we first review the
case of a deterministic mask (Section 2.1), and then we develop the main result of the
RPS case and demonstrate it by simulation (Section 2.2). In Section 3, we generalize the
approach to the multiple RPS case and its applications. Section 4 presents a discussion
and conclusions.

2. Separating the Influence of Individual Masks in an Optical System
2.1. Review of Optical Systems with Deterministic Masks

In Figure 2a, a special case of Figure 1a is shown for two masks and three sub-
systems; here, the masks are considered to be any general known masks and are not
necessarily RPSs. General masks have various optical applications including incoherent
holography [11,12], compressive sensing [13], and spectral processing [14]. M1, M2 and
M3. represent sub-paraxial systems before, between, and after masks g1 and g2, where Uin
denotes the coherent input and Uout denotes the coherent output. In Figure 2b, the scheme
of the ideal core system, without the masks, is shown; its coherent output is denoted by
Uideal . The output field Ug1 in Figure 2c denotes the projection of the mask g1 through the
ideal core system from its position to the output plane. Similarly, Ug2 in Figure 2d is the
output projection of the mask g2. The output field Uout can be calculated by a sequence
of generalized convolutions [15] of the output field core system Uideal with the projection
output of Ug1 and Ug2 , which are defined mathematically in Appendix A. Although the
generalized convolution provides an elegant and compact way to express the output
field, in this paper, we will carry out our analysis using conventional convolutions (the
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generalized convolution can be expressed in terms of conventional convolutions [16,17]).
The output field Uout in the scheme in Figure 2a is obtained, up to a multiplication factor,
as [18]:

Uout = q∗3

((
q̃′3,32

(
(q32Uideal) ∗V

[
1

λb32

]
=−1[g1]

))
∗V
[

1
λb3

]
=−1[g2]

)
(1)

where g1 = g1(x), g2 = g2(x), λ is the wavelength, * is the convolution operator and =−1 is
the inverse Fourier Transform (FT) operator. V[1/λb]h(x) is a scaling operator on a general
complex function, with h(x) defined as V[1/λb]h(x) = h((1/λb)x)V[1/λb] [19,20]. For
example, a scaled optical FT of mask g(x) by a 2 f system is given, up to a complex factor,
by V

[
− 1

λ f

]
=[g(x)] =

∫ ∞
−∞ g(x′) exp

(
−j 2π

λ f xx′
)

dx′. The quadratic phases in Equation (1)

are defined as q32 = exp
(
− jπ

λ
d32
b32

x2
)

, q′3,32 = exp
(
− jπ

λ

(
d3
b3
− d32

b32

)
x2
)

and q∗3 is the com-

plex conjugate of q3 = exp
(
− jπ

λ
d3
b3

x2
)

, where b3 and d3 originate from the ABCD ray
transfer matrix of the paraxial sub-system M3 for the projection of g2 onto the output
plane (Figure 2d). Similarly, b32 and d32 originate from the ABCD ray transfer matrix of
the cascade sub-system [18] of M2 and M3 for the projection of g1 onto the output plane
(Figure 2c). In Equation (1), and henceforth, we adopt a one-dimensional notation for
simplicity, and without loss of generality.
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Equation (1) was derived mathematically in [18], but it would be instructive to attrib-
ute some physical meaning to it. The term V ℑ 𝑔  plays a similar role to that of the 
coherent impulse response in a 4𝑓 system with 𝑔 in the Fourier plane [20]. The term 𝑞 

Figure 2. (a) General scheme of paraxial optical system with arbitrary general masks (not necessarily
RPSs) at arbitrary positions. M1, M2, M3 denote the sub-systems of the paraxial system before,
between, and after the masks g1 and g2. (b) The maskless ideal core system. (c,d) are the projection
systems of g1 and g2., respectively.

Equation (1) was derived mathematically in [18], but it would be instructive to attribute
some physical meaning to it. The term V

[
1

λb

]
=−1[g] plays a similar role to that of the

coherent impulse response in a 4 f system with g in the Fourier plane [20]. The term q
accounts for generalization to other optical systems than the 4 f example. In a 4 f system,
the parameter b is equal to the focal length. For other optical systems, the parameters b
and d need to be calculated from the ABCD projection system parameters, as mentioned
above. The concept of the forward projections, as shown in Figure 2c,d, can be viewed as a
generalization of the projection of clear apertures in geometrical optics. In the geomatical
optics approximation, if there are clear apertures in a paraxial system, then it is common
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practice to project each one towards the image region and the most restricting one is defined
as the exit pupil. Then, the scaled FT of the exit pupil can be used to approximate the
coherent impulse response. The Fourier scaling parameter is related to the ratio between
the aperture and the exit pupil. This conceptual idea is manifested in the field analysis in
Equation (1) by the FT of each mask with its own scaling parameter b. The parameter d
for each projection is a measure of the shifting of each mask from the Fourier plane, and it
approaches zero as the masks are shifted to the Fourier plane.

One advantage of the formalism in Equation (1) is the separation of the influence of
Uideal from the expression of Uout. Unfortunately, only in the particular case of a system
with q32 = q̃′3,32 = 1 can the effect of each mask be fully separated from any other mask [18],
since then Equation (1) reduces to a sequence of pure convolutions and, therefore, the
commutative property of the regular convolution operator applies. In this paper, we
generalize the effect of each mask and investigate the conditions for such separation for
the case of RPSs.

2.2. Separating the Effect of Each Random Phase Mask in the Optical System

Consider the case where the masks in Figure 2a are RPSs, and we are interested in
the output intensity for a coherent input. The output intensity measurement is the desired
result in common optic systems with random media, such as biological and atmospheric
light propagation applications [1–4,21,22]. A practical simulation example of this will
be given in the next section. We assume that the RPSs are spatially stationary random
processes and that only their statistical properties are known, such as their statistical auto-
correlation (AC); therefore, only the average effect of the RPS is measured (Ch.8 in [21]).
The commonly used result is the average of many measurements of an ensemble of many
RPSs for the same set-up [21]. Consequently, we consider the expected intensity of the
system in Figure 2a, modeled by Equation (1) with g1 and g2 being RPSs. The derivation is
described in Appendix B, and uses the method for developing the Schell theorem (Chap. 5.
in [21]), following well-known techniques for calculating the expected value of a statistical
process through linear systems (Ch.7 in [23]). For the derivation, we defined the mask g(x)
as the multiplication of a deterministic mask p(x) with a RPS t(x), i.e., g1(x) = p1(x)t1(x)
and g2(x) = p2(x)t2(x). The deterministic masks p1 and p2 may represent, for example,
simple apertures or diffractive elements. We start with the case of p1 = p2 = 1, and we
obtain (Appendix B)

E
[∣∣∣Uout

2
∣∣∣] = |Uideal |2 ∗ =−1[Γt1(λb32x)] ∗ =−1[Γt2(λb3x)] (2)

where E[•] is the expected value notation, =−1. is the inverse FT operator, and Γt1 and Γt2

are the statistical AC functions of the first and second RPSs t1 and t2, respectively, where
Γt(∆x) , E[t(x)t∗(x− ∆x)]. Thus, the average output intensity E

∣∣Uout
2
∣∣ is obtained by

a regular convolution of the intensity’s ideal core output |Uideal |2 with the FT of a scaled
AC of each RPS. The parameters b32 and b3 reflect the influence of the projection of each
RPS on the output, according to its position in the system. This influence is analogous to
the concept, as described in Figure 2c,d. These are the same scaling parameters of the FT
of g1 and g2 for the deterministic masks in Equation (1). As is evident from Equation (2),
owing to the convolution operator’s commutative property, the average effect of each RPS
can be entirely separated from any other RPS and the core output intensity |Uideal |2. In
Equation (2), and henceforth, we ignore constant multiplicative factors. We continue to the
case of p1 6= 1, p2 = 1 and we obtain up to complex factor (Appendix B),

E
[∣∣∣Uout

2
∣∣∣] =∣∣∣q32Uideal ∗ =−1[p1(λb32x)]

∣∣∣2 ∗ =−1[Γt1(λb32x)] ∗ =−1[Γt2(λb3x)]
(3)
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Please note that only the effect of =−1[Γt1(λb32x)] ∗ =−1[Γt2(λb3x)] is SI, and not the
whole system. Even if the output intensity of the core system |Uideal |2 is SI, then, in contra-
diction to Equation (2), the influence of the deterministic part p1 makes the whole core sys-
tem a non-SI system, i.e.,

∣∣q32Uideal ∗ =−1[p1(λb32x)]
∣∣2 6= |q32Uideal |2 ∗

∣∣=−1[p1(λb32x)]
∣∣2.

Yet, the effect for each RPS still remains SI (since it is described by a convolution in (3)).
Consider the particular case where the core system is a 4 f system, and the input is

an on-axis incoherent point source. This is the case in Figure 1b with L = 0 and with only
one mask, t2, located in the Fourier plane, and without t1 (i.e., p1 · t1 = 1). For this case,
Equation (2) reduces to the well-known impulse case of the one random screen analyzing
system with an impulse response of (Ch.8 in [21]):

∣∣=−1[p2(λ f x)]
∣∣2 ∗ =−1[Γt2(λ f x)], where

=−1[Γt2(λ f x)] is the system average point spread function (APSF), the statistical AC
Γt2(λ f x) is the average optical transfer function (AOTF), and the scaled inverse FT of
the deterministic AC of p2,

∣∣=−1[p2(λ f x)]
∣∣2 is the PSF. Similarly, for the general case in

Equation (2), the FT of a scaled AC of each RPS might be considered as its average point
spread function (APSF), and their convolution as the total APSF.

We continue to the general case of p1 6= 1, p2 6= 1, under the assumption that
p2(x)t2(x) is a stationary process. In such a case we may obtain (Appendix B):

E
[∣∣∣Uout

2
∣∣∣] =∣∣∣q32Uideal ∗ =−1[p1(λb32x)]

∣∣∣2 ∗ =−1[Γt1(λb32x)] ∗
∣∣∣=−1[p2(λb3x)]

∣∣∣2 ∗ =−1[Γt2(λb3x)]
(4)

Simulation of RPS Separation

We shall demonstrate the application of Equations (2)–(4) through the system in
Figure 3a. With this scheme, a focusing system focuses a beam inside a random medium
and the deep tissue focusing plane is imaged by a lens to a sensor, where the whole imaging
system focus is found by moving the sensor. Such a focusing system is commonly applied
by using an adaptive optics system [7] based on spatial light modulator for modulating
the beam amplitude and phase. Consider the practical case [7] where the focusing system
focuses inside a medium that might be represented by our case study in Figure 1b [5]. Thus,
Figure 3a can be modeled by Figure 3b. This set-up is a special case of a paraxial system
with two RPSs; therefore, Equations (2)–(4) express its APSF.

A simulation analysis of Equations (2)–(4) is clearer in the spatial frequency domain
rather than the spatial domain, especially for the following graph visualities purpose. We
choose the case where the ideal output is an on-axis point source and by taking the FT of
Equations (2)–(4) the AOTF is obtained. For the case of p1 = p2 = 1 in Equation (2), it is
obtained by

AOTF(ν) = Γt1(λb32ν)Γt2(λb3ν) (5)

where ν is the spatial frequency variable. The AOTF for the case of p1 6= 1, p2 = 1, in
Equation (3) is obtained by

AOTF(ν) = [p1(λb32ν) ∗ p1
∗(−λb32ν)]Γt1(λb32ν)Γt2(λb3ν) (6)

And, similarly, the AOTF for the case of p1 6= 1, p2 6= 1 in Equation (4) is obtained by

AOTF(ν) = [p1(λb32ν) ∗ p1
∗(−λb32ν)]Γt1(λb32ν)[p2(λb3ν) ∗ p2

∗(−λb3ν)]Γt2(λb3ν) (7)
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deterministic mask. (c) and (d) simulations of the first and second RSP, 𝑡  and 𝑡 , with differ-
ent variance 𝜎 ′, for the case study in Figure 1b. (e) Average OTF simulation of (b) for different 
values of 𝑝 and 𝑡. (color online), where we choose 𝑝 to be a clear rectangular aperture. The 
bold line is the simulation result while the dashed line is the expected analytical result from 
Equations (5)–(7). (color online) 
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Figure 3. (a) Imaging system of scanning and focusing beam inside a medium. (b) An equivalent
set -up to (a) with random phase screens (RPSs), where g = t·p. t is the RPS and p is a deterministic
mask. (c,d) simulations of the first and second RSP, t1 and t2, with different variance σ2

φ′, for the case
study in Figure 1b. (e) Average OTF simulation of (b) for different values of p and t. (color online),
where we choose p to be a clear rectangular aperture. The bold line is the simulation result while the
dashed line is the expected analytical result from Equations (5)–(7). (color online).

The medium was modeled according to the case study in Figure 1b, with the RPSs
modeled as Gaussian. Following [5], the AC of a Gaussian RPS is Γt(x) = exp

(
−σ2

φ′x
2/2
)

where σ2
φ′ is the variance of the derivative of the phase [21]. For our case study, the

variances of the first and second RPSs are σ2
1 = L(2π/λ)2/ltr, σ2

2 = L3(2π/λ)2/
(
12ltr f 2),

respectively [5], where λ is the wavelength, f is the lenses’ focal length in Figure 1b, L is the
width of the diffusive medium, and ltr is the transport mean free path. The transport mean
free path is associated with the distance through which light propagates between each
scattering event and with the anisotropy factor of the medium [3,7]. L/2 is the distance
before and after the 4 f system in Figure 1b. The system without the masks is just a relay
system due to the 4 f system. Consequently, the output field is just the result of free-space
propagation of the input field by a distance L, as expected for propagation with negligible
scattering along the slab. The AOTF accounts for the spatial frequency distribution but

does not take into account the intensity loss (by a factor of 9
L8

(
λltr
π

)4
[7]).



Sensors 2021, 21, 5811 7 of 14

Following the experimental conditions reported in [7], we chose L = 260 um,
ltr = 14.8 mm, and λ = 632.8 nm. However, it should be emphasized that our case
study of the memory effect is valid for any scattering medium or geometry [7]. The focal
length f in our model (Figure 1b) is a free parameter that affects the scaling parameter b3

in Γt2(x) = exp
(
−(λb3)

2σ2
2 x2/2

)
, but it is balanced by the σ2

2 value. Hence, we choose f
to be the same as for all the other cases of free-space propagation in Figure 1b; this choice
(i.e., f = L/2) makes it possible to approach the critical sampling for the simulation of
free-space propagation [24] and to enhance the simulation accuracy. Consequently, we
chose the transfer function simulation approach and not the impulse response approach
to better simulate the free-space propagation (Ch.5 in [24]). The Gaussian RPSs were
simulated by convolving an uncorrelated random signal with a Gaussian function in a
similar way to the Gaussian Schell-model beam simulations [3,24,25].

The Schell theorem is a special case of Figure 1a with one RPS, where p is a clear
aperture. Consider p to be a rectangle aperture; then, the diffraction pattern in the Schell
theorem is more pronounced as the ratio between the size of p and the transverse coherence
length decreases (Chap. 5. in [21]). This is similar to the effect of p1 and p2 in Equation (4).
To demonstrate this principle, we chose a rectangle size of p1 and p2 of 2.82σ1

−1 and
0.31σ2

−1, respectively.
We simulated the expected value of Equation (1) on the ensemble of 300 different RPSs,

but with the same statistical properties. Figure 3c shows one of the RPS simulations for t1
from all 300 simulations of the whole ensemble. Similarly, Figure 3d shows one simulation
for t2 and Figure 3e describes the AOTF simulations after normalization and shows a good
match between the simulations and the analytical expressions of Equations (5)–(7). The
deterministic OTF of a rectangle aperture has a triangle shape. The fifth graph takes into
account the two different size apertures, p1 and p2, in addition to the Gaussian AOTF of t1
and t2. This of course reduces the cutoff spatial frequency.

3. Generalization for Multiple RPSs

We may generalize the former equations for the system with multiple RPSs shown in
Figure 1a. Consider a paraxial system with n sub-systems, M1, M2 . . . Mk . . . Mn, and with
n− 1 RPSs t1, t2 . . . tk−1, tk . . . tn−1 between the sub-systems. Then, (2) is generalized to

E
[∣∣∣Uout

2
∣∣∣] =

|Uideal |2 ∗ =−1[Γt1(λbn2x)] ∗ . . . ∗ =−1[Γtk−1(λbn,kx)
]
∗ . . . ∗ =−1[Γtn−1(λbnx)

] (8)

where tk−1 is the k− 1 th mask and bn,k originates from the projected ABCD ray transfer
matrix of the cascade ideal core sub-systems from the tk−1 position to the output plane.

This generalization is useful for many cases. For example, Figure 4a can describe the
system model of two adjacent random media with different transport mean free paths. Such
a combination of random media is modeled by the system shown in Figure 4b, consisting
of a cascade of two systems, as seen in Figure 1b, each with appropriate parameters. The
specific properties of each medium are represented by different σ2

φ′ values of each Gaussian

RPS and its appropriate f and L. In Figure 4b, the RSPs of the first medium are denoted tltr_1
1

and tltr_1
2 , with the parameters f1, L1, and similarly for the second medium; the notations

are tltr_2
1 , tltr_2

2 , f2, L2.
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Figure 4. (a) Two adjacent media with different lengths and transport mean free path values, 𝑙 . 
(b) Equivalent paraxial set-up to (a) with RSPs. (c) Concatenation of media with gradual change in 
their 𝑙 . (d) The AOTF of the particular case where the medium in Figure 3a is replaced by the 
gradual medium change in Figure 4c. The graphs show the cases of two, three, and four cascaded 
media. The bold line represents the simulation result while the dashed line shows the expected an-
alytical result from (9). (color online) (e) A known mantle random medium in the environment of 
another random medium. (f) Approximation of (e) as a stack of many RSPs. (g) A higher resolution 
of (f). 

Figure 4a–c are examples for multilayer applications of random media with different 
properties, which might be analyzed by Equation (8). In the analysis of atmospheric light 
propagation, this may be relevant when the source or the sensor get closer to or further 
from each other on the same line of sight. In a biological application, this may be relevant, 
for example, for evaluating the change in the optical propagation through a multi-layered 
tissue after removing tissue layers during surgery or due to stretching of the tissue. 

 

Figure 4. (a) Two adjacent media with different lengths and transport mean free path values, ltr.
(b) Equivalent paraxial set-up to (a) with RSPs. (c) Concatenation of media with gradual change
in their ltr. (d) The AOTF of the particular case where the medium in Figure 3a is replaced by the
gradual medium change in Figure 4c. The graphs show the cases of two, three, and four cascaded
media. The bold line represents the simulation result while the dashed line shows the expected
analytical result from (9). (color online) (e) A known mantle random medium in the environment of
another random medium. (f) Approximation of (e) as a stack of many RSPs. (g) A higher resolution
of (f).

Although there are now four masks, the overall APSF is still a convolution chain of
the effect of each APSF medium, which is one of the advantages of Equation (8). Con-
sequently, for example, if we change the value of ltr of only one medium, the APSF of
only this medium is changed. Similarly, suppose we add a third medium before the two
media in Figure 4a; in this case, the new overall APSFoverall is just a convolution of the
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overall APSFtwo of the previous two media with the APSFthird of the third medium, i.e.,
APSFoverall = APSFthird * APSFtwo. The average effect of each RPS depends on its position
in the system in accordance with the scaling factor of the AC. Thus, if we change the
order of the two media or their length in Figure 4a, the effect of each RPS is changed only
by scaling.

Another useful case is where the random medium properties change along the system
path, as is common in vertical atmospheric propagation or in any other scattering scenario
that involves changes in the environmental conditions, such as a temperature or pressure
gradient. For such a change, the entire system might be seen as cascading of an infinite
number of systems of Figure 1b, with gradual changes in their RPS properties. Consider,
for example, N adjacent media as described in Figure 4c. Each medium is represented
by the case study model in Figure 1b. The RSPs of each medium are Gaussian, with
different ltr according to the medium position. Because each medium is represented by
two masks, there are n = 2N masks and n + 1 sub-systems between them. The value of
ltr for each two masks of the same medium is identical. Considering a gradually linear
increase in ltr by a factor of ctr, we obtain ltr_K = Kctrltr, where ltr_K denotes the ltr of the
K_th medium. Each medium has two scaling parameters that depend on their position
in the whole system. Assuming all the media have the same length ∆L, and since we
may choose the free parameter f to be ∆L/2, as in Section 2.2, we obtain: bn2 = −bn3,
bn3 = (n− 1)∆L + ∆L/2, bn,2K = −bn,2K+1, bn,2K+1 = (N − K) · ∆L + ∆L/2,..,
bn,2N = −∆L/2, bn,2N+1 = ∆L/2. We denote σ2

1_K and σ2
2_K as the variance of the first RPS

gk and the second RPS gk+1 of the same K_th medium, accordingly, where k = K/2 and
both variances are a function of the same ltr_K. Thus, using Equation (8), the overall AOTF
is obtained by

AOTF(ν) = Γltr1
t1

(λbn2ν) · Γltr1
t2

(λbn3ν) . . .
·ΓltrK

tk
(λbn,kν) · ΓltrK

tk+1
(λbn,k+1ν) . . .

·Γltr N
tN

(λbnν) · Γltr N
tN+1

(λbn+1ν)

= exp
(

N
∑

K=1
− (λbn,2K)

2

2 σ2
1_Kν2 − (λbn,2K+1)

2

2 σ2
2_Kν2

)
= exp

(
N
∑

K=1
−(λbn,2K)

2
(

LK(2π/λ)2

ltr_K

)
ν2 − (λbn,2K+1)

2 (LK)
3(2π/λ)2

12 f 2ltr_K
ν2
)

= exp
(
− 4.3π2∆L

ctr ltr
ν2

N
∑

K=1

[(N−K)∆L+∆L/2]2

K

)
(9)

Please note that the third equality in Equation (9) is the general AOTF for any N media,
each one with its own ltr_K, length LK, and projection parameters. Only the last line is the
private case for a gradual linear decrease in ltr by a factor ctr and with the same length
LK = ∆L (Figure 4c). The left summation term in the exponent of the last expression could
be considered to be a factor for the average effective ltr of the whole system [26]. Please
note that for our case study model (Figure 1b), the dependence of the scattering on the
wavelength is assimilated into σ by the ltr value, where ltr originates from Mie theory [7]
and is fundamentally a function of λ. Thus, the dependence of the AOTF on λ is also
obtained through ltr. Figure 4d shows the AOTF of the particular case where the medium
in Figure 3a is replaced by the gradual medium change in Figure 4c. The graphs show the
cases of two, three, and four cascading media, i.e., N = 2, 3, 4 and n = 4, 6, 8, where n is
the number of the masks. For each case of cascaded N media, the sensor in Figure 3a was
moved to the new imaging plane. We chose each medium length in Figure 4c to be the
same as for the value of Figure 3a. The transport mean free path decreases from medium to
medium by a factor of clt = 0.25. As it can be seen, the graph shows a good match between
the simulations and the analytical expression for the multiple masks in Equation (9).

Figure 4a–c are examples for multilayer applications of random media with different
properties, which might be analyzed by Equation (8). In the analysis of atmospheric light
propagation, this may be relevant when the source or the sensor get closer to or further
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from each other on the same line of sight. In a biological application, this may be relevant,
for example, for evaluating the change in the optical propagation through a multi-layered
tissue after removing tissue layers during surgery or due to stretching of the tissue.

In the last examples, we use our case study (Figure 1b) with two RSPs, where the
need for multiple RSPs is due to the addition of different media to the system or to a
change in the medium properties along the path (Figure 4c) of the same model (Figure 1b).
However, multiple RSPs may also be needed for describing other scattering models [1–3,6];
thus, the APSF of other multiple RSP models might also be described by Equation (8). For
example, it was shown that at least two RPSs are needed to represent a turbulent medium
(Ch.9 in [27]). Using only two RSPs enables creating a lab simulator for atmospheric light
propagation through two spatial light modulators [4]. However, for the investigation
of strong turbulence, a large number of RPSs is needed [6]. Similarly, multiple RSPs
are needed to analyze the PSF in the transition regime from ballistic to diffusive light
transport [3].

Another valuable application of Equation (8) could be to account for arbitrary shapes
of the scattering media. For example, consider the case of a random medium with a
known mantle embedded in another random medium (Figure 4e). The multislice method
(a.k.a. the beam propagation method) models a three-dimensional object as a series of thin
two-dimensional slices separated by homogeneous media. The propagation of the light is
analyzed from slice to slice [28]. Therefore, we may approximate the two media as a stack
of many RPSs with free-space propagation between them [29]. As the number of slices
increases and the distance between them decreases, the approximation is better (Figure
4f). Each slice can be modeled by a combination of three RPSs. One belongs to the inner
medium and the others to the environment. If the p of each RPS is known, as well as its
statistical AC, then we may use the model. If the scattering of the environment is much
smaller than the cell, then we may approximate each slice as a superposition of only two
RPSs, one of the environment and the other of the cell.

One of the main technical challenges of the multislice approach is to determine
the slice width to be used in the analysis. The common approach is to compute the
result with a specific depth resolution, as in Figure 4f, and then, if required, refining by
recomputing it with a higher resolution, as depicted in Figure 4g. The refinement process
might need to be repeated until convergence to a stable output. In the conventional way,
at each refinement step, the output needs to be calculated. However, using our model
for computing

[∣∣Uout
2
∣∣], the effect of each slice might be separated from any other slice.

Thus, only the additional slices would need to be computed, and their effect is added to
the previous computation by the convolution operator. Therefore, the model is effective in
the sense of computational efficiency.

4. Discussion and Conclusions

The output complex field amplitude of an optical system is formulated in Equation (1)
in terms of convolutions of a maskless system with a scaled FT for each mask, with
corresponding quadratic phase multiplications. This formulation facilitates separating the
effects on the output field of all the masks from the output core system without masks.
It also highlights each mask’s influence on the output [18]; however, the effect of each
mask on the output cannot be entirely separated from the core system due to the quadratic
phase multiplications.

In this paper, we analyze the case where the masks are RPSs. For RPSs, only the
statistical properties can be evaluated; thus, we examined the average effect. An elegant
and comprehensive approach to analyzing the propagation of the first and second order
statistics through the system is by examining the Wigner distribution (WD). For example,
in [5], we applied such an approach for the system in Figure 1b. The WD analysis [5]
of Uout cannot reveal the effect of each individual mask due to the non-SI nature of the
system. However, the statistical averaging mechanism of APSF eliminates the quadratic
phase terms in Equation (1) and separates the statistical effect of each mask. We have
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developed analytical expressions, and validated with simulations that this mechanism
enables separating the statistical effect of each RPS from that of any other RPS and from
the core system.

We conclude by outlining a remarkable difference between systems with deterministic
masks and systems with RPS masks. For deterministic masks, the main reason for the
SI of Uout is the masks’ positions. This affects the quadratic phase factors between the
convolutions in Equation (1), and, even if Uideal is generally a SI system, Uout is a non-SI
system. In contrast to deterministic mask systems, for the RPS system, the reason for the
non-SI feature of the averaged output E

[
|Uout|2

]
is the non-SI feature of |Uideal |2 and not

the RPS positions.
The presented results are useful for exploring various optical systems with multiple-

scattering media, and for cases when the random medium properties are not fixed [30]
and vary along the system path. The method applies to any paraxial core system and any
cascaded system involving different medium properties. For example, the third equality in
(9) is valid for any varying function in ltr along the path in Figure 4c, and additional optical
systems might be added before, between, and after the media. The method also applies
for other models of scattered light in random medium analysis by RSPs, in addition to the
specific model in Figure 1b.

There are many different approaches to physically modeling a random medium [1,3,7,22,29].
This paper has made no new contribution to the physical scattering model at the structural
level. Rather, the contribution of this paper is at the system model level by separating the
RSPs’ effects. We generalize the analysis of any paraxial system with deterministic masks to
the case of RPSs. Our model applies to a general framework; it can handle any paraxial core
system and any cascaded system of sub-systems with RPSs whose ACs are known. Any
paraxial system is defined by the linear canonical transform (LCT) [31,32] and the model
is valid for any RPS that is a wide-sense stationary (WSS) process. The generalized LCT
convolution and the WSS process have many other application areas beside optics [15,16].
Therefore, the results are valid for any cascaded LCT sub-system with multiplication with
WSS processes between the LCT sub-systems.
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Appendix A. The Generalized Convolution

Any paraxial system M can be represented by a corresponding ABCD ray transfer
matrix M with the parameters a, b, c, d. Let us denote the sub-systems M1, M2, and M3 in
Figure 2 with the corresponding matrices, M1, M2, and M3, respectively. The matrices can be
cascaded, so we will denote the maskless system in Figure 2b by the matrix M31 = M3M2M1
with parameters a31, b31, c31, d31. Similarly, we denote the projection system in Figure 2c
by the matrix M32 = M3M2 with parameters a32, b32, c32, d32. The matrix of the projection
system in Figure 2d is M3, with parameters a3, b3, c3, d3.

The ray matrix parameters can be used for the evaluation of the field by virtue of the
generalized form of the Kirchhoff–Huygens diffraction integral through a general ABCD
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system, which is also known as LCT [31–35]. The relation between the output field and the
input field of a first order optical system is given, up to complex factor, by

O(Uin(x))(u) = 1/
√

jλb
∞∫
−∞

Uin(x) exp
[

j
π

λb

(
du2 − 2ux + ax2

)]
dx (A1)

with the parameters a, b, c, d of its corresponding ABCD matrix M. Thus, we denote
the same subscript for O and M. Uout is obtained by cascading the integral three times
with the parameters of the corresponding matrices M1, M2, and M3, together with mul-
tiplication of the masks, i.e., Uout = O3(O2(O1( f0) · g1) · g2). The integral has the same
cascading property as the matrices. Hence, as with M31 = M3M2M1 where there are no
masks (g1 = g2 = 1), we obtain Uideal = O3(O2(O1(Uin))) = O31(Uin) with parameters
a31, b31, c31, d31 (Figure 2b), and, similarly, O3(O2(g1)) = O32(g1) = Ug1 (Figure 2c) and
O3(g2) = Ug2 (Figure 2d).

Similarly to the convolution theorem for FT, a generalized convolution can be defined
in the LCT [36], i.e., O( f

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK
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273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK
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2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE
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274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE
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27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK
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2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT

47

g) = O( f )O(g) and O( f · g) = O( f )
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27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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O(g), where the general-
ized convolution operator

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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depends on the O . parameters. By applying this operator
three times to calculate Uout, we obtain:

Uout= O3(O2(O1(Uin) · g1) · g2) = O3(O2(O1(Uin) · g1))

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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O3(g2)

= O3(O2(O1(Uin))

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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O2(g1))

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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O3(g2) = O31(Uin)

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR

27FD ⟽ \textLongmapsfrom LONG LEFTWARDS DOUBLE ARROW FROM BAR

27FE ⟾ \textLongmapsto LONG RIGHTWARDS DOUBLE ARROW FROM BAR

2921 ⤡ \textnwsearrow NORTH WEST AND SOUTH EAST ARROW

2922 ⤢ \textneswarrow NORTH EAST AND SOUTH WEST ARROW

2923 ⤣ \textlhooknwarrow NORTH WEST ARROW WITH HOOK

2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK

2933 ⤳ \textleadsto WAVE ARROW POINTING DIRECTLY RIGHT
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O32(g1)

USV Symbol Macro(s) Description
2736 ✶ \textSixStar SIX POINTED BLACK STAR

2737 ✷ \textEightStar EIGHT POINTED RECTILINEAR BLACK STAR

2738 ✸ \textEightStarBold HEAVY EIGHT POINTED RECTILINEAR BLACK STAR

2739 ✹ \textTwelveStar TWELVE POINTED BLACK STAR

273A ✺ \textSixteenStarLight SIXTEEN POINTED ASTERISK

273B ✻ \textSixFlowerPetalRemoved TEARDROP-SPOKED ASTERISK

273C ✼ \textSixFlowerOpenCenter OPEN CENTRE TEARDROP-SPOKED ASTERISK

273D ✽ \textAsterisk HEAVY TEARDROP-SPOKED ASTERISK

273E ✾ \textSixFlowerAlternate SIX PETALLED BLACK AND WHITE FLORETTE

273F ✿ \textFiveFlowerPetal BLACK FLORETTE

2740 ❀ \textFiveFlowerOpen WHITE FLORETTE

2741 ❁ \textEightFlowerPetal EIGHT PETALLED OUTLINED BLACK FLORETTE

2742 ❂ \textSunshineOpenCircled CIRCLED OPEN CENTRE EIGHT POINTED STAR

2743 ❃ \textSixFlowerAltPetal HEAVY TEARDROP-SPOKED PINWHEEL ASTERISK

2744 ❄ \textSnowflakeChevron SNOWFLAKE

2745 ❅ \textSnowflake TIGHT TRIFOLIATE SNOWFLAKE

2746 ❆ \textSnowflakeChevronBold HEAVY CHEVRON SNOWFLAKE

2747 ❇ \textSparkle SPARKLE

2748 ❈ \textSparkleBold HEAVY SPARKLE

2749 ❉ \textAsteriskRoundedEnds BALLOON-SPOKED ASTERISK

274A ❊ \textEightFlowerPetalRemoved EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274B ❋ \textEightAsterisk HEAVY EIGHT TEARDROP-SPOKED PROPELLER ASTERISK

274D ❍ \textCircleShadow SHADOWED WHITE CIRCLE

274F ❏ \textSquareShadowBottomRight LOWER RIGHT DROP-SHADOWED WHITE SQUARE

2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE

2752 ❒ \textSquareCastShadowTopRight UPPER RIGHT SHADOWED WHITE SQUARE

2756 ❖ \textDiamandSolid BLACK DIAMOND MINUS WHITE X

2758 ❘ \textRectangleThin LIGHT VERTICAL BAR

2759 ❙ \textRectangle MEDIUM VERTICAL BAR

275A ❚ \textRectangleBold HEAVY VERTICAL BAR

27C2 ⟂ \textperp PERPENDICULAR

27C7 ⟇ \textveedot OR WITH DOT INSIDE

27D1 ⟑ \textwedgedot AND WITH DOT

27DC ⟜ \textleftspoon LEFT MULTIMAP

27E6 ⟦ \textlbrackdbl MATHEMATICAL LEFT WHITE SQUARE BRACKET

27E7 ⟧ \textrbrackdbl MATHEMATICAL RIGHT WHITE SQUARE BRACKET

27F2 ⟲ \textcirclearrowleft ANTICLOCKWISE GAPPED CIRCLE ARROW

27F3 ⟳ \textcirclearrowright CLOCKWISE GAPPED CIRCLE ARROW

27F5 ⟵ \textlongleftarrow LONG LEFTWARDS ARROW

27F6 ⟶ \textlongrightarrow LONG RIGHTWARDS ARROW

27F7 ⟷ \textlongleftrightarrow LONG LEFT RIGHT ARROW

27F8 ⟸ \textLongleftarrow LONG LEFTWARDS DOUBLE ARROW

27F9 ⟹ \textLongrightarrow LONG RIGHTWARDS DOUBLE ARROW

27FA ⟺ \textLongleftrightarrow LONG LEFT RIGHT DOUBLE ARROW

27FC ⟼ \textlongmapsto LONG RIGHTWARDS ARROW FROM BAR
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2924 ⤤ \textrhooknearrow NORTH EAST ARROW WITH HOOK

2925 ⤥ \textlhooksearrow SOUTH EAST ARROW WITH HOOK

2926 ⤦ \textrhookswarrow SOUTH WEST ARROW WITH HOOK
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2750 ❐ \textSquareTopRight UPPER RIGHT DROP-SHADOWED WHITE SQUARE

2751 ❑ \textSquareCastShadowBottomRight LOWER RIGHT SHADOWED WHITE SQUARE
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Ug2

(A2)

The advantage of the generalized convolution is pronounced in the LCT domain [15,36].
However, O(U · g) can also be expressed with regular convolution with a quadratic phase
before and after the convolution [16,17]; then, Uout is obtained by Equation (1) [18].

Appendix B. Derivation of Equation (4)

Using the convolution theorem, we may rewrite Equation (1) as

Uout = q∗3=−1{h2(x)g2(λb3x)} (A3)

where we denote h2(x) = h1(x) ∗ Q32(x), Q32(x) = exp
(
− jπ

λ

(
d3
b3
− d32

b32

)−1
x2
)

,

h1 = h0 · g1(λb32x) and h0 = =[q32Uideal(x)]. The calculated intensity of Equation (A3) is

|Uout|2 =
∣∣q∗3 · =−1{h2(x)g2(λb3x)}

∣∣2
= =−1{[h2(x)g2(λb3x)] ∗ [h2(−x)g2(−λb3x)]∗

}
= =−1

[∫ ∞
−∞ h2(u)g2(λb3u)h2

∗(u− x)g2
∗(u− λb3x)du

] (A4)

where we use the explicit expression of the convolution integral with a dummy variable u.
We assume here that p1 = 1 and we calculate the expected value:

E
[
|Uout|2

]
=

= E
[
=−1

[∫ ∞
−∞ h2(u)g2(λb3u)h∗2(u− x)g∗2(u− λb3x)du

]]
= =−1

[∫ ∞
−∞ E[h2(u)h∗2(u− x)]E[g2(λb3u)g∗2(u− λb3x)]du

]
= =−1

[(∫ ∞
−∞ E[h2(u)h∗2(u− x)]du

)
E[g2(λb3u)g∗2(u− λb3x)]

]
= E

[
=−1[h2(x) ∗ h∗2(−x)]

]
∗ =−1[Γt2(λb3x)]

(A5)

where, in the second line of Equation (A5), the expectation operator E can be within
the integral, because the FT is a linear transform. Because t1 and t2 are independent
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random functions, h2 and g2 are also independent, and we may calculate the expected
value of their involved terms separately (the third line). Assuming p2 = 1, then g2 = t2,
and assuming that the spatial statistics of the RPSs are WSS, then the expected value
is independent of the dummy variable and can be factored outside the integral (Ch.8
in [21], [25]), where we use the statistical AC definition (fourth line). Now we need to
calculate the left term in Equation (A5). Substituting h2(x) = h1(x)Q32(x) in this term, we
obtain, up to complex factor, E

[
=−1[h2(x)h∗2(−x)]

]
= E

[
=−1[h1(x)h∗1(−x)

]]
, where the

effect of Q32(x) is canceled. We calculate the expected value of the last term in the same
manner as in Equation (A5):

E
[
=−1[h1(x) ∗ h∗1(−x)

]]
=

= E
[
=−1

[∫ ∞

−∞
h0(u)g1(λb32u)h∗0(u− x)g∗1(u− λb32x)du

]]
= =−1

[∫ ∞

−∞
ho(u)h∗0(u− x)p1(λb32u)p∗1(u− λb32x)E

[
t1(λb32u)t∗1(u− λb32x)

]
du
]

= =−1[(h0(x)p1(λb32x)) ∗
(
h∗0(−x)p∗1(−λb32x)

)]
∗ =−1[Γt1(λb32x)]

=
∣∣=−1[h0(x)p1(λb32x)]

∣∣2 ∗ =−1[Γt1(λb32x)]

=
∣∣=−1[=[q32Uideal(x)]p1(λb32x)]

∣∣2 ∗ =−1[Γt1(λb32x)]

=
∣∣[q32Uideal(x)] ∗ =−1[p1(λb32x)]

∣∣2 ∗ =−1[Γt1(λb32x)]

(A6)

where we substitute g1(λb32u) = p1(λb32u)t1(λb32u); this time, the involved term of Γt1 is
outside the integral, similar to Γt2 in Equation (A5) and for the same reasons. We are left
with the deterministic terms involving ho and p1. Then, we substitute h0 = =[q32Uideal(x)].
By substituting this result in the former equations, we obtain Equation (3).

It is well known that the power spectral density of a random variable is related to its
averaged power spectrum (Ch.7 in [23]). Using this theorem and assuming p2t2 is WSS,
the expression E[g2(λb3u)g∗2(u− λb3x)] in Equation (A5) is outside the integral and, in the
same manner, (Ch.3 in [27]) we obtain (4).
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