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Abstract

While the cohort level accuracy of polygenic risk score has been widely assessed, uncertainty in 

PRS—estimates of genetic value at the individual level remains underexplored. Here we show 

that Bayesian PRS methods can estimate the variance of an individual’s PRS and can yield 

well-calibrated credible intervals with posterior sampling. For real traits in the UK Biobank 

(N=291,273 unrelated “white British”) we observe large variance in individual PRS estimates 

which impacts interpretation of PRS-based stratification; averaging across 13 traits, only 0.8% 

(s.d. 1.6%) of individuals with PRS point estimates in the top decile have their entire 95% 

credible intervals fully contained in the top decile. We provide an analytical estimator for expected 
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individual PRS variance—a function of SNP-heritability, number of causal SNPs, and sample size. 

Our results showcase the importance of incorporating uncertainty in individual PRS estimates into 

subsequent analyses.

Introduction

Polygenic risk scores (PRS) have emerged as the main approach for predicting the genetic 

component of an individual’s phenotype and/or common-disease risk (i.e. genetic value, 

GV) from large-scale genome-wide association studies (GWAS). Several studies have 

demonstrated the utility of PRS as estimators of genetic values in genomic research and, 

when combined with non-genetic risk factors (e.g., age, diet, etc), in clinical decision-

making1–3—for example, in stratifying patients4, delivering personalized treatment5, 

predicting disease risk6, forecasting disease trajectories7,8, and studying shared etiology 

among traits9,10. Increasingly large GWAS sample sizes have improved the predictive value 

of PRS for several complex traits and diseases7,11–19, thus paving the way for PRS-informed 

precision medicine.

Under a linear additive genetic model, an individual’s GV is the sum of the individual’s 

dosage genotypes at causal variants (encoded as the number of copies of the effect allele) 

weighted by the causal allelic effect sizes (expected change in phenotype per copy of the 

effect allele). In practice, the true causal variants and their effect sizes are unknown and 

must be inferred from GWAS data. Existing PRS methods generally fall into one of three 

categories based on their inference procedure: (1) pruning/clumping and thresholding (P+T) 

approaches, which account for linkage disequilibrium (LD) by pruning/clumping variants 

at a given LD and/or significance threshold and weight the remaining variants by their 

marginal association statistics20,21; (2) methods that account for LD through regularization 

of effect sizes, including lassosum22 and BLUP prediction23,24; and (3) Bayesian approaches 

that explicitly model causal effects and LD to infer the posterior distribution of causal effect 

sizes25–27.

Both the bias and variability of a PRS estimator are critical to assessing its practical utility. 

Given that most PRS methods select variants and estimate their effect sizes, there are two 

main sources of uncertainty: (1) uncertainty about which variants are causal (i.e. have 

non-zero effects) and (2) statistical noise in the causal effect estimates due to the finite 

sample size of GWAS training data. The impact of sample size and LD on causal variant 

identification has been thoroughly investigated in the statistical fine-mapping literature, with 

uncertainty increasing as the strength of LD in a region increases and as the sample size 

of the GWAS training data decreases28,29. This uncertainty about which variant is causal 

propagates into uncertainty in the weights used for PRS, leading to different estimates of 

genetic value in a target individual. Evaluating how this uncertainty propagates to individual 

PRS estimation may improve subsequent analyses such as PRS-based risk stratification.

Unfortunately, studies that have applied PRS and/or examined PRS accuracy have largely 

ignored uncertainty in PRS estimates at the individual level1, focusing instead on cohort-

level metrics of accuracy such as R2. Therefore, the degree to which uncertainty in causal 

variant identification impacts individual PRS estimation and subsequent analyses (e.g., 
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stratification) remains unclear. In contrast, in livestock breeding programs, prediction error 

variance (PEV) of estimated breeding values has been used for decades to evaluate the 

precision of individual estimated breeding values30–32. PEV can be directly computed 

by inverting the coefficient matrix of mixed model equations30,33–39. The uncertainty in 

other biomarkers and non-genetic risk factors have also been well-studied40. For example, 

smoothing methods and error-correction methods are performed before biomarkers and 

non-genetic risk factors are included in the predictive model41,42.

Motivated by potential clinical applications of PRS in personalized medicine, we focus on 

evaluating uncertainty in PRS estimates at the level of a single target individual. Our goal 

is to quantify the statistical uncertainty in individual PRS estimates (PRSi) conditional on 

data used to train the PRS. First, we extend the Bayesian framework of LDpred224, to 

sample from the posterior distribution of an individual’s genetic value (GVi) to estimate 

(1) the posterior standard deviation sd(PRSi) and (2) ρ-level credible interval for the genetic 

value (ρ GVi-CI) for different values of ρ. Second, we introduce an analytical form for the 

expectation across individuals of sd(PRSi) as function of heritability, number of causals and 

training data sample size and show that the analytical form is accurate in simulations and 

real data. Third, we use simulations starting from real genotypes in the UK Biobank to show 

that ρ GVi-CI is well-calibrated when the target sample matches the training data and that 

sd(PRSi) increases as polygenicity (number of causal variants) increases and as heritability 

and GWAS sample size decrease43. Analyzing 13 real traits in the UK Biobank, we observe 

large uncertainties in individual PRS estimates that greatly impact the interpretability of 

PRS-based ranking of individuals. For example, on average across traits, only 0.2% (s.d. 

0.6%) of individuals with PRS point estimates in the top 1% also have corresponding 

95% GVi-CI fully contained in the top 1%. Individuals with PRS point estimates at the 

90th percentile in a testing sample can be ranked anywhere between the 34th and 99th 

percentiles in the same testing sample after their 95% credible intervals are taken into 

account. Finally, we explore a probabilistic approach to incorporating PRS uncertainty in 

PRS-based stratification and demonstrate how such approaches can enable principled risk 

stratification under different cost scenarios.

Results

Sources of uncertainty in individual PRS estimation

Under a standard linear model relating genotype to phenotype (Methods), the estimand of 

interest for PRS is the genetic value of an individual i, defined as GVi = xi⊤β, where xi is an 

M × 1 vector of genotypes and β is the corresponding M × 1 vector of unknown causal effect 

sizes44 (Methods). Different PRS methods vary in how they estimate causal effects β to 

construct the estimator PRSi =   xi⊤β. Inferential variance in β propagates into the variance of 

PRSi. In this work, we focus on quantifying the inferential uncertainty in PRSi and assessing 

its impact on PRS-based stratification.

To illustrate the impact of statistical noise in β on PRSi, consider a toy example of a trait 

for which the observed marginal GWAS effects at three SNPs are equal (Figure 1). The trait 
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was simulated assuming SNP1 and SNP2 are causal with the same effect whereas SNP3 

is not causal but tags SNP2 with high LD (0.9). The expected marginal effect is higher at 

SNP2 than at SNP3, thus implying that GWAS with infinite sample size would correctly 

identify the true causal variants and their effects. However, finite GWAS sample sizes induce 

statistical noise in the observed marginal effects; for example, the marginal effect at SNP3 

(tag SNP) is higher than at SNP2 (true causal SNP) in 12% to 30% of GWASs simulated 

with sample size N=100,000 under the LD structure of Figure 1 (Extended Data Figure 

1). Thus, the key challenge is that, given only GWAS marginal effects and LD, there is 

more than one plausible causal effect-size configuration. In Figure 1, the observed marginal 

effects could be driven by SNPs (1 and 2) or (1 and 3) or (1, 2, and 3); in fact, (1 and 2) 

and (1 and 3) are equally probable in absence of other information. In such situations, one 

can generate different PRS estimates for a given individual from the same training data. For 

example, P+T PRS methods and lassosum, which assume sparsity, would likely select either 

SNPs (1 and 2) or (1 and 3), while BLUP or Bayesian approaches would likely take an 

average over the possible causal configurations, splitting the causal effect of SNP2 between 

SNPs (2 and 3). Thus, in such cases, an individual with the genotype xi = (0,1,0)⊤ can 

be classified as being above or below a prespecified threshold, depending on the approach/

assumptions used to estimate causal effects.

We explore inferential uncertainty in PRSi through two synergistic approaches. First, 

we provide a closed-form approximation for the expected sd(PRSi) under simplifying 

assumptions. Second, we sample from the posterior distribution of the causal effects under 

the framework of LDPred2 to estimate sd(PRSi) and compute credible intervals for GVi 

at prespecified confidence levels (e.g., ρ = 95%) (Figure 2). As an example of the utility 

of such measures of uncertainty, we explore a probabilistic approach to PRS-based risk 

stratification that estimates the probability that GVi is above a given threshold t (Figure 2) 

and demonstrate how this probability can be used in conjunction with situation-specific cost 

functions to optimize risk stratification decisions.

Analytical derivation of individual PRS uncertainty

We focus on evaluating PRS uncertainty within a general Bayesian framework, where the 

posterior mean of the genetic effects conditional on a given GWAS, β ≡ E(β |D), is used to 

estimate the genetic value of a given individual, xi⊤β ≡ E(xi⊤β |D, xi) (D = X,y) with access 

to individual data or D = βGWAS, R  with access to marginal association statistics and LD, 

see Methods). We define PRS uncertainty for individual i as the posterior variance of their 

genetic value, var(xi⊤β |D, xi). This quantity is an approximation to prediction error variance 

(PEV) of estimated breeding values (EBV) in livestock genetics32,34, analogous to genetic 

value in human genetics (Methods).

Assuming that every SNP has a nonzero causal effect drawn i.i.d. from βj N 0,
ℎg2

M , 

one can derive a closed-form approximation to the expectation across individuals of the 

posterior variance of genetic value (Methods). Given a GWAS discovery dataset of N 
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unrelated individuals drawn from a given population, the expected PRS uncertainty for a test 

individual i randomly drawn from the same population is

Exi var xiTβ|D, ℎg
2 ≈ 1

ℎg
2 + N

M

−1
#(1)

Under an infinitesimal model, the analytical form is an approximately unbiased estimator 

of the expected posterior variance, even in the presence of LD (Figure 3a). Under non-

infinitesimal models, the analytical form underestimates the expected posterior variance, 

albeit by a relatively small amount (Extended Data Figure 2). Notably, across 13 phenotypes 

in the UK Biobank, the analytical form provides relatively accurate estimates of the 

empirical average sd(PRSi) computed from LDpred2 posterior sampling (R2 = 0.79 across 

traits, Figure 3b). Thus, the analytical form captures the interplay among SNP-heritability, 

sample size, and number of causal variants and provides a useful approximation to 

individual PRS uncertainty when posterior samples are unavailable.

Factors impacting individual PRS uncertainty in simulations

Next, we quantified the degree to which different parameters contribute to uncertainty in 

individual PRS estimates in simulations starting from real genotypes of unrelated “white 

British” individuals in the UK Biobank (UKBB, N=291,273 individuals (Ntrain=250,000, 

Nvalidation=20,000, Ntest=21,273) and M=459,792 SNPs, see Methods).

First, we assess the calibration of the ρ-level credible intervals for GVi estimated by 

LDpred2. We compared the empirical coverage of the ρ-level credible intervals (proportion 

of individuals in a single simulation replicate whose ρ GVi-CI overlaps their true GVi) 

to the expected coverage (ρ) across a range of values of ρ. We find that, overall, the ρ GVi-

CI are well-calibrated, albeit slightly mis-calibrated in high-heritability, low-polygenicity 

simulations (Figure 4a and Extended Data Figure 3). For example, across 10 simulation 

replicates where ℎg
2 = 0.25 and pcausal = 1%, the 95% GVi-CIs have an average empirical 

coverage of 0.92 (s.e.m. 0.005) (Figure 4a). The ρ GVi-CIs estimated by LDpred2 are also 

robust to training cohort sample size (Supplementary Figure 2). Since individuals with large 

PRS estimates might have larger number of effect alleles and therefore accumulate more 

inferential variance, we investigate whether individual PRS uncertainty varies with respect to 

their true genetic value and find no significant correlation between an individual’s sd(PRSi)
and their true genetic value (Figure 4b).

We next assessed the impact of trait-specific genetic architecture parameters (heritability and 

polygenicity) on individual PRS uncertainty, defined as the posterior standard deviation of 

genetic value. First, we fixed heritability and varied polygenicity and found that sd(PRSi)
increases from 0.10 to 0.50 when the proportion of causal variants increases from 0.1% to 

100% (Figure 4c, Extended Data Figure 4). Second, we varied the heritability while keeping 

polygenicity constant. Since different heritabilities lead to different variances explained by 

the PRS in the test sample, we scale the individual standard deviation (sd(PRSi)) by the 

standard deviation of PRS point estimates across all tested individuals; we refer to this 
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quantity as “scaled SD” (Methods). We find that the scaled SD decreases with heritability 

and sample size (Figure 4d, Extended Data Figure 5). For example, when ℎg
2 = 0.05 and 

pcausal = 0.1%, a 5-fold increase in training data sample size (50K to 250K) reduces scaled 

SD by 3-fold (from 1.50 to 0.56); when ℎg
2 = 0.05 and pcausal = 1%, the same increase in 

training data sample size reduces the scaled SD by 4-fold (from 1.10 to 0.39). While the two 

simulation settings yield the same expected variance per causal variant under our simulation 

framework (i.e. ℎg
2/ M × pcausal , see Methods), we observe lower uncertainty across all 

sample sizes for ℎg
2 = 0.5 and pcausal = 1%, further emphasizing the impact of trait-specific 

genetic architecture on individual PRS uncertainty.

Next, we investigated the impact of different types of model misspecification on credible 

interval calibration and PRS uncertainty in simulations based on a set of 124,080 SNPs (the 

union of 36,987 UKBB array SNPs and 93,767 HapMap3 SNPs) on chromosome 2. First, 

we assessed the impact of imperfect tagging of causal variants by simulating phenotypes 

from the set of HapMap3 + UKBB SNPs (hg
2 = 0.02, pcausal= 0.01, 0.001) and training the 

PRS on (i) 124,080 SNPs (HapMap3 + UKBB) and (ii) 36,987 SNPs (UKBB only). The 

“HapMap3 + UKBB” model contains all causal SNPs whereas the “UKBB only” model 

excludes ~70% of the causal SNPs, thus representing imperfect tagging of causal effects. 

As expected, the empirical coverage of the credible intervals is biased downward across a 

range of values of ρ when only the UKBB SNPs are used to train the model (Extended Data 

Figure 6). This downward bias is less pronounced when polygenicity is higher (e.g., pcausal 

= 0.01 vs 0.001) since the UKBB SNPs tag a larger proportion of heritability due to the 

increased causal SNP density. Second, to assess whether the coexistence of large and small 

causal effects impacts PRS uncertainty, we compared three simulation scenarios: (I) large 

effects only (pcausal= 0.001, ℎg
2 = 0.02), (II) small effects only (pcausal = 0.01, ℎg

2 = 0.02), and 

(III) a “mixture of normal” model (pcausal = 0.0055, ℎg
2 = 0.02 in total) composed of large 

effects (pcausal = 0.0005, ℎg
2 = 0.01) and small effects (pcausal = 0.005, ℎg

2 = 0.01). We find 

that the presence of a large number of small effects increases the uncertainty in individual 

PRS estimates. For example, the average sd(PRSi) among the 21,273 test individuals is 0.050, 

0.087, and 0.11 for simulations I, III and II, respectively (Extended Data Figure 7). In 

simulation III, both PRS uncertainty and accuracy (squared Pearson correlation between GV 

and PRS: RGV
2  = 0.90, 0.51, 0.68 for I, II, III) are approximate averages of simulations I 

and II. Despite the LDpred2 model being mis-specified in the mixture of normal simulation, 

the genetic value credible intervals remain well-calibrated (Extended Data Figure 7). Third, 

we compared PRS obtained using external reference LD (a subsample of either 1,000 (1K) 

or 2,000 (2K) individuals held out from the UKBB training data) to those obtained using 

in-sample LD (all 250,000 individuals in the training data) and found similar degrees of PRS 

uncertainty and credible interval calibration (Extended Data Figure 8).

Individual PRS uncertainty in real data in the UK Biobank

We investigate individual PRS uncertainty across 13 traits in the UK Biobank: hair 

color, height, body mass index (BMI), bone mass density in the heel (BMD), high-
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density lipoprotein (HDL), low-density lipoprotein (LDL), cholesterol, igf1, creatinine, red 

blood cell count (RBC), white blood cell count (WBC), hypertension and self-reported 

cardiovascular disease (CVD). First we focus on PRS-based risk stratification. Since 

most traits analyzed here are not disease traits, we use “above-threshold” and “below-

threshold” when referring to the results of risk stratification. We classify test individuals 

as above-threshold if their PRS point estimate (the posterior mean of their genetic value) 

exceeds a prespecified threshold t (i.e. PRSi > t), where t is set to the 90th PRS percentile 

obtained from the test-group individuals (Methods). (We note that this threshold was 

chosen arbitrarily to provide an example of how one can compute and interpret PRS 

uncertainty; in practice, choosing a threshold requires careful consideration of various 

trait-specific factors such as prevalence and the intended clinical application1.) We then 

partition the above-threshold individuals into two categories: individuals whose ρGVi-CI 

are fully above the threshold t (“certain above-threshold”) and individuals whose ρ GVi-

CI contain t (“uncertain above-threshold”). Similarly, we classify individuals with PRS 

estimates lie below a prespecified threshold into “certain below-threshold” and “uncertain 

below-threshold” categories (Figure 5a). At t = 90th percentile and ρ = 95%, only 1.8% 

(s.d. 2.4%) of above-threshold individuals (averaged across traits) are deemed certain above-

threshold individuals; the remaining above-threshold individuals have 95% GVi − CI that 

overlap t (Figure 5b, Table 1). On the other hand, 33.7% (s.d. 15.3%) of below-threshold 

individuals have 95% GVi − CI that do not overlap t (Figure 5b, Table 1). Consistent with 

simulations, we find that uncertainty is higher for traits that are more polygenic45 (Table 1) 

with the average standard deviation of PRSi ranging between 0.2 to 0.41 across the studied 

traits (Table S1). We assessed the impact of quantile normalization of phenotypes and verify 

that for mildly skewed distributions, its impact on uncertainty is small (Supplementary 

Figures 3 and 4).

For completeness, we investigated the impact of the threshold t, and credible level ρ, 

on PRS-based stratification uncertainty, defined as the proportion of above-threshold 

individuals classified as “certain above-threshold” for a given trait. As expected, the 

proportion of certain above-threshold classifications decreases as ρ increases (Figure 6a). 

For traits with higher average uncertainty (scaled SD) we observe lower rates of certain 

classifications across all values of ρ. For example, at t = 90th and ρ = 95%, the proportion 

of above-threshold individuals classified with certainty is 0 % for BMI (average scaled SD 

= 1.54) and 6.2% for hair color (average scaled SD = 0.62) (Figure 6a). Height and HDL 

have similar average levels of uncertainty (average scaled SD of 0.95 for height and 0.96 

for HDL) and similar proportions of above-threshold individuals classified with certainty 

(0.9% for height and 0.8% for HDL) (Figure 6a, Table 1). Using a more stringent threshold 

t amplifies the effect of uncertainty on PRS-based stratification (Figure 6b). For example, 

for BMI and hair color, the proportion of certain classifications among above-threshold 

individuals drops for all values of ρ when we increase the threshold from t=90th percentile to 

t=99th percentile (Figure 6b).

We also quantified the impact of inferential variance in PRSi on PRS-based ranking of the 

test-group individuals. Using two random samples of genetic effects, we generated two 

independent rankings for all individuals in the test data and quantified the correlation in the 
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rankings (Figure 5c, Methods). We observe large variability in the rankings across the test 

data, with the correlation of rankings ranging from 0.25 to 0.78 across the 13 traits. We 

also estimated 95% credible intervals for the rank of individuals at a given percentile (e.g., 

90th) (Table 2, Methods, Extended Data Figure 9) to find high variability in the ranking. 

For example, in the case of HDL an individual at 90th (99th) percentile based on PRS point 

estimate can be within 41th to 99th percentiles (72th-99th) with 95% probability when the 

inferential variance in PRS estimation is taken into consideration (Table 2).

Integrating uncertainty into PRS-based stratification

In contrast to current PRS-based stratification practices which compare an individual’s 

PRS point estimate, PRSi, to a given threshold t, here we explore the use of the posterior 

probability that GV for individual i is above the threshold (i.e. Pr(GVi > t)). We estimate 

Pr(GVi > t) using Monte Carlo integration within the LDpred2 framework and show in 

simulations that the probability is well-calibrated for different causal effect size distributions 

despite slight miscalibration when polygenicity is high or causal variants are not present in 

the training SNP panel (Methods, Supplementary Figures 5 and 6).

As expected, for traits with higher PRS uncertainty, we observe a smaller proportion 

of testing individuals with deterministic classification (Pr(GVi > t) = 0 or 1) (Extended 

Data Figure 10). We also find a tight correlation between PRSi and Pr(GVi > t) across 

individuals in the test data (Extended Data Figure 10). This is due to the relatively high 

polygenicity of the traits in the analysis; a lower correlation is expected for traits with lower 

polygenicity (Supplementary Figure 7). However, Pr(GVi > t) also contains information 

about individual-level false positive (FP) and false negative (FN) probabilities which, given 

a situation-specific cost function, can be used to calculate the expected cost of an above-

threshold versus below-threshold classification (Methods). The cost functions for FP and FN 

should be carefully specified in the context of the clinical application; e.g., in the case of 

bone density scans, the cost functions will depend on the actual cost of a low bone density 

versus risks associated with exposure to low-dose x-rays. Consider three cost functions 

which relate the relative costs of false positive versus false negative diagnoses: (a) equal 

cost for each FP and FN diagnosis (CFP = CFN = 1); (b) 3x higher cost for FP diagnoses 

(CFP = 3, CFN = 1); and (c) 3x higher cost for FN diagnoses (CFP = 1, CFN = 3). For 

an individual with Pr(GVi > t) = 0.6, the probability of a FP versus FN diagnosis is 0.4 

versus 0.6, respectively. The expected costs of FP diagnoses (Pr(FP) × CFP) under each 

scenario are (a) 0.4, (b) 1.2, and (c) 0.4; the expected costs of FN diagnoses (Pr(FN) × 

CFN) are (a) 0.6, (b) 0.6, and (c) 1.8. Therefore, the classification for this individual that 

minimizes the expected cost under each scenario is (a) above-threshold, (b) below-threshold, 

and (c) above-threshold. More notably, since the probabilities are well-calibrated, we can 

estimate the expected cost for a population with the individual probability of being at 

above-threshold. As a demonstrating example, in simulation, we calculate the estimated cost 

curve on testing individuals (Methods), which is very close to the true cost curve despite 

slight inflation (Figure 6c). The estimated cost curves for the above-described cost functions 

achieve minimum cost at threshold = 0.5, 0.25 and 0.75 respectively, which is close to the 

optimum from true cost curves (0.5, 0.25, 0.7, Figure 6c).
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Discussion

In this work, we demonstrate that uncertainty in PRS estimates at the individual level can 

have a large impact on subsequent analyses such as PRS-based risk stratification, which 

is complementary to methods that assess cohort-level metrics of PRS accuracy such as 

R2. We propose a general procedure for obtaining estimates of individual-PRS uncertainty 

which can be applied to a wide range of existing PRS methods. Among 13 traits in the 

UK Biobank, we find that even with GWAS sample sizes on the order of hundreds of 

thousands of individuals, there is considerable uncertainty in individual PRS estimates that 

can impair the reliability of PRS-based stratification. We propose a probabilistic approach 

to stratification that can be used in conjunction with situation-specific cost functions to help 

inform PRS-based decision-making, noting that such an approach is not necessarily useful 

for all downstream applications of PRS. Since PRS must be combined with non-genetic 

risk factors (e.g., age, lab values) to evaluate an individual’s absolute risk for a given 

disease, the practical utility of PRS, including measures of uncertainty in PRS, is highly 

dependent on disease-specific factors such as heritability, age of onset, and the costs/risks 

that would be incurred by initiating treatment, among many others1,3. We note that this 

work focuses on estimating genetic value rather than predicting the phenotype; uncertainty 

in predictions of phenotype will be larger than the results reported here by 1-ℎg
2 due 

to the additional uncertainty in non-genetic factors46, which can be further modeled and 

integrated3,41,47–49. We conjecture that measures of individual-PRS uncertainty will be most 

useful for characterizing individuals whose combined risk scores (genetics + non-genetics 

factors) are at or close to the decision threshold for medical intervention; we leave an 

investigation of uncertainty in combined risk scores for future work.

We conclude with several caveats and future directions. First, we quantify individual 

PRS uncertainty by extending LDpred224, which is just one of many existing Bayesian 

methods that can be adapted for the same purpose27,50,51. Extensions of other methods, 

including analogous procedures for P+T52 and regularization-based approaches22,23 could 

also be investigated. Overall, our methods produce well-calibrated credible intervals in 

realistic simulation parameter ranges, albeit slight mis-calibration when polygenicity is 

low and heritability is high. We hypothesize that it is due to several approximations 

employed in LDpred2 for computational efficiency. We leave investigation of the impact 

of approximation on calibration and further improvement for future work.

Second, we propose an analytical form to estimate the expected PRS uncertainty as a 

function of GWAS sample size, number of causal SNPs and SNP-heritability. Although 

our analytical formula does provide a good approximation, systematic biases are observed, 

largely due to the ignorance of causal configuration uncertainty induced by LD. In practice, 

we recommend using samples from posterior distribution, whose properties are validated in 

our simulation studies.

Third, while we find broad evidence that both trait-specific genetic architecture parameters 

(e.g., heritability, polygenicity) and individual-specific genomic features (e.g., cumulative 

number of effect alleles) can impact individual PRS uncertainty, both sources of uncertainty 

merit further exploration. For example, we perform simulations under a model in which 
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each causal variant explains an equal portion of total SNP-heritability but, in reality, genetic 

architecture can vary significantly among different traits. We do not find a correlation 

between an individual’s cumulative number of effect alleles and their individual PRS 

uncertainty. This is primarily due to the high polygenicity of the traits being tested. 

Consequently, we observe tight correlation between PRSi and Pr(GVi > t) in most simulation 

scenarios except those with low polygenicity. Extending these analyses to traits with a 

wider range of genetic architectures will be of interest, for example, presence of both 

monogenic and polygenic disease risk factors53,54. It’s also important to investigate the 

relative contribution of LD and small effect sizes to PRS uncertainty under various genetic 

architecture. We leave the method development of PRS uncertainty decomposition for future 

study.

Fourth, although we have shown that our approach is robust to certain types of model 

misspecification (e.g., mixture of normal effect sizes distributions, imperfect tagging of 

causal effects), we do not exclude the possibility of nonlinear interaction effects such as 

GxE, GxG and dominance effects55–58. A comparison of the impact of genotype imputation 

on uncertainty also merits further exploration. We leave a full investigation of these 

questions for future work.

Lastly, in the present study, we did not investigate individual PRS uncertainty in transethnic 

or admixed population settings. Causal variants, causal effect sizes, allele frequencies, 

and LD patterns can vary significantly across populations59,60. Moreover, PRS prediction 

accuracy (measured via cohort-level metrics) is well known to depend heavily on the 

ancestry of the individuals in the GWAS training data61,62.We therefore leave a detailed 

exploration of individual PRS uncertainty with respect to ancestry as future work.

Methods

Individual PRS uncertainty.

Let yi be a trait measured on the i-th individual, xi an M × 1 vector of standardized 

genotypes and β an M × 1 vector of corresponding standardized effects for each genetic 

variant. Under a standard linear model, the phenotype model is yi = xi⊤β + ϵi, where 

ϵi N 0, σe2 . The goal of polygenic risk scores (PRS) methods is to predict genetic value 

for individual i GVi ≔ xi⊤β  of the phenotype. In practice, the genetic effects β are unknown 

and need to be inferred from GWAS data as β. Therefore, the inferential variance in β
propagates to the estimated genetic value of individual i PRSi = xi⊤β. In this work we study 

the inferential variance in PRSi = xi⊤β as a noisy estimate of GVi = xi⊤β

Estimating individual uncertainty in Bayesian PRS models.

Next, we show how Bayesian models for estimating PRSi can be extended to evaluate the 

variance of its estimate. We focus on LDpred2, a widely used method, although similar 

approach can be incorporated in most Bayesian approaches. LDpred2 assumes causal effects 

at SNP j are drawn from a mixture distribution with spike at 0 as follows:
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βj
N 0,

ℎg2
Mpcausal

,   with probabilitypcausal

0 ,  with probability 1 − pcausal

Here, M is the total number of SNPs in the model, ℎg
2 is the heritability of the trait, and 

pcausal is the proportion of causal variants in the model (i.e., polygenicity). Let βGWAS
and R represent GWAS marginal effects and LD matrix computed from GWAS samples. 

By combining the prior probability p(β |ℎg
2, pcausal) and the likelihood of observed data 

p(βGWAS |β, R), we can compute a posterior distribution as p β |βGWAS, R, ℎg
2, pcausal . The 

posterior distribution is intractable and therefore LDpred2 uses Markov Chain Monte Carlo 

(MCMC) to obtain posterior samples from p(β |βGWAS, R, ℎg
2, pcausal). For simplicity, we use 

β p(β |βGWAS, R, ℎg
2, pcausal) to refer to the samples from the posterior distribution, and use 

p β  to refer to p(β |βGWAS, R, ℎg
2, pcausal) whenever context is clear. The posterior samples 

of the causal effects are summarized using the expectation E β = ∫ βp β dβ, leading to 

PRSi = xi⊤E β .

Unlike existing methods that summarize the posterior samples of causal effects into the 

expectation and then estimate PRSi, we sample from the posterior of PRSi to construct 

a ρ level credible interval of genetic value (ρ GVi-CI) for each individual. Bernstein-

von Mises theorem provides the basis that under certain conditions, such constructed 

Bayesian credible interval will asymptotically be of coverage probability ρ63. This 

property of the Bayesian credible interval provides intuitive explanation of the uncertainty. 

Concretely, we obtain B MCMC samples from the posterior distribution of causal effects 

p β :β 1 , β 2 , …, β B . Then we compute a PRS estimate for individual i from each sample 

of p β :xi⊤β 1 , xi⊤β 2 , …, xi⊤β B  to approximate the posterior distribution of PRSi (p xi⊤β ). 

From the B samples of posterior, we obtain empirical 1 − ρ
2  and 1 − ρ

2  quantiles as lower and 

upper bound estimates of ρ GVi-CI (Figure 2b). As B goes to infinity, such Monte Carlo 

estimates converge to the Q 1 − ρ /2 xi⊤β , Q 1 + ρ /2 xi⊤β , where Qα xi⊤β  represents the α-

quantile (here, α = (1−ρ)/2, (1+ρ)/2) for distribution of p xi⊤β . Similarly, we summarize the 

posterior samples using the second moment to estimate sd(PRSi) = sd xi⊤β . In practice, we 

used B = 500 as that leads to stable results. We investigated the autocorrelation statistics 

and found no evidence of autocorrelation at various lags in our experiment. (Supplementary 

Figure 8). We recommend checking autocorrelation in practice. The MCMC samplings 

should be thinned when there is strong evidence of autocorrelation, which otherwise will 

lead to underestimation of variance.

Although in this work we focus on LDpred2, the above described procedure is generalizable 

to a wide range of Bayesian methods (e.g., SBayesR27, PRS-CS50 and AnnoPred51). 
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Methods that are not based on Bayesian principle could potentially use Bootstrap to obtain 

individual uncertainty intervals64.

PRS uncertainty analytical form under infinitesimal model.

To facilitate understanding of PRS uncertainty, we derive an analytical estimator of PRS 

uncertainty under simplified assumptions: (1) all M SNPs are independent and causal; and 

(2) effect sizes are i.i.d. and drawn from an infinitesimal model, βj N 0, ℎg
2/M  for j=1,…, 

M, where ℎg
2 is the total heritability and M is the number of causal variants. Without 

loss of generality, we assume that genotypes are standardized to have mean zero and unit 

variance in the population, i.e. E xij = 0 and var(xij) = 1, where xij is the genotype at SNP 

j for individual i. Under this assumption, following Appendix A in ref.26, the least squares 

estimate of the GWAS marginal effect βGWAS, j is approximately distributed as

βGWAS,  j βj N βj,   1
N 1 −

ℎg2
M .

Since the per-SNP heritability in this model, 
ℎg2

M , is small, the variance 1
N 1 −

ℎg2

M  can be 

approximated as 1/N. The posterior distribution of βj |βGWAS,  j then becomes

βj βGWAS,  j N 1 + M
ℎg2N

−1
βGWAS,  j,   1

N 1 + M
ℎg2N

−1
.

Therefore, the posterior variance of genetic value for an individual with the genotype xi can 

be approximated as

var xi⊤β|xi, X, y, ℎg2 ≈ ∑
j = 1

M
xij2 var βj|βGWAS,  j =

∑j = 1
M xij2

N 1 + M
ℎg2N

−1
,

where the approximation is based on the fact that βj and βk are approximately independent 

in the posterior distribution.

Recalling that genotype is standardized so that E(xij2 ) = 1, the expected posterior variance of 

genetic value in the population can be approximated by:

Exi var xi⊤β|xi, X, y, ℎg2 ≈
ME xij2

N 1 + M
ℎg2N

−1
= 1

ℎg2
+ N

M

−1
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Connection between PEV and posterior variance.

Prediction error variance (PEV), a widely used concept in the animal breeding literature, 

is defined as varβ, y xi⊤β − xi⊤β , where xi is the genotype of individual i and β = Eβ |y β  is 

the posterior mean of the causal effects. This variance is with respect to the randomness of 

both the prior β and phenotype y, conditional on a fixed genotype matrix X. Furthermore, 

assumptions can be made on X, to incorporate the randomness in X. PRS uncertainty with X 

fixed, which we derive here, will be a lower bound for PRS uncertainty with random X.

It follows from the law of total variance that varβ, y β = Ey varβ |y β + vary Eβ |y β . Using 

the fact that varβ, y β − β = varβ, y β − varβ, y β  (Section 5.6.4 from ref.31), we have

varβ, y β − β = varβ, y β − varβ, y β
= Ey varβ y β + vary Eβ y β − varβ, y β
= Ey varβ y β

Finally, by multiplying a fixed genotype vector xi to both sides, we have

varβ, y xi⊤β − xi⊤β = Ey varβ y xi⊤β

Therefore, the posterior variance is an unbiased estimator of prediction error variance. We 

also note that under infinitesimal model setting, the posterior variance of genetic value has 

the same matrix form as the inversion of coefficient matrix of mixed model equation for 

BLUP30,33.

Simulations.

We design simulation experiments in various settings and different sample sizes to 

understand the properties of uncertainty in PRS estimates. We used simulation starting 

from genotypes in UK Biobank65. We excluded SNPs with MAF < 0.01 and genotype 

missingness > 0.01, and those SNPs that fail the Hardy-Weinberg test at significance 

threshold 10−7, which leaves us 459,792 SNPs. We preserve “white British individual”, with 

self-reported British white ancestry and filter pairs of individuals with kinship coefficient 

< 1/2(9/2))65. We further filtered individuals who are outliers for genotype heterozygosity 

and/or missingness, and obtained 291,273 individuals for all analyses.

Given the genotype matrix X, heritability ℎg
2, proportion of causal variants pcausal, 

standardized effects and phenotypes are generated as follows

βj
N 0,

ℎg2
Mpcausal

cj = 1 ,  with probability pcausal

0 cj = 0,  with probability 1 − pcausal
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y1, …, yN ⊤ N Xβ, 1 − ℎg2 IN

Finally, given the phenotypes y = (y1,…yN)⊤ and genotypes X, we simulate the GWAS 

marginal association statistics with βGWAS = 1
N X⊤y. We simulate the data using a wide 

range of parameters, ℎg
2 ∈ 0.05, 0.1, 0.25, 0.5, 0.8 , pcausal ∈ {0.001,0.01,0.1,1}, a total of 20 

simulation settings, with each repeated 10 times. The total population of individuals is 

randomly assigned to 250,000 individuals as the training population, 20,000 individuals as 

the validating population, and the rest of 21,273 individuals as the testing population, as the 

usual practice for the PRS model building process. When investigating how sample sizes 

in the training cohort change PRS uncertainty, we vary the sample sizes in the training 

population in 20,000, 50,000, 100,000, 150,000, and 250,000, while holding the validation 

population and testing population as intact, to enable a fair comparison between sample 

sizes.

Real data analysis.

We performed real data analysis with 13 real traits from UK Biobank, including hair 

color, height, body mass index (BMI), bone mass density in the heel (BMD), high density 

lipoprotein (HDL), low density lipoprotein (LDL), cholesterol, igf1, creatinine, red blood 

cell count (RBC) and white blood cell count (WBC), hypertension and cardiovascular 

disease. The genotype was processed in the same way as the simulation study, where we 

have 459,792 SNPs and 291,273 individuals. We randomly partitioned the total of 291,273 

individuals into 250,000 training, 20,000 validation and 21,273 testing groups. Training 

samples were used to estimate PRS weights; validation samples were used to estimate 

hyperparameters (e.g., heritability and polygenicity) for LDpred2; and testing samples were 

used to evaluate accuracy and uncertainty. The random partition was repeated five times to 

average of the randomness of results due to sample partition. For each round of random 

partition of the individuals, we calculated marginal association statistics between genotype 

and quantile-normalized phenotype in training group with PLINK, using age, sex, and the 

first 20 genetic principal components as the covariates. Then we applied LDpred2 to obtain 

the individual posterior distribution of the genetic value, as described above. We regressed 

out covariates from the phenotypes to obtain adjusted phenotypes, where the regressing 

coefficients are first estimated from the training population, and applied to phenotype 

from training, validation and testing population respectively. We evaluate accuracy of PRS 

estimates in validation and testing groups by Pearson correlation between PRS estimates and 

adjusted phenotypes.

PRS analysis using LDpred2.

We run LDpred2 for both simulation and real data analysis with the following settings. 

We calculate the in-sample LD with functions provided by the LDpred2 package, using 

the window size parameter of 3cM. We estimate the heritability ℎchri
2 , i = 1, …, 22 for each 

chromosome with built-in constrained LD score regression66 function. We run LDpred2-

grid per chromosome with a grid of 17 polygenicity parameters pcausal from 10−4 to 1 
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equally spaced in log space, three heritability parameters 0.7ℎchri
2 , 1.0ℎchri

2 , 1.4ℎchri
2 , and 

with the sparsity option both enabled and disabled, as recommended by LDpred2. We 

choose the model with the highest R2 between the predicted posterior mean and the 

(adjusted) phenotype on validation set as best model to apply to testing data. We extract 

500 posterior samples of causal effects β 1 , β 2 , …, β 500  after 100 burn-in iterations from 

MCMC sampler of the model to approximate posterior distribution of causal effects. For 

each individual with genotype xi, we calculate xi⊤β 1 , xi⊤β 2 , …, xi⊤β 500  to approximate GV 

posterior distribution for individual i. We then calculate summary statistics of GV posterior 

distribution, including the posterior mean (PRSi), ρ level credible interval (ρ GVi-CI) and 

probability of above threshold t (Pr(GVi > t)).

Calculating and evaluating the coverage.

We evaluate the coverage properties of ρ GVi-CI in simulation: we check whether 

ℙ xi⊤β ∈ Q 1 − ρ /2 xi⊤β , Q 1 + ρ /2 xi⊤β = ρ. To evaluate this property, for each simulated 

dataset, we calculate the frequency of the true genetic risk lies in the predicted interval, 

i.e., the frequency of xi⊤β ∈ Q 1 − ρ /2 xi⊤β , Q 1 + ρ /2 xi⊤β  for every individual in the 

testing population, for ρ ∈ {0.1, 0.2, …, 1.0}. This property provides us an intuitive 

understanding of the predicted interval: for an individual with a predicted interval 

Q 1 − ρ /2 xi⊤β , Q 1 + ρ /2 xi⊤β , its true genetic risk is expected to be in this interval with 

a probability ρ.

Scaled standard deviation in individual PRS estimates.

To compare the relative order of standard deviation across different genetic architecture, 

especially across genetic architecture with different heritability, we define the quantity, 

scaled standard deviation in individual PRS estimates (scaled sd(PRSi)) to enable fair 

comparison. The quantity is defined for every individual i, as sdβ xi⊤β /sdxi xi⊤β , where 

the numerator term sdβ xi⊤β  refers to standard deviation due to the posterior sampling of β

of i-th individual. Recalling that xi⊤β = E xi⊤β , the denominator term sdxi xi⊤β  refers to the 

variation of the point estimate across individuals in the population.

Posterior individual ranking interval.

The relative rank of individual PRS xi⊤β b  in the population xj⊤β b , j = 1, …, N varies 

across different MCMC samplings of posterior causal effects. To evaluate the uncertainty 

of ranking for individual i, we compute ri
b  as the quantile of xi⊤β b  in the population 

xj⊤β b , j = 1, …, N for each of the b = 1, …, B posterior samples to approximate posterior 

distribution of the relative rank. We can obtain ρ-level credible intervals of ranking as 

[Q(1−ρ)/2(ri), Q(1+ρ)/2(ri)] for each individual i. To assess the uncertainty of ranking for 

individuals at 90 (99) percentile threshold based on PRS estimates, we select individuals 

within 1 percentile of thresholds (89.5–90.5%, 98.5–99.5%) and compute mean and standard 
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deviation for lower and upper bound of ρ=95% posterior ranking interval, across the selected 

individuals.

PRS rank correlation between MCMC samplings.

With the B posterior causal effects samples β 1 , β 2 , …, β B  after burn-in, and N 

individuals in the testing population x1, x2, …, xN, we compute PRS for each individual, 

x1
⊤β b , …, xN

⊤ β b  and its relative rank in the population r1
b , …, rN

b  for each posterior sample 

β b . Then for each pair of different b1-th,b2-th posterior samples, β b1 , β b2 , we calculate 

the spearman correlation between r1
b1 , …, rN

b1  and r1
b2 , …, rN

b2 , representing the variability 

of the ranks across MCMC samplings. We compute the rank correlation for 1000 pairs of 

different MCMC samplings, and get the distribution of the rank correlation.

Probabilistic risk stratification.

We define the notion of probabilistic framework for risk stratification based on posterior 

distribution of GVi. Given a pre-specified threshold t, for every individual, we can calculate 

the posterior probability of the genetic risk larger than the given threshold t, (Pr(GVi > t), 
with Monte Carlo integration as

Pr GVi > t = 1
B ∑

b = 1

B
I (xi⊤β b > t)

We use the previous simulation settings to show that this probability is well calibrated. For 

each simulation, we divide the individuals based on their posterior probability of being at 

above-threshold into 10 bins with {0, 0.1, …, 1.0} as breaks. For each bin, we calculate the 

proportion of individuals with true genetic risk higher than the threshold as the empirical 

probability and the average posterior probability as theoretical probability. The empirical 

probability is expected to be the same as theoretical probability.

Integrating uncertainty into PRS-based stratification.

The individualized posterior distribution of genetic value provides extra information for 

patient stratification. We consider a scenario that there is a cost associated for decision 

that (1) classify an individual with low genetic risk into a high genetic risk category, CFP, 

where FP represents false positive. (2) classify an individual with high genetic risk into 

a low genetic risk category, CFN, where FN represents false negative. For an individual 

with posterior probability (Pr(GVi > t), we want to decide an action, whether to classify 

this individual to be at high genetic risk, and perform further screening. If we classify this 

individual as above-threshold, we will have probability 1−(Pr(GVi > t), that this individual 

is in fact below-threshold, inducing an expected cost CFP(1−(Pr(GVi > t)). Conversely, if we 

classify this individual as below-threshold, we will have probability (Pr(GVi > t) that this 

individual will be in the high genetic risk, inducing an expected cost CFN(Pr(GVi > t). To 

minimize the expected cost, we would decide according to which action leads to the least 

cost. The critical value in this scenario is 
 CFN

CFP + CFN
: if Pr GVi > t >  

 CFN
CFP + CFN

, we would 
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choose to classify this individual as above-threshold, otherwise below-threshold. For Figure 

6c, given the cost parameters CFP, CFN, and a threshold t, for every decision threshold, 

we calculate the estimated cost by summing up CFP(1-(Pr(GVi > t)) for those individuals 

classified as high genetic risk category, and CFN(Pr(GVi > t) for those individuals classified 

as low genetic risk category in the testing data. Correspondingly, for every decision 

threshold, we also calculate the true cost based on the ground truth of genetic values in 

the simulation.

Software implementation.

Our method is implemented in the LDpred2 package (see URLs). In the function 

`snp_ldpred2_grid`, setting the option `return_sampling_betas = TRUÈ will output B 

posterior samples of the causal genetic effects. Posterior samples of an individual’s GV 

are obtained by multiplying the individual’s genotype by the M × B weight matrix. One can 

subsequently obtain the posterior mean, posterior variance, and other quantities of interest 

from the posterior of the GV. We note that the time required to estimate the causal effects 

remains the same; the only additional computational costs come from storing the M × B 

weight matrix and from multiplying the genotype vector by an M × B matrix rather than 

an M × 1 vector. The memory required to store 500 samples of causal effects for 459,792 

SNPs is approximately 2 GB. Given the B posterior samples of causal effects, the runtime 

for computing the posterior distribution of genetic value for 10,000 testing individuals is less 

than five minutes.

Extended Data

Extended Data Fig. 1. GWAS sample size and causal effect size impact the relative ordering of 
marginal GWAS effects at tag versus true causal SNPs.
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We simulated a GWAS of N individuals (XN×3) for 3 SNPs with LD structure R (SNP2 and 

SNP3 are in LD of 0.9 whereas SNP1 is uncorrelated to other SNPs) where SNP1 and SNP2 

are causal with the same effect size βc = (β, β, 0) such that the variance explained by this 

region is var (Xβc) = 0.5/mcausal corresponding to a trait with total heritability of 0.5 equally 

distributed across mcausal regions in the genome. For each parameter setting we quantified 

the proportion of times the marginal GWAS effect at SNP3 (tag SNP) is larger than the 

observed marginal effect at SNP2 (true causal) across 1,000 randomly drawn GWASs. To 

explore the impact of different causal effect sizes, we varied mcausal from 1,000 to 10,000 

causal regions in the genome.

Extended Data Fig. 2. Analytical estimator of sd(PRSi) provides an approximately unbiased 
estimates of average sd(PRSi) of testing individuals.
The x-axis is the average sd(PRSi) in testing individuals within each simulation replicate. 

The y-axis is the expected sd(PRSi) computed with Equation (1), replacing M and ℎg
2 with 

estimates of the number of causal variants and SNP-heritability, respectively, from LDpred2. 

Each dot is an average of 10 simulation replicates for each pcausal ∈ {0.001, 0.01, 0.1, 

1}. The horizontal whiskers represent ± 1.96 standard deviations of average sd(PRSi). The 

vertical whiskers represent ± 1.96 standard deviations of expected sd(PRSi). Note that when 

pcausal = 1, the independent LD assumption is violated but the analytical form still provides 

approximately unbiased estimates. When pcausal ≠ 1, the infinitesimal assumption is violated, 

leading to downward bias in the analytical estimator. In these scenarios, since we simply 

replace M with M × pcausal, the uncertainty identifying the causal variants is ignored by 

Equation (1).
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Extended Data Fig. 3. Calibration of ρ-level genetic value credible interval with respect to 
proportion of causal effects and SNP-heritability in testing individuals.

Each row of panels corresponds to one heritability parameter ℎg
2 ∈ 0.05, 0.1, 0.25, 0.5, 0.8

and each column of panels corresponds to one polygenicity parameter pcausal ∈ {0.001, 0.01, 

0.1 1}. The x-axis is the expected coverage of ρ-GV CI (ρ). The y-axis is the empirical 

coverage calculated as the proportion of ρ-GV CIs that contain the true genetic value for one 

simulation repeat. The dots and error bars are mean ± 1.96 s.e.m of the empirical coverage 

calculated from 10 simulation repeats.
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Extended Data Fig. 4. Distribution of individual PRS absolute standard deviation with respect to 
polygenicity under different heritability.

Each panel represents simulation with one ℎg
2 from {0.05, 0.1, 0.25, 0.5, 0.8}. The x-axis 

is four polygenicity parameters (pcausal ∈ {0.001, 0.01, 0.1, 1}). The y-axis is standard 

deviation in PRS estimation of an individual. Each violin plot represents 21,273 testing 

individuals across 10 simulations (212,730 values).

Extended Data Fig. 5. Distribution of individual PRS absolute standard deviation with respect to 
heritability under different polygenicity.
Each panel represents simulation with one polygenicity from {0.001, 0.01, 0.1, 1}. The 

x-axis is five heritability parameters (ℎg
2 ∈ 0.05, 0.1, 0.25, 0.5, 0.8 ). The y-axis is scaled 

standard deviation in PRS estimation of an individual. Each violin plot represents 21,273 

testing individuals across 10 simulations (212,730 values).
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Extended Data Fig. 6. Posterior distribution of genetic value is mis-calibrated when causal 
variants are partially absent in the SNP panel used for PRS training.
For all panels, we simulated 124,080 SNPs (a union of 36,987 UK Biobank (UKBB) array 

SNPs and 93,767 HapMap3 SNPs) on chromosome 2. We trained the PRS model on either 

the HapMap3 + UKBB SNPs (all causal variants are observed in the training data) or UKBB 

SNP panel (~70% of causal variants are excluded). (a) Calibration of ρ-level genetic value 

credible interval. The x-axis is the expected coverage of ρ-GV CI (i.e. ρ). The y-axis is the 

empirical coverage calculated as the proportion of GV CIs that contain the true genetic value 

in one simulation replicate. (b) Calibration of ρ-level rank credible interval. The x-axis is the 

expected coverage of the rank CI (ρ). The y-axis is the empirical coverage calculated as the 

proportion of ρ-rank CIs that contain the true rank of individual among testing individuals 

in one simulation replicate. (c) Calibration of probability of GV above threshold t. The 

x-axis is the expected probability set as middle of each bin. The y-axis is the empirical 

probability calculated as the proportion of individuals having GV within the lower and upper 

bound of the bin of one simulation replicate. Different colors represent different prespecified 

thresholds. (d) Distribution of individual PRS scaled standard deviation. For (a-c), the 

dots and error bars are mean ± 1.96 s.e.m empirical coverage/probability calculated from 

10 simulation replicates. For (d), the boxplot center line is the median; the lower and 

upper hinges correspond to the first and third quartiles, and boxplot whiskers extend to the 
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minimum and maximum estimates located within 1.5 × interquartile range (IQR) from the 

first and third quartiles, respectively.

Extended Data Fig. 7. Posterior distribution of genetic value is well-calibrated for mixture of 
normal effect size distribution.
Each column summarizes results for each of the three genetic architectures. Small effects 

are simulated under pcausal = 0.01, h2g = 0.02; large effects are simulated under pcausal 

= 0.001, h2g = 0.02; Mixture refers to a half and half mixture of the two simulations 

(small effects: pcausal = 0.0005, h2g = 0.01; large effects: pcausal = 0.005, h2g = 0.01). 

(a) Calibration of ρ-level genetic value credible intervals. (b) Calibration of ρ-level rank 

credible intervals. (c) Calibration of probability of GV above threshold t. (d) Distribution 

of individual PRS standard deviations. See Extended Data Figure 6 for a detailed figure 

description.
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Extended Data Fig. 8. Posterior distribution of genetic value is well-calibrated with external LD
Each column summarizes the calibration and uncertainty of PRS trained with LD computed 

from four different cohorts: I. 250K UKB training individuals; II. 2K held-out UKBB 

individuals; III. 1K held-out UKBB individuals. (a) Calibration of ρ-level genetic value 

credible intervals. (b) Calibration of ρ-level rank credible intervals. (c) Calibration of 

probability of GV above threshold t. (d) Distribution of individual PRS scaled standard 

deviation. See Extended Data Figure 6 for a detailed figure description (h2
g = 0.02, pcausal= 

0.01).
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Extended Data Fig. 9. Calibration of ρ-level rank credible interval with respect to proportion of 
causal effects and SNP-heritability in testing individuals
The x-axis is the expected coverage of ρ-Rank CI. The y-axis is the empirical coverage 

calculated as the proportion of ρ-Rank CIs that contain the true rank of individual among 

testing individuals for one simulation. The dots and bars are mean ± 1.96 s.e.m of empirical 

coverage calculated from 10 simulation repeats.
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Extended Data Fig. 10. Individual ranking is consistent when ranking by PRS estimates versus 
probability of genetic value above threshold
The x-axis is the PRS estimates of testing individuals and the y-axis is the probability that 

GV is above threshold t, where t is (arbitrarily) set to the 90th percentile in the testing 

individuals. For the individuals whose PRS estimates are far away from threshold, the 

probability is 0 and 1 respectively. For individuals close to the stratification threshold, the 

probability of larger than the threshold increases as PRS estimates increase. The histogram 

on the x-axis is the distribution of PRS estimates in testing individuals and the histogram on 

the y-axis is its distribution in testing individuals.
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Refer to Web version on PubMed Central for supplementary material.
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Figure 1. LD and finite GWAS sample size introduce uncertainty into PRS estimation.
We simulated a GWAS of N individuals across 3 SNPs with LD structure R (SNP2 and 

SNP3 are in LD of 0.9 whereas SNP1 is uncorrelated to other SNPs) where SNP1 and SNP2 

are causal with the same effect size βc = (0.016, 0.016, 0) such that the variance explained 

by this region is var(x⊤βc) = 0.5/1000 corresponding to a trait with total heritability 

of 0.5 uniformly distributed across 1,000 causal regions. The marginal effects observed 

in a GWAS, βGWAS, have an expectation of Rβc and variance-covariance σe2/N R, thus 

showcasing the statistical noise introduced by finite sample size of GWAS (N); for example, 

the probability of the marginal GWAS effect at tag SNP3 to exceed the marginal effect of 

true causal SNP2, although decreases with N, remains considerably high for realistic sample 

and effect sizes (12% at N=100,000 for a trait with h2=0.5 split across 1,000 causal regions, 

see Supplementary Figure 1). We consider one such observation for the effects observed in a 

GWAS: βGWAS = 0.016,  0.016,  0.016 . Given such observation, in addition to the true causal 

effects (βc), other causal configurations are probable β1=(0.016, 0, 0.016) or β2=(0.016, 

0.008, 0.008). An individual with genotype xi = (0 1 0)⊤ will attain different PRS estimates 

under these different causal configurations. Most importantly, in the absence of other prior 

information, β1 and βc are equally probable given the data thus leading to different PRS 

estimates for individual xi = (0 1 0)⊤.
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Figure 2. Framework for extracting uncertainty from Bayesian methods for probabilistic 
individual stratification.
(a) Procedure to obtain uncertainty from LDpred2. LDpred2 uses MCMC to sample from 

the posterior causal effect distribution given GWAS marginal effects, LD, and a prior 

on the causal effects. It outputs the posterior mean of the causal effects which is used 

to estimate the posterior mean genetic value (the PRS point estimate). Our framework 

samples from the posterior of the causal effects to approximate the posterior distribution 

of genetic value. The density plot represents the posterior distribution of GV for an 

individual. The shaded area represents a ρ-level credible interval. The dot represents the 

posterior mean. (b) Probabilistic risk stratification framework. Given a threshold t, instead 

of dividing individuals into above-threshold PRSi > t  and below-threshold PRSi ≤ t  groups 

dichotomously (left), probabilistic risk stratification assigns each individual a probability of 

being above-threshold (Pr(GVi > t) (right).
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Figure 3. Expected sd(PRSi) estimated as a function of heritability, polygenicity and training 

GWAS sample size is highly correlated with average sd(PRSi) across testing individuals.

(a) The analytical form provides approximately unbiased estimates of expected sd(PRSi)
in simulations when pcausal = 1. The x-axis is the average sd(PRSi) in testing individuals. 

The y-axis is the expected sd(PRSi) computed from Equation (1). Each dot is an average 

of 10 simulation replicates for each hg
2 ∈ 0.05,  0.1,  0.25,  0.5,  0.8 . The horizontal whiskers 

represent ± 1.96 standard deviations of average sd(PRSi) across 10 simulation replicates. 

The vertical whiskers represent ± 1.96 standard deviations of expected sd(PRSi) across 10 

simulation replicates. (b) The analytical estimator of expected sd(PRSi) is highly correlated 

with estimates obtained via posterior sampling for real traits. The x-axis is the average 

sd(PRSi) in testing individuals. The y-axis is the expected sd(PRSi) computed from Equation 

(1), where M is replaced with the estimated number of causal variants and heritability is 

replaced with estimated SNP-heritability.
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Figure 4. Genetic architecture (polygenicity (pcausal), SNP-heritability ℎg
2

, and GWAS sample 

sizes) impacts uncertainty in PRS estimates in simulations.

(a) Individual credible intervals are well-calibrated (ℎg
2 = 0.25, pcausal = 1%). Empirical 

coverage is calculated as the proportion of individuals in a single simulation whose ρ-level 

credible intervals contain their true genetic risk. The dots and error bars represent mean 

±1.96 s.e.m of the empirical coverage calculated from 10 simulations. (b) Correlation 

between uncertainty and true genetic value (ℎg
2 = 0.25, pcausal = 1%). Each dot represents 

an individual. The x-axis is the true genetic value; the y-axis is standard deviation of the 

individual PRS estimate (sd(PRSi)). (c) Distribution of individual PRS uncertainty estimates 

with respect to polygenicity pcausal ∈ {0.0001, 0.01, 0.1, 1}, (ℎg
2 = 0.25). Each violin plot 

represents sd(PRSi) for 21,273 testing individuals across 10 simulations. (d) Distribution of 

individual PRS uncertainty estimates with respect to heritability (ℎg
2 ∈ 0.05, 0.1, 0.25, 0.5, 0.8

pcausal = 0.01. Each violin plot represents scaled sd(PRSi) for 21,273 testing individuals 

across 10 simulation replicates. Since larger heritability yields larger genetic values in our 

simulations, we plot sd(PRSi) divided by the standard deviation of PRS point estimates in 

the testing group to enable comparison of uncertainty across different heritability values 

(Methods). (e) Distribution of individual uncertainty estimates with respect to training 

GWAS sample size. Each violin plot represents scaled sd(PRSi) of individual PRS for 21,273 

testing individuals across 10 simulation replicates.
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Figure 5. Uncertainty in real data and its influence on genetic risk stratification.
(a) Example of posterior PRS distributions for individuals with certain below-threshold 

(dark blue), uncertain below-threshold (light blue), uncertain above-threshold (light yellow), 

and certain above-threshold (dark yellow) classifications for HDL. Each density plot 

is a smoothed posterior PRS distribution of an individual randomly chosen from that 

category. The solid vertical lines are posterior means. The shaded areas are 95% credible 

intervals. The red dotted line is the classification threshold. (b) Distribution of classification 

categories across 11 traits (t=90%, ρ=95%). Each bar plot represents the frequency of 

testing individuals who fall into each of the four classification categories for one trait. The 

frequency is averaged across five random partitions of the whole dataset. (c) Correlation of 

PRS rankings of test individuals obtained from two MCMC samplings from the posterior 

of the causal effects. For each trait, we draw two samples from the posterior of the causal 

effects, rank all individuals in the test data twice based on their PRS from each sample, 

and compute the correlation between the two rankings across individuals. Each violin plot 

contains 5,000 points (1,000 pairs of MCMC samples and five random partitions).
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Figure 6. Stratification uncertainty at different threshold t and credible set level ρ.
(a) Proportion of above-threshold classifications that are “certain” for four representative 

traits. The x-axis shows ρ varying from 0 to 1 in increments of 0.05. The stratification 

threshold t is fixed at 90%. (b) Proportion of above-threshold classifications that are 

“certain” for two representative traits and two stratification thresholds (t = 90%, 99%). 

(c) Flexible cost optimization with probabilistic individual stratification under various cost 

functions. Each color corresponds to one cost function: (i) equal cost for each FP and FN 

diagnosis (CFP = CFN = 1, red); (ii) 3x higher cost for FP diagnoses (CFP = 3, CFN = 1, 

green); and (iii) 3x higher cost for FN diagnoses (CFP = 1, CFN = 3, blue). The probability 

threshold for classification is varied along the x-axis. Solid lines represent cost calculated 

using true genetic risk and dotted lines represent cost estimated from the probability of 

an individual being above-threshold. Diamond symbols represent the optimal classification 

threshold for each curve (the minima). Simulation parameters are fixed to ℎg
2 = 0.25, pcausal = 

1%.
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Table 1.
PRS-based individual stratification uncertainty across 11 complex traits in UK Biobank.

We quantified PRS-based stratification uncertainty in testing individuals for eleven complex traits at two 

stratification thresholds (t = 90th and t = 99th percentiles). The numbers of certain versus uncertain 

classifications are determined from the 95% credible intervals (ρ = 95%). For each trait, we report averages 

(and standard deviations) from five random partitions of the whole dataset.

Trait

PRS < t (“Below threshold”) PRS > t (“Above threshold”)

# Certain # Certain/(#Certain + # 
Uncertain) # Certain # Certain/(#Certain + # 

Uncertain)

t = 90 th 

Hair color 11205.0 (287.0) 58.5 (1.5)% 131.4 (18.6) 6.2 (0.9)%

Height 5961.4 (197.6) 31.1 (1.0)% 18.4 (2.4) 0.9 (0.1)%

Body mass index (BMI) 935.8 (198.6) 4.9 (1.0)% 0.4 (0.5) 0.0 (0.0)%

High density lipoprotein (HDL) 5860.8 (681.9) 30.6 (3.6)% 16.2 (8.3) 0.8 (0.4)%

Low density lipoprotein (LDL) 8236.4 (494.3) 43.0 (2.6)% 29.6 (7.8) 1.4 (0.4)%

Cholesterol 7026.0 (660.1) 36.7 (3.4)% 20.2 (6.8) 0.9 (0.3)%

IGF1 3305.2 (371.8) 17.3 (1.9)% 4.0 (1.2) 0.2 (0.1)%

Creatinine 2052.4 (375.8) 10.7 (2.0)% 1.2 (1.3) 0.1 (0.1)%

Red blood cell count (RBC) 3745.8 (660.4) 19.6 (3.4)% 6.2 (3.6) 0.3 (0.2)%

White blood cell count (WBC) 1996.6 (120.5) 10.4 (0.6)% 0.6 (0.5) 0.0 (0.0)%

Bone mass density in heel (BMD) 1654.2 (152.5) 8.6 (0.8)% 2.0 (2.3) 0.1 (0.1)%

Hypertension 257.4 (78.1) 1.3 (0.4)% 0.0 (0.0) 0.0 (0.0)%

Cardiovascular (CVD) 125.4 (57.7) 0.7 (0.3)% 0.0 (0.0) 0.0 (0.0)%

Average (s.d.) 4027.9 (3398.3) 21.0 (17.8) % 17.7 (35.5) 0.8 (1.6) %

t= 99th

Hair color 18398.6 (208.4) 87.4 (1.0)% 4.4 (1.5) 2.1 (0.7)%

Height 14442.6 (147.6) 68.6 (0.7)% 0.6 (0.9) 0.3 (0.4)%

Body mass index (BMI) 5254.4 (739.1) 24.9 (3.5)% 0.2 (0.4) 0.1 (0.2)%

High density lipoprotein (HDL) 14167.6 (691.4) 67.3 (3.3)% 0.2 (0.4) 0.1 (0.2)%

Low density lipoprotein (LDL) 15615.8 (448.1) 74.1 (2.1)% 0.6 (0.5) 0.3 (0.3)%

Cholesterol 14793.2 (668.3) 70.2 (3.2)% 0.2 (0.4) 0.1 (0.2)%

IGF1 11049.2 (597.9) 52.5 (2.8)% 0.2 (0.4) 0.1 (0.2)%

Creatinine 8337.2 (702.7) 39.6 (3.3)% 0.0 (0.0) 0.0 (0.0)%

Red blood cell count (RBC) 11532.8 (1056.9) 54.8 (5.0)% 0.0 (0.0) 0.0 (0.0)%

White blood cell count (WBC) 8496.6 (370.7) 40.3 (1.8)% 0.0 (0.0) 0.0 (0.0)%

Bone mass density in heel (BMD) 7816.0 (511.1) 37.1 (2.4)% 0.0 (0.0) 0.0 (0.0)%

Hypertension 2378.8 (390.7) 11.3 (1.9)% 0.0 (0.0) 0.0 (0.0)%

Cardiovascular (CVD) 1506.6 (512.3) 7.2 (2.4)% 0.0 (0.0) 0.0 (0.0)%

Average (s.d.) 10291.5 (5220.4) 48.9 (24.8) % 0.49 (1.2) 0.2 (0.6) %
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Table 2.
Average 95% posterior ranking credible intervals for individuals at two stratification 
thresholds for 11 traits.

We estimated the 95% posterior ranking credible intervals for individuals at the 90th and 99th percentiles of the 

testing population PRS estimates. Mean and standard deviation are calculated from the 95% posterior ranking 

intervals of individuals whose point estimates lie within 0.5% of the stratification threshold (213 individuals 

between the 89.5th and 90.5th percentiles for t = 90th and between the 98.5th and 99.5th percentiles for t = 

99th).

Trait
t = 90th t = 99th

Lower bound Upper bound Lower bound Upper bound

Hair color 57.9 (1.8) 97.9 (0.22) 88.0 (2.2) 99.8 (0.05)

Height 43.4 (2.1) 98.6 (0.18) 74.9 (3.4) 99.9 (0.04)

Body mass index (BMI) 22.9 (2.1) 99.0 (0.17) 45.8 (4.0) 99.8 (0.04)

High density lipoprotein (HDL) 41.3 (2.8) 98.7 (0.18) 72.3 (4.1) 99.9 (0.04)

Low density lipoprotein (LDL) 49.1 (2.4) 98.6 (0.19) 77.7 (3.5) 99.9 (0.04)

Cholesterol 45.1 (2.8) 98.6 (0.19) 74.9 (3.8) 99.9 (0.04)

IGF1 33.2 (2.4) 98.8 (0.17) 63.0 (4.1) 99.9 (0.04)

Creatinine 28.0 (2.4) 98.9 (0.17) 54.7 (4.3) 99.9 (0.04)

Red blood cell count (RBC) 34.5 (2.7) 98.8 (0.17) 64.4 (4.5) 99.9 (0.04)

White blood cell count (WBC) 28.2 (2.0) 98.9 (0.17) 56.0 (3.9) 99.9 (0.04)

Bone mass density in heel (BMD) 26.0 (2.2) 98.9 (0.18) 52.5 (4.1) 99.9 (0.04)

Hypertension 17.7 (1.8) 99.0 (0.17) 36.6 (3.4) 99.8 (0.05)

Cardiovascular (CVD) 15.5 (1.9) 99.0 (0.18) 32.3 (3.8) 99.8 (0.06)

Average (s.d.) 34.2 (12.9) 98.8 (.03) 61.0 (16.6) 99.9 (0)
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