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ABSTRACT 
 

Hepatocellular carcinoma is a common type of liver cancer. Resistance to chemotherapeutic agents is a major 
problem in cancer therapy. MicroRNAs have been reported in cancer development and tumor growth; 
however, the relationship between chemoresistance and hepatocellular carcinoma needs to be fully 
investigated. Here, we treated hepatocellular carcinoma cell line (HA22T) with a histone deacetylase inhibitor 
to establish hepatocellular carcinoma-resistant cells (HDACi-R) and investigated the molecular mechanisms of 
chemoresistance in HCC cells. Although histone deacetylase inhibitor could not enhance cell death in HDACi-R 
but upregulation of miR-107 decreased cell viability both in parental cells and resistance cells, decreased the 
expression of cofilin-1, enhanced ROS-induced cell apoptosis, and dose-dependently sensitized HDACi-R to 
HDACi. Further, miR-107 upregulation resulted in tumor cell disorganization in both HA22T and HDACi-R in a 
mice xenograft model. Our findings demonstrated that miR-107 downregulation leads to hepatocellular 
carcinoma cell resistance in HDACi via a cofilin-1-dependent molecular mechanism and ROS accumulation. 
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INTRODUCTION 
 

Hepatocellular carcinoma (HCC) is a serious health 

issue worldwide as a primary malignancy and is the 

third leading cause of cancer-related deaths in the world 

[1]. The pathophysiology of HCC continues to be 

studied. Hepatitis B infection and other etiologies 

underlying cirrhosis are highly associated with HCC [2, 

3]. Recently, some studies have shown that metabolic 

syndrome and repeated inflammation enhance 

carcinogenesis [4, 5]. Together, these findings indicate 

that HCC mainly occurs in the liver with cirrhosis, 

repeated inflammation, and fibrogenesis. 

 

Currently, there are three important therapeutic 

approaches used in HCC therapy such as surgery, 

radiation therapy, and chemotherapy. Primary tumor (no 

metastasis) can usually be removed by surgery such as 

hepatectomy and liver transplantation [6]. However, liver 

transplantation has shown no significant improvement in 

survival rate and prognosis in patients with HCC [7]. 

Moreover, targeted therapy, a novel type of 

chemotherapy, involves drugs inhibiting cancer-specific 

molecules such as vascular endothelial growth factor 

(VEGF) and histone deacetylases (HDAC) [8–10]. 

Importantly, some clinical cases show a failure of 

chemotherapeutic drugs to inhibit tumor growth in 

patients or after a few treatments, indicating that the 

tumors become chemoresistant [11]. Chemoresistance 

results in relapse after few cycles of chemotherapy or 

targeted therapy. There are two types of chemoresistance, 

one is present before therapy named primary resistance, 

and the other one is acquired resistance, which occurs 

during treatment cycles [12, 13]. 

 

Cofilin-1 and other proteins with similar biological 

functions belong to the actin depolymerizing factor 

(ADF) family. [14]. After activation by 

dephosphorylation by phosphatases, cofilin-1 interacts 

with actin and promotes actin remodeling to promote 

cell migration [15]. Previous studies have identified 

that the mechanism of cofilin-1 induces cell apoptosis 

is translocate to mitochondria [16–18] and only the 

active form of cofilin-1 will translocate mitochondria 

[19]. Other studies also reported that treat with 

reactive oxygen species (ROS) inducer results in 

mitochondria dysfunction through cofilin-1 in liver 

cancer cells [20] and activated cofilin interacts with 

Bcl-2-associated X protein (BAX) and translocates to 

the mitochondria to promote neuronal cell apoptosis 

[16]. Importantly, our previous research demonstrated 

that chemotherapeutic drug-induced HCC cell death 

via activation of cofilin-1 is related to interaction with 

BAX and ROS accumulation. Phosphorylation of 

cofilin-1 can thus lead to HCC resistance to 

chemotherapeutic drugs [21]. 

MicroRNAs (miRNAs) are approximately 20–22 

nucleotides of short RNA [22]. They bind to the 3' 

untranslated region (3' UTR) on the target mRNAs, 

which may have perfect complementarity that would 

result in mRNA degradation or imperfect 

complementarity to inhibit mRNA translation or 

subsequent reduction in protein expression. The 

molecular mechanism of miRNAs in tumor such as 

pathogenesis, and the therapeutic response had been 

demonstrated, and these miRNAs have been reported as 

potential biomarkers in cancer [23–30]. Although there 

are many studies that show that miRNAs play important 

roles in tumorigenesis, their role in liver cancer 

resistance to chemotherapeutic drugs and the miRNA 

transfer in cell cross-talks need to be fully elucidated. 

 

Our previous study identified a potential mechanism of 

drug resistance in liver cancer. In this study, we focus 

on the role of the miRNAs between parental and drug-

resistant cells to reveal potential therapeutic targets in 

liver cancer. 

 

RESULTS 
 

Expression of miR-107 decreased in HDACi-

resistance HCC cells compared to parental cells 

 

In our previous study [21] we established HDACi 

(HDAC inhibitor)-R cell lines by challenging HA22T 

cells with HDAC inhibitors (apicidin and SAHA) to. 

Here, we used HA22T and HDACi-R cell lines to 

investigate the role of miRNAs in drug resistance in 

HCC. We chose miR-107, which has been implicated in 

the regulation of cofilin-1 expression based on previous 

findings and the microRNA.org database. Figure 1A is a 

microarray heatmap that shows that miRNA-107 

expression (HDACi-R/HA22T log2 ratio = -

1.640506638; p values = 0.004507765) decreased in 

HDACi-resistant cells (HDACi-R) compared to that in 

parental cells (HA22T). Next, we confirmed that the 

expression of miR-107 in resistant cells was indeed 

lower than that in parental cells by qRT-PCR (Figure 

1B) and RT-PCR (Figure 1C). These data suggest that 

expression of miR-107 was downregulated in resistant 

cells. 

 

Relationship between miR-107 and chemosensitivity 

in HCC cells 

 

Figure 1 shows that the expression of miR-107 was 

downregulated in HDACi-resistant cells. Following 

this, we determined the role of miR-107 in 

chemoresistance in two HCC cells using transfected 

miR-107 mimic and miR-107 antisense (inhibitor). 

Initially, we examined whether miR-107 expression 

changes after transfection of HDACi-R and HA22T 
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cells with a mimic or an inhibitor of miR107, 

respectively. Figure 2A shows a lower miR-107 

expression in HDACi-R compared to HA22T in control, 

untransfected cells. The expression of miR-107 was 

upregulated after transfection with the mimic in 

HDACi-R cells and was downregulated after 

knockdown of miR-107 using transfection of inhibitor 

in parental cells in a dose-dependent manner. Further, 

we investigated whether miR-107 induces HCC cell 

apoptosis. The results of the MTT assay showed that 

HDACi induced cell death only in HA22T cells, and 

that upregulation of miR-107 in HA22T and HDACi-R 

cells decreased cell viability (Figure 2B). Moreover, we 

observed that the upregulation of miRNA could induce 

apoptosis-related proteins such as cleaved caspase-3 (c-

caspase-3) and decrease pro-survival-related proteins 

such as Bcl-2 and p-Akt expression in HDACi-R and 

HA22T cells, as confirmed by western blotting analysis 

(Figure 2C) and quantification (Figure 2D). 

Importantly, Figure 2B–2D show that miR-107 

regulated cell viability and expression of apoptosis-

related and pro-survival-related proteins, especially in 

HDACi-R cells. Interestingly, comparing the protein 

basal levels of the two cell lines, resistant cells have a 

lower caspase 3 and Bcl-2 and a higher p-Akt 

expression, compared to HA22T. We also noticed that 

overexpressed miR-107 decreased cell viability both in 

two cell lines (Figure 2B) hint that miR-107 may 

induced cell death both in two cells. However, Figure 

2C showed that miR-107 significant increased c-

caspase-3 expression and decreased Bcl-2/ p-Akt 

expression only in HDACi-R cells. These findings 

indicate that miR-107 plays an important role to 

regulate cell death and chemoresistance in HCC cells, 

especially in HDACi-R. 

 

MiR-107 regulates chemosensitivity in HCC cells  

 

According to our previous results, expression of miR-

107 downregulated pro-survival proteins expression in 

HDACi-R cells, and the upregulation of miR-107 led to 

increased apoptosis in HDACi-R HCC cells compared 

to that in parental cells. Next, we determined whether 

expression of miR-107 affects chemosensitivity in two 

liver cell lines. In Figure 3A, the MTT assay results 

indicated that HDACi (SAHA) decreased HA22T cell 

viability but knockdown of expression of miR-107 

rescued HDACi-induced cell death in HA22T cells. 

Moreover, we confirmed that HDACi cannot induce cell 

death in HDACi-R cells but upregulation of miR-107 

induced HDACi-R cellular sensitivity to HDACi in a 

dose-dependent manner (Figure 3B). These results 

indicate that miR-107 is highly correlated with 

chemosensitivity in HCC cells. 

 

 
 

Figure 1. Expression of microRNA-107 (miR-107) in HA22T and HDACi-R. (A) Detection and comparison of expression of miRNAs 
between HA22T and HDACi-R (histone deacetylase inhibitor-resistant) cells by microarray assay. (B) Confirmation of decrease in expression of 
miR-107 in HDACi-R cells by quantitative RT-PCR. (C) Double confirmation of decrease in expression of miR-107 in HDACi-R cells by RT-PCR. 
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MiR-107 induced ROS accumulation and cell 

apoptosis by targeting cofilin-1 in HCC cells 

 

Previous research has indicated that cofilin-1 leads to 

chemoresistance by affecting ROS accumulation in 

HCC cells [21]. Moreover, other studies have indicated 

that cofilin-1 is a direct target for miR-107 [31] in brain 

diseases. We then determined whether miR-107 induced 

cell death by regulating cofilin-1 expression and ROS 

accumulation. As shown in Figure 4A (predicted 

binding sites on microrna.org online database) and 

Figure 4B, the miR-107 binding sequence is located on 

 

 
 

Figure 2. MicroRNA-107 (miR-107) decreased cell survival and induced cell death in hepatocellular carcinoma (HCC) cells. (A) 

Regulation of miR-107 expression by transfection with mimic and inhibitor in HA22T and HDACi-R (histone deacetylase inhibitor-resistant) 
cells detected by quantitative RT-PCR. (B) MiR-107 decreased cell viability in HA22T and HDACi-R cells, as assessed by MTT (3-(4,5-
dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. (C) MiR-107 promoted apoptosis-related proteins such as cleaved caspase-3 
and decreased expression of pro-survival-related proteins. (D) Quantification of Figure 2C. Expression of fold change of cleavage caspase-3, 
Bcl-2, and p-Akt after normalization using actin. *P < 0.05, ***P < 0.001 vs. HA22T control. #P < 0.05, ###P < 0.001 vs. HDACi-R control. 



 

www.aging-us.com 12050 AGING 

the cofilin-1 3' UTR, as predicted by mircoRNA.org 

database. After co-transfecting HDACi-R cells with the 

cofilin-1 3' UTR reporter vector and miR-107 mimic, 

luciferase activity was found to be significantly reduced 

compared with the cofilin-1 3' UTR reporter vector 

alone. Next, we determined whether cell death 

induction by miR-107 was related to ROS 

accumulation. First, we observed that ROS accumulated 

in HA22T control group more than HDACi-R control 

group. Upregulated expression of miR-107 induced 

ROS accumulation in HDACi-R cells (Figure 4C). As 

presented in Figure 4D, ROS induced higher apoptosis- 

related protein expression (c-caspase-3, Figure 4E) in 

HA22T cells than HDACi-R cells. Further, upregulation 

of miR-107 decreased expression of cofilin-1 and 

enhanced ROS-induced cell apoptosis. We observed the 

same result after knockdown of cofilin-1 by siRNA also 

enhanced HDACi-R sensitivity to ROS (Figure 4D). 

Importantly, upregulation of miR-107 promoted ROS 

accumulation in both types of cells, especially in 

HDACi-R cells. These findings suggest that miR-107 

inhibited cell viability through cofilin-1-mediated ROS 

accumulation in HCC cells. 

 

MiR-107 inhibits HCC tumor growth in nude mice 

model 

 

After verification of the role of miR-107 in two HCC 

cells, we confirmed whether miR-107 regulates HCC 

tumor growth in a nude mice model. HDACi-R tumor

 

 
 

Figure 3. MicroRNA-107 (miR-107) enhanced chemosensitivity in hepatocellular carcinoma (HCC) cells. (A) Knockdown of 

expression of miR-107 prevented HDACi (histone deacetylase inhibitor)-induced downregulation of cell viability in HA22T cells, as assessed 
with MTT (3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyl tetrazolium bromide) assay. (B) Upregulation of miR-107 enhanced chemosensitivity in 
HDACi-R cells, as assessed with MTT assay. Scramble miRNA group treated with 15 μM. 
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growth was faster than that of HA22T. After tumors 

were injected with miR-107, we observed significant 

inhibition of tumor growth, especially in 

HDACi-R cells (Figure 5A). Histological analysis of 

tissues sections by hematoxylin and eosin (H&E) 

staining showed that upregulation of miR-107 resulted 

in tumor cell disorganization and loss of nucleus in both 

HA22T and HDACi-R tumors by histological analysis 

(Figure 5B). These data indicate that miR-107 not only 

inhibited tumor growth but also induced tumor 

apoptosis. Next, we used TUNEL (terminal 

deoxynucleotidyl transferase dUTP nick end labeling) 

assay to double confirm that miR-107 induced tumor 

apoptosis. Figure 5C shows that upregulation of miR-

107 induced cell apoptosis both in HA22T and HDACi-

R tumors. Moreover, we also obtain that upregulation of 

miR-107 decreased survival protein (p-Akt) and CFL-1 

expression both in two HCC tumors (Figure 5D). These 

findings indicate that miR-107 had an anti-tumor effect 

and in HCC. 

 

DISCUSSION 
 

As is well known, drug resistance is an important issue 

in cancer therapy, as it can lead to treatment failure and 

poor prognosis. Therefore, we aimed to identify a novel 

 

 
 

Figure 4. MicroRNA-107 (miR-107) induced reactive oxygen species (ROS) accumulation and cell death by targeting cofilin-1 
in hepatocellular carcinoma (HCC) cells. (A) MiR-107 target sequence on cofilin-1 (CFL1) 3' UTR (untranslated region). (B) Luciferase 

activity assays of luciferase vectors with cofilin-1 3' UTR were performed following transfection with miR-107 or negative control for 24 h. **P 
< 0.01 vs. HDACi-R (histone deacetylase inhibitor-resistant) cells cofilin-1 3' UTR group. (C) MiR-107 induced reactive oxygen species (ROS) 
accumulation, as detected by MitoSOX staining. (D) H2O2-induced HA22T cell death was higher than HDACi-R cells. Transfection with si-
cofilin-1 (si-CFL-1) and miR-107 mimic decreased cofilin-1 (CFL-1) expression and enhanced H2O2-induced cleavage caspase-3 expression, as 
detected by western blotting assay. (E) Quantification of Figure 4D. Fold change of cleavage caspase-3 after normalization using actin. *P < 
0.05, ***P < 0.001 vs. HA22T control. #P < 0.05, ###P < 0.001 vs. HDACi-R control. 
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therapeutic target against chemoresistance in HCC. 

Cofilin-1 is highly correlated with cell metastasis and 

invasion [32–34], can cause cytoskeleton remodeling 

[35], and is involved in cell differentiation [36]. These 

molecular mechanisms indicated that cofilin-1 which is 

very important gene to regulate cancer cells metastasis. 

Our previous study [21] indicated that cofilin-1 is a 

novel chemoresistance-related gene in HCC. Treatment 

with anti-cancer drug induced ROS accumulation and 

cell death by promoted cofilin-1 translocation to 

mitochondria. Accordingly, we revealed a mechanism 

of drug resistance that involves the ERK phosphorylate 

cofilin-1, which leads to the decrease in cofilin-1 

translocation to the mitochondria, and ROS 

accumulation, with consequent cell death. These 

findings suggest that cofilin-1 should be considered a 

novel therapeutic target against drug resistance in HCC. 

We also observed that miR-107 enhanced ROS 

accumulation in resistance cells (Figure 4C); thus, the 

molecular mechanism of ROS production by miR-107 

may involve the regulation of cofilin-1 expression. 

 

Epigenetic regulation such as dysfunctional miRNA 

expression has been implicated in many cancers [37, 

38]. The miRNA expression change is also correlated 

with the pathogenesis of multiple cancers such as in the 

lungs, pancreas, and liver to regulate cancer cells 

initiation, development, and metastasis [39]. Previous 

studies have indicated that miR-107 is a tumor 

suppressor in many cancers such as lung cancer [40], 

 

 
 

Figure 5. MicroRNA-107 (miR-107) regulates tumor growth and tumor death in hepatocellular carcinoma (HCC) tumors in 
vivo. (A) The tumoral growth of HCC cell lines xenografted on nude mice. Treatment was administered at day 21 by tumor injection. (B) 
Hematoxylin and eosin (H&E)-stained sections from the xenograft. Scale bar: 100 µm. (C) TUNEL assay was performed to visualize apoptotic 
cells (green), and DAPI staining showed the number of nuclei. Scale bar: 100 µm. (D) Overexpression of miR-107 caused a decrease in CFL-1 
and p-Akt expression both in two tumors as observed by western blotting assay. 
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melanoma [41], and oral squamous cell carcinoma [42]. 

However, other studies have shown that miR-107 can 

induce chemoresistance in colon cancer by targeting 

calcium-related proteins [43]. Further, miR-107 

reportedly promotes HCC cell proliferation by targeting 

axin2 [44]. Importantly, some reports showed that miR-

107 plays an important role in regulating 

chemosensitivity through its targets in breast cancer [45, 

46]. Although these findings elucidated the roles of 

miR-107, the molecular mechanism of chemoresistance 

in HCC remains unknown. In this study, we identified 

that miR-107 is an anti-drug resistance gene in HCC. 

After establishing chemoresistant cells (HDACi-R 

cells), we observed that the expression of miR-107 

decreased significantly compared with that in parental 

cells (HA22T). Following this, we found that 

upregulation of miR-107 in the two types of HCC cells 

led to cell apoptosis and inhibited tumor growth, 

especially in HDACi-R group. Moreover, upregulation 

of miR-107 increased HDACi-R cell sensitivity to 

HDACi. These results indicate that miR-107 is not only 

a tumor suppressor gene but is also correlated with 

chemosensitivity. We also identified that miR-107 

induced cancer cell death and increased 

chemosensitivity by targeting cofilin-1. 

 

Taken together, our study revealed that miR-107 

expression was downregulated in drug resistant HCC 

cell line and the upregulation of miR-107 induced cell 

death via ROS accumulation and inhibited tumor 

growth in part through regulating the expression of 

cofilin-1. These findings present miR-107 as a potential 

chemosensitizer and drug resistance therapeutic target 

in patients with HCC. 

 

MATERIALS AND METHODS  
 

Cell culture  

 

Liver cancer cell line (HA22T) was purchased from 

BCRC (Bioresource Collection and Research Centre, 

Hsinchu, Taiwan). Cells were cultured in Dulbecco’s 

minimum essential medium (Sigma, St. Louis, 

Missouri, USA) as previously described [21]. The 

HDACi-resistant cells resistant to SAHA and apicidin 

were established from HA22T cells [21]. In this study, 

the HDACi cells were treated with SAHA (2 μM). 

 

Whole-cell extraction 

 

The whole-cell protein sample extracted by RIPA Lysis 

Buffer (Thermo Scientific, USA) with proteinase K and 

phosphatase inhibitors, as previously described [21, 47]. 

Briefly, the cell pellets were lysed centrifuged at 12,000 

rpm for 15 min at 4°C. The liquid supernatant was 

collected and stored at -20°C. 

MTT assay 

 

Cell viability was carried out as previously described 

[21]. 1 × 106 cells were seeded on 24-well plates. MTT 

reagent (3-(4, 5-dimethylthiazol-2-yl)-2, 5-

diphenyltetrazolium bromide; Sigma-Aldrich Inc., St 

Louis, MO, USA) (0.5 mg/mL). The MTT formazan 

precipitate was dissolved in 200 μL of dimethyl sulfoxide 

(DMSO) measured by ELISA reader at 570nm. 

 

Antibodies and drugs 

 

The antibodies: anti-cofilin-1 (sc-53934), anti-Bcl-2 (sc-

7382), anti-β-actin (sc-47778), and anti-p-Akt1/2/3 (sc-

7985) were purchased from Santa Cruz (CA, USA), 

anti-c-caspase-3 (#9664) were purchased from Cell 

Signaling Technology (Danvers, USA). All the 

secondary antibodies (horseradish peroxidase-

conjugated) were purchased from Santa Cruz. All of the 

chemo reagents were purchased from Sigma-Aldrich 

Company. 

 

Western blot analysis 

 

Total protein from cell samples was measured by 

Bradford protein assay dye (Bio-Rad, USA). According 

to our previous study [47], the samples (20 μg) were 

separated by SDS-PAGE and then transferred to 

polyvinylidene fluoride membranes (Millipore, Belford, 

Massachusetts, USA) by the Bio-Rad western blotting 

system. Briefly, the membranes were blocked for 1 hr 

with blocking buffer then incubated with specific 

primary antibodies (dilution 1:1000) at 4°C overnight. 

Following, the membrane will conjugate with secondary 

antibodies for 1 h then incubated with 

chemiluminescence buffer (Millipore, Billerica, MA, 

USA) to obtain images by GE Digital Imaging System 

(Commerce, CA, USA). 

 

RNA preparation and quantitative real-time PCR 

analysis 

 

Total RNA isolation and miRNA analysis was followed 

our previous study [48] by the RNA Isolation kit (Zymo 

Research, Irvine, CA, USA) and cDNA was synthesized 

from sample RNA. The cDNA (1 μg) were used with 

appropriate primer to perform real-time PCR by SYBR 

Green buffer (Bio-Rad). The primer sequence of miR-

107: AGCAGCATTGTACAGGGCTATCA. mRQ and 

U6 primer were obtained from the Mir-X miRNA 

Synthesis Kit.  

 

Microarray array assay 

 

Total RNA (2 μg; OD260/OD280 = 2.01) was extracted 

from liver cancer cell lines and sent to miRNA 
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Microarray Services (Human miRNA OneArray, 

Phalanx Biotech, Hsinchu, Taiwan). The fold change 

was calculated according to our previous method [48]. 

 

TUNEL assay  

 

The tissue sections (2-μm thick) were stained with the 

UNEL Assay reagent (Roche Ltd., Basel, Switzerland), 

the cell nuclei will stain by DAPI (4′,6-diamidino-2-

phenylindole; Sigma-Aldrich, Inc.). After that, the 

tissue sections were obtained the signal by fluorescence 

microscope (Olympus, Tokyo, Japan).  

 

MiR-107 upregulation (mimic) or knockdown 

(inhibitor) by transfection 

 

The miR-107 mimic and inhibitor were purchased from 

Phalanx Biotech, Hsinchu, Taiwan. After cells were 

grown to 60%–70% confluent were transfected with the 

mimic or inhibitor by jetPRIME transfection reagent 

(Illkirch, France) transfection reagent. After 24 h, the 

cells were used for subsequent experiments or analysis. 

 

Luciferase assay 

 

Luciferase reporter assays was carried out as previously 

described [48]. The miR-107 target expression vector 

contained with the wild-type cofilin-1 3' UTR sequence 

or empty. Each plasmid was transfected into cells with 

concentration of 1 μg/mL for 24 hr.  

 

Animal model 

 

According to our recent research [21, 48], we obtained 

the male NU/NU mice (six-week-old) from BioLASCO 

Taiwan (Taipei, Taiwan). The animal experiment 

protocol will follow the China Medical University 

Institutional Animal Care and Use Committee of 

guidelines No.2018-312. The mice were randomly 

divided for four groups (n = 4): parental and resistance 

cells control groups (subcutaneous injection of cancer 

cell HA22T and HDACi-R cells, two tumors in each 

mice), miR-107-treated HA22T, and HDACi-R groups. 

Briefly, cancer cells (1 × 107 cells) will mix with 

Matrigel matrix and 50% serum-free DMEM. The miR-

107 agomir 15 nM (Phalanx Biotech, Hsinchu, Taiwan) 

was delivered by intratumoral injection on the 21st and 

28th day after subcutaneous injection. After sacrificed, 

the tissue was fixed using 10% formaldehyde or stored 

at -80°C for further analysis. 

 

Statistical analysis 

 
All cell experiments were independently repeated three 

times. Statistical analysis was using one-way analysis of 

variance (ANOVA; Student’s t-test) with SigmaPlot 

10.0 software (Systat Software Inc., San Jose, CA, 

USA). * and #P < 0.05 were considered statistically 

significant and ** and ##P < 0.01 or *** and ###P < 0.001 

were considered to indicate increased statistical 

significance. * Indicates comparison with HA22T 

control group and # indicates comparison with HDACi-

R control group. 
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