
In vitro analysis of interactions between Pseudomonas aeruginosa and 
Candida albicans treated with silver sulfadiazine in wound infections

Preetha Kamath1, Suchismita Paul1, Jose Valdes1, Joel Gil1, Michael Solis1, Alex Higa 1 and Stephen C. Davis1*

1Department of Dermatology and Cutaneous Surgery, University of Miami, Miller School of Medicine, Dr. Phillip Frost Department of 
Dermatology and Cutaneous Surgery, RMSB Room 2089 1600 NW 10 Avenue, Miami, FL 33136, USA

*Corresponding author. E-mail: sdavis@med.miami.edu

Received 20 February 2024; accepted 19 April 2024

Background: Microorganisms tend to rely on close relationships with other species to survive. Consequently, biofilms 
formed by interactions of different species have been shown to delay the wound healing process. Studies suggest 
these mixed-population infections contribute to the development of drug resistance and inhibition of host immune 
response. Silver sulfadiazine (SSD) has been shown to effectively decrease the risk of infection in an open wound. 
Typically, these are bacterial wound infections; however, the role of fungal species needs further attention.

Objectives: The purpose of this in vitro study was to determine the effect of SSD on interactions between 
Pseudomonas aeruginosa 09-009 (PA1) or P. aeruginosa 09-010 (PA2) and Candida albicans ATTC 64550 (CA).

Methods: A mixture of 4 mL of tryptic soy broth (TSB) and 100 µL of CA and/or PA1 or PA2 (∼106 log cfu/mL) in
oculums were deposited into either wells or vials. The wells or vials were then sonicated (50 W for 10 s) to sep
arate microorganisms attached to the walls. After incubation, cell counts were performed at 24 and 48 h for 
each microorganism using specific media.

Results: Our results show that without SSD treatment, P. aeruginosa exhibits an inhibitory effect on C. albicans. 
Treatment with SSD demonstrated significant reduction of P. aeruginosa; however, C. albicans persisted. This ex
periment demonstrates that SSD was effective in reducing the bioburden of both P. aeruginosa strains after 24 
and 48 h; however, it was not as effective in reducing C. albicans.

Conclusions: The data suggest that for polymicrobial mixed infections containing Pseudomonas spp. and C. albicans, 
treatment with SSD may be beneficial but does not provide adequate microorganism eradication. As such, added 
treatments that provide coverage for Candida infection are necessary. Additional in vivo studies are needed to obtain 
a better understanding of the complex interactions between these organisms.
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Introduction
Skin infections are a major concern in patients with open wounds, 
particularly in burn victims. Burn wound infections are often 
caused by Gram-positive and Gram-negative bacteria such as 
Staphylococcus aureus and Pseudomonas aeruginosa. However, 
fungal pathogens, particularly Candida spp., are increasingly being 
reported in the literature, especially after use of broad-spectrum 
topical antimicrobial agents.1–3 Fungal burn wound infections 
are typically observed with extensive, deep burns and are asso
ciated with both increased morbidity and mortality.4 Candida 
albicans, the most prevalent human fungal pathogen, has the 
capacity to infect a variety of host niches and can cause significant 

disease in immunocompetent as well as immunocompromised 
individuals.5 In a large study of burn patients, Gupta et al.6

revealed that as many as 59% of burn wound cases may be coin
fected with Candida species.

Colonization with more than one microorganism is quite com
mon and makes the wound very difficult to manage. Biofilms 
consisting of microbial colonies encased in a polysaccharide ma
trix at wound surfaces play an important role in the pathogenesis 
of polymicrobial wound infections.7,8 Initially, bacteria and fungi 
originating from the host’s endogenous skin, gastrointestinal, re
spiratory flora or sometimes the external environment, colonize 
burn wound surfaces. Over time, some of these organisms 
grow and delay wound healing by producing destructive 

1 of 5

JAC Antimicrob Resist 
https://doi.org/10.1093/jacamr/dlae075

JAC-
Antimicrobial
Resistance

https://orcid.org/0000-0001-6880-3182
mailto:sdavis@med.miami.edu
https://creativecommons.org/licenses/by-nc/4.0/
https://creativecommons.org/licenses/by-nc/4.0/


enzymes and toxins, leading to a chronic inflammatory state.8

Studies have reported the synergistic interactions between mul
tiple microorganisms in coinfected wounds, which have been im
plicated in delayed wound healing and antimicrobial tolerance 
when compared with monospecies wound infections.9,10

Specifically, P. aeruginosa and C. albicans are two major oppor
tunistic pathogens that have been found to form polymicrobial 
biofilms, which significantly impede the wound healing process 
and contribute to drug resistance.11,12

Understanding the interactions occurring in these polymicro
bial wound infections is of great importance given their ubiquitous 
nature and ability to delay wound healing. A study performed by 
Pastar et al.13 found that wound re-epithelialization is significantly 
delayed by S. aureus and P. aeruginosa biofilms consisting of 
multiple species through suppression of keratinocyte growth 
factor 1. Furthermore, polymicrobial wound infections containing 
P. aeruginosa were found to increase expression of virulence fac
tors such as Panton–Valentine leucocidin and α-haemolysin, which 
are formed by MRSA. Similarly, studies have shown that in mixed 
biofilms, both P. aeruginosa and C. albicans exhibit increased viru
lence and mutability. In these settings of interspecies competition, 
P. aeruginosa has been found to increase production of virulence 
factors such as pyoverdine, rhamnolipids and pyocyanin, which 
further enhance its ability to cause more severe disease.11

Since burns are associated with hypermetabolism, chronic in
flammation and weakened immune status, wound infections 
can lead to several complications such as sepsis.14 Over the 
last several decades, significant advances have been made in 
the management of burn wounds as a result of improved fluid re
suscitation, nutritional support, surgical excision techniques, in
fection control and wound care. Local management of infected 
burn wounds often includes cleansing, debridement, routine 
wound dressing changes and topical antimicrobial agents.15

Silver sulfadiazine (SSD) is a thick white cream that is widely avail
able and relatively inexpensive.16 It is a commonly used burn 
wound dressing with antimicrobial activity.17 While it is used to 
reduce wound infections, there are limited studies that demon
strate its utility in treating polymicrobial wounds.18

The purpose of this in vitro study was to investigate the relation
ship between bacteria and fungi within burn wound infections and 
to determine the effect of SSD on interactions between either P. 
aeruginosa 09-009 (PA1) or P. aeruginosa 09-010 (PA2) and C. albi
cans ATTC 64550 (CA). Many other studies have been performed to 
challenge microorganisms and have demonstrated the treat
ment’s efficacy.19 We hypothesize that when bacteria and fungi 
coexist in a burn wound infection, they influence each other’s abil
ity to proliferate and act as pathogens. In order to test this hypoth
esis, we performed in vitro proliferation assays involving P. 
aeruginosa and C. albicans. The role of biofilm formation in such 
polymicrobial infections was investigated.

Materials and methods
Microorganism strains and growth conditions
CA and two different strains of P. aeruginosa isolated from clinical combat 
wounds (PA1 and PA2, obtained from the US Army Institute of Surgical 
Research, Fort Sam Houston, TX, USA) were used. Tryptic soy broth (TSB) 
was used as the growth medium for both microorganisms. For quantifica
tion, Pseudomonas Agar Base with CN supplement (Oxoid) was used to 

isolate P. aeruginosa and BBL™ CHROMagar™ Candida was used to isolate 
C. albicans.

In vitro biofilm assay to investigate the interactions 
between P. aeruginosa and C. albicans
Two different sets of experiments, one with SSD treatment and one with
out treatment, were performed to investigate the interactions between 
the two different strains of P. aeruginosa and C. albicans, namely PA1 ver
sus CA and PA2 versus CA. All inoculum suspensions were quantified to 
obtain the exact concentration of viable organisms prior to the experi
ment. For the in vitro study without treatment, the P. aeruginosa and 
C. albicans inoculums were prepared with 100 µL (∼106 log cfu/mL) of mi
croorganisms inoculated in 4 mL of TSB medium in each well (9 out of 12) 
in a 12-well polystyrene plate. There were nine replicates of each micro
organism (or a combination of both species) along with three empty wells 
with only TSB medium serving as negative controls in each plate. These 
plates were incubated at 37°C for 24 and 48 h. For the first set of experi
ments, PA1, CA and a combination of the two species grew in TSB under 
the same conditions. For the second set of experiments, PA2, CA and a 
combination of the two species also grew in TSB under the same condi
tions. In order to quantify the number of microorganisms viable on the 
biofilm, microorganisms were recovered through sonication at 50 W for 
10 s to separate the microorganisms attached to the wells. Serial dilu
tions were made and the microorganisms were plated on the selective 
media Pseudomonas Agar Base with CN supplement and CHROMagar™ 

Candida to isolate and quantify the bacterial counts.

In vitro biofilm assay to investigate effect of SSD 
treatment on interactions between P. aeruginosa 
and C. albicans
Two different sets of experiments were performed to investigate the 
effect of treatment with SSD on the interactions between strains of 
P. aeruginosa and C. albicans, specifically PA1 and CA, as well as PA2 
and CA. For each experiment, the P. aeruginosa and C. albicans inoculums 
were prepared and 100 µL (∼106 log cfu/mL) of microorganisms were in
oculated in 4 mL of TSB medium contained in a glass test tube. There 
were a total of 12 vials, of which 9 contained replicates of each microorgan
ism (or a combination of both species). Following these steps, 100 mg of 
SSD was added to each test tube and vortexed to mix the samples. For 
negative controls, three test tubes containing only 4 mL of TSB and 
100 mg of SSD was used. For the positive control, a test tube with 4 mL 
of TSB and 100 µL (∼106 log cfu/mL) of one microorganism was used with
out any SSD. These tubes were incubated at 37°C for 24 and 48 h. For the 
first set of experiments, PA1, CA and a combination of both species were 
grown in TSB under the conditions listed above with the SSD treatment. 
For the second set of experiments, PA2, CA and a combination of both spe
cies were grown in TSB under the same conditions, along with SSD. After 24 
and 48 h, in order to quantify the number of viable microorganisms, serial 
dilutions were made and the microorganisms were plated on the appropri
ate selective medium, Pseudomonas Agar Base with CN supplement or 
CHROMagar™ Candida, to isolate and quantify the organisms.

Statistical analysis
A t-test was used to perform statistical comparisons of cfu, which were 
presented as means and standard deviations. Statistically significant dif
ferences were defined as P < 0.05.

Results
Results showed for the experiment where CA and PA1 were com
bined without treatment that both microorganisms co-existed in 
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the wells and that the growth of CA was reduced by PA1 in vitro 
(Figure 1a). CA mixed with PA1 at both 24 and 48 h resulted in 
a significantly lower PA1 bacterial count than fungal count of 
CA alone (P < 0.05). PA1 alone and in mixed cultures had signifi
cantly higher bacterial counts when compared with CA alone or 
in mixed cultures (P < 0.05). CA was found to have a 99.99% 
reduction in mixed cultures after 24 and 48 h. At 48 h, PA1 in 
the mixed culture had a statistically significant lower count 
when compared with PA1 alone (P < 0.05). When those strains 
were treated in combination with SSD treatment, CA and PA1 
co-existed in the vials, and the growth of both CA and PA1 
was reduced in vitro (Figure 1b). After 24 h, we found that CA, 
either alone or mixed, and PA1 in the mixed culture had lower 
counts than PA1 alone (P < 0.05). Interestingly, after 48 h, 
counts of PA1, alone or in mixed culture, were lower than CA 
alone or in the mixed culture (P < 0.05). In fact, in the mixed cul
tures treated with SSD, at both 24 and 48 h, PA1 counts were 
lower than those of CA, with a microbial reduction of 99.99% 
(P < 0.05).

When the other P. aeruginosa (PA2) was combined with CA, 
the results showed that CA and PA2 co-existed in the wells and 
that the growth of CA was reduced by PA2 in vitro (Figure 2a). 
After both 24 and 48 h, the CA count in the mixed culture was 
lower than for CA alone, as well as for PA2 found alone or in mixed 
cultures (P < 0.05). At both assessment points, CA had lower 
microorganism counts than PA2 in the mixture, with microbial re
ductions of 99.99% (P < 0.05). Those mentioned organisms in 
combination and treated with SSD showed that when CA and 
PA2 co-existed in the vials, the microorganism growth was re
duced in vitro compared with those without treatment 
(Figure 2b). After 24 and 48 h, the PA2 count in the mixed culture 

was lower than for PA2 alone (P < 0.05). At both timepoints, PA2 
bacterial counts in mixture were found to be lower than for CA ei
ther alone or mixed (P < 0.05). Interestingly, at 48 h, CA levels 
were slightly higher in the mixed culture than alone.

Overall, the results show that when calculating the microbial 
reduction percentage between each P. aeruginosa microorgan
ism against CA without treatment, CA had a statistically signifi
cant reduction at both 24 and 48 h. When examining the 
mixed cultures of P. aeruginosa strains with CA treated with SSD 
after 24 h, both strains of P. aeruginosa had a significant microbial 
reduction when compared against P. aeruginosa strains cultured 
alone.

Discussion
The complex polymicrobial nature of biofilms in chronic non- 
healing wounds has been studied and is well documented in 
the literature.20–24 However the majority of microbiome research 
focuses on the diverse bacterial component of chronic wounds, 
as fungi in wounds often go undetected.25,26 More recent studies 
are examining the interactions between fungi and bacteria in 
wounds.27,28 Clinical and research biofilm experts are in agree
ment that in vitro methods can be useful in screening treatments 
for their efficacy against biofilms.29–33 Yet there are a limited 
number of in vitro studies that have examined the synergistic 
relationship between the commonly encountered pathogens 
C. albicans and P. aeruginosa or the impact of SSD on their growth. 
To further investigate the interactions of C. albicans with 
P. aeruginosa strains and the effects of SSD on the wound 
environment, we utilized an in vitro model focusing on PA1 versus 
CA and PA2 versus CA. In this study we demonstrate that 

Figure 1. Growth interactions between PA1 and CA in vitro, without and with SSD treatment. (a) In cultures without treatment, CA and PA1 cfu were 
quantified based on growth of single-species or mixed-species biofilms in vitro on wells (n = 9). At 24 and 48 h, PA1 reduced the growth of CA by ap
proximately 5 logs. (b) When treated with SSD, CA and PA1 cfu were quantified based on growth of single-species or mixed-species biofilms in test-tube 
vials (n = 9). After 24 h, CA had lower total bacterial counts but PA1 in treated mixture showed reduced growth by 2 logs. After 48 h, PA1 alone and in 
mixed culture was reduced by 4 and 5 logs, respectively, with a 99.99% bacterial reduction (P < 0.05), while CA continued to grow.
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P. aeruginosa and C. albicans co-exist and exhibit growth in 
biofilms.

Overall, the results show that CA had lower bacterial counts 
than both PA1 and PA2 strains when cultured alone or without 
treatment. When calculating the bacterial reduction percentage 
between each P. aeruginosa microorganism against CA without 
treatment, CA had a 99.99% reduction at both 24 and 48 h. 
Nonetheless, analysis of these microorganisms combined and trea
ted with SSD showed that bacterial counts for both P. aeruginosa 
strains were lower than those of CA after 48 h. In fact, after 24 h 
of treatment with SSD, both strains of P. aeruginosa mixed with 
CA had a 98.71% bacterial reduction when compared against iso
lated P. aeruginosa. When examining the treated mixture after 
48 h, P. aeruginosa had a 99.99% bacterial reduction compared 
with CA. After both 24 and 48 h, treated P. aeruginosa mixtures 
had a 99.99% bacterial reduction when compared with untreated 
counterparts. The treatment demonstrated the ability of SSD to 
efficiently reduce bioburden of both P. aeruginosa strains after 24 
and 48 h; however, it was not as effective in reducing CA prolifer
ation. CA growth was not significantly affected by either the 
treatment or competition with P. aeruginosa, but when both micro
organisms competed against one another without any treatment 
interference, P. aeruginosa colonized at a higher rate.

These data suggest that if a patient has infection with both 
microorganisms, an additional treatment regimen is needed to 
eradicate the C. albicans infection. Our data highlight the signifi
cance of bacterial and fungal interactions in wound infections. As 
seen in this study, multispecies interactions exhibited in biofilms 
have the potential to delay healing and may alter microbial 

susceptibility to therapies. Further in vivo studies should be car
ried out to obtain a better understanding of interspecies interac
tions for developing new successful therapeutic approaches.
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