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Background:A lack of a sufficiently large sample at single sites causes poor generalizability in automatic diagnosis
classification of heterogeneous psychiatric disorders such as schizophrenia based on brain imaging scans. Ad-
vanceddeep learningmethodsmay be capable of learning subtle hiddenpatterns fromhighdimensional imaging
data, overcome potential site-related variation, and achieve reproducible cross-site classification. However, deep
learning-based cross-site transfer classification, despite less imaging site-specificity andmore generalizability of
diagnostic models, has not been investigated in schizophrenia.
Methods: A large multi-site functional MRI sample (n=734, including 357 schizophrenic patients from seven
imaging resources) was collected, and a deep discriminant autoencoder network, aimed at learning imaging
site-shared functional connectivity features, was developed to discriminate schizophrenic individuals from
healthy controls.
Findings: Accuracies of approximately 85·0% and 81·0% were obtained in multi-site pooling classification and
leave-site-out transfer classification, respectively. The learned functional connectivity features revealed dysreg-
ulation of the cortical-striatal-cerebellar circuit in schizophrenia, and themost discriminating functional connec-
tions were primarily located within and across the default, salience, and control networks.
Interpretation: The findings imply that dysfunctional integration of the cortical-striatal-cerebellar circuit across
the default, salience, and control networksmay play an important role in the “disconnectivity”model underlying
the pathophysiology of schizophrenia. The proposed discriminant deep learningmethodmay be capable of learn-
ing reliable connectome patterns and help in understanding the pathophysiology and achieving accurate predic-
tion of schizophrenia across multiple independent imaging sites.
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1. Introduction

Complex and heterogeneous symptoms with impairments in multi-
ple cognitive domains, including perception, memory, attention, and
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executive function, and other negative symptoms pose a challenge to
the objective diagnosis of schizophrenia based solely on clinical mani-
festations (APA, 2013). Searching for reliable biomarkers for the diagno-
sis and treatment of schizophrenia is clearly an international
imperative.

The pathophysiology of schizophrenia has been proposed to be asso-
ciated with the dysfunctional integration of distributed neuronal net-
works, giving rise to the concept of “widespread disconnectivity” in
schizophrenia (Andreasen et al., 1999; Cheng et al., 2015b; Friston and
Frith, 1995). Shen et al. (2010) used whole-brain functional connectiv-
ity MRI (fcMRI) pattern analysis to discriminate schizophrenic patients
from healthy controls, demonstrating the potential of whole-brain
fcMRI in the diagnosis of schizophrenia. Subsequently, a number of
the CC BY-NC-ND license (http://creativecommons.org/licenses/by-nc-nd/4.0/).
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neuroimaging studies have shown progress in probing connectome-
based biomarkers of schizophrenia (Arbabshirani et al., 2013; Cheng
et al., 2015a; Kim et al., 2016; Mikolas et al., 2016) (see ref.
(Arbabshirani et al., 2017) for a review). Cheng et al. (2015b) obtained
an overall accuracy of 75.81% in the multi-site pooling classification
based on voxel-based functional connectivity. Moreover, some previous
studies have made an attempt at leave-site-out transfer classification of
schizophrenia using MRI, yielding average accuracies of around 75.0%
(Rozycki et al., 2017; Skåtun et al., 2017). In the leave-site-out transfer
classification, a sample of a given imaging site was left for prediction
and a sample ofmultiple independent sites was used formodel training.
Such transfer classification may be of more significance in clinical prac-
tice because when usingmulti-site data duringmodel training, the final
neuroimaging-based diagnostic classification models are much less im-
aging site-specific and should therefore be more generalizable. How-
ever, most studies suffered from either a small sample size or modest
classification performance.

Recently, deep learning has attracted increasing attention in thefield
of machine learning and artificial intelligence and has been demon-
strated to prodigiously improve learning performance in computer vi-
sion and image recognition (Lecun et al., 2015; Sun et al., 2013). Kim
and colleagues used a deep neural networkwithweight sparsity control
for whole-brain fcMRI classification of schizophrenia patients vs.
healthy controls with a small sample size (n=100) (Kim et al., 2016),
illuminating the potential of deep learning in automatic diagnosis of
clinical populations(Hazlett et al., 2017; Kawahara et al., 2017; Suk
et al., 2013; Zhao et al., 2017). Furthermore, deep learning is capable
of learning subtle hidden patterns fromhigh dimensional neuroimaging
data, perhaps providing cues for understanding the neural basis of neu-
ropsychiatric disorders (Arbabshirani et al., 2017; Guo et al., 2017;
Vieira et al., 2017). So far, the potential of deep learning of whole-
brain fcMRI both inmulti-site and cross-site classificationof schizophre-
nia remains unknown.

In this study, we first collected the largest multi-site fcMRI raw
dataset reported to date in the schizophrenia literature, including
1000+ participants (474 schizophrenic patients), and we developed a
deep Discriminant Autoencoder Network with Sparsity constraint
(DANS) for the automatic diagnosis of individuals with schizophrenia.
In addition to multi-site pooling classification based on the pooled
data of all sites, we conducted leave-site-out transfer classification,
training learning models independently on imaging sites.

2. Materials and Methods

2.1. Participants

The dataset includes 474 patients with schizophrenia and 607
healthy controls from seven imaging resources. The first and second
sub-datasets were both collected at Xijing Hospital in China (Xijing#1:
107 schizophrenic patients and 113 healthy controls; 49 of the patients
were drug-naïve, whereas the remainder were receiving antipsychotic
medications at the time of image acquisition; Xijing#2: 54 patients
and 102 healthy controls); the third sub-dataset was from the First Af-
filiated Hospital of Anhui Medical University in China (AMU: 105 pa-
tients and 101 healthy controls); the fourth sub-dataset was collected
at Second Xiangya Hospital in China (Xiangya: 56 schizophrenic pa-
tients and 42 healthy controls; 11 of the patients were drug-naïve,
whereas the remainder were receiving antipsychotic medications);
thefifth sub-datasetwas from the Center for Biomedical Research Excel-
lence (COBRE: 71 schizophrenic patients and 74 healthy controls; the
patients were all receiving various antipsychotic medications, available
at https://openfmri.org/); the sixth sub-dataset was from theUniversity
of California, Los Angles (UCLA: 58 schizophrenic patients and 134
healthy controls; stable medications were permitted for the patients,
available at https://openfmri.org/) (Poldrack et al., 2016); and the last
sub-dataset was from the Conte Center for the Neuroscience of Mental
Disorders at Washington University School of Medicine in St. Louis
(WUSTL: 23 schizophrenia patients and 41 healthy controls; 19 of the
patientswere receiving various antipsychoticmedications; nine healthy
controls with ages of b16 years were excluded, available at https://
openfmri.org/).

All of the patientswere evaluated by qualified psychiatrists using the
Structured Clinical Interview for DSM-IV Axis I Disorders and thePatient
Edition (First et al., 1996) and were required to meet the DSM-IV (APA,
2013) diagnostic criteria for schizophrenia. No patients had a history of
neurological disorders, severe medical disorders, substance abuse, or
electroconvulsive therapy. The symptoms severity of the patients was
measured with the Positive and Negative Syndrome Scale (PANSS) as-
sessment (Xijing#1, AMU, and Xiangya). All of the healthy controls,
who had no relationshipwith the schizophrenic patients, were assessed
in accordancewith DSM-IV criteria, and none had acute physical illness,
substance abuse or dependence, a history of head injury resulting in loss
of consciousness, or major psychiatric or neurological disorders. All of
the participants provided written informed consent, and this study
was conducted according to the principles in the Declaration of Helsinki
and was approved by the Ethics Committee or Institutional Review
Boards of the respective hospitals or image centers.

2.2. Image Acquisition

2.2.1. Xijing#1
All data were collected on a 3·0-T Tim Trio scanner (Siemens, Er-

langen, Germany) using a 12-channel phased-array head coil. Images
were acquired using a gradient-echo echo-planar pulse sequence sensi-
tive to blood oxygenation level-dependent (BOLD) contrast [repetition
time (TR) = 2000ms; echo time (TE) = 30ms; flip angle (FA)= 90°;
matrix = 64 × 64; field of view (FOV) = 220 mm; thickness = 4mm;
gap= 0·6 mm; slices = 33]. Each resting-state fMRI run lasted 8 min
(240 TRs), and each subject underwent two runs. Subjects were
instructed to stay awake, keep their eyes closed, and minimize head
movement; no other task instruction was provided.

2.2.2. Xijing#2
TheMRI data were collected on a 3·0-T GE Signa scanner (GE Signa,

Milwaukee, Wisconsin, USA). Echo-planar imaging (EPI) sequences
were used to obtain BOLD-fMRI images [TR = 2000 ms; TE = 22·5
ms; FA= 30°; matrix = 64 × 64; FOV= 220 mm; thickness = 4 mm;
gap = 0·6 mm; slices = 33]. Each subject underwent a resting-state
run lasting 8 min (240 TRs). Subjects were instructed to stay awake,
keep their eyes closed, andminimize headmovement; no other task in-
struction was provided.

2.2.3. AMU
TheMRI data were collected on a 3·0-T GE Signa scanner (GE Signa,

Milwaukee, Wisconsin, USA). EPI sequences were used to obtain BOLD-
fMRI images [TR = 2000 ms; TE= 22.5 ms; FA= 30°; matrix = 64 ×
64; FOV= 220 mm; thickness = 4 mm; gap= 0·6 mm; slices = 33].
Each subject underwent a resting-state run lasting 8 min (240 TRs).
Subjectswere instructed to stay awake, keep their eyes closed, andmin-
imize head movement; no other task instruction was provided.

2.2.4. Xiangya
The MR images were acquired on a 1·5-T GE Signa scanner (GE

Signa, Milwaukee, Wisconsin, USA). Foam padding and earplugs were
used to minimize head motion and reduce scanner noise. Participants
were told to lie still, keep their eyes closed, and stay awake. EPI
sequences were utilized to obtain functional images [TR = 2000 ms;
TE= 40ms, FA=90°, matrix= 64 × 64; FOV= 240mm; thickness=
5 mm; gap= 1mm; slices = 20]. Each subject underwent a resting-
state run lasting 6min (180 TRs).

https://openfmri.org
https://openfmri.org
https://openfmri.org
https://openfmri.org
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2.2.5. COBRE
TheMR imageswere acquired on a 3·0-T TimTrio scanner (Siemens,

Erlangen, Germany) with single-shot full k-space EPI sequences [TR=
2000 ms; TE = 29 ms, FA = 75°, matrix = 64 × 64; FOV = 192 mm;
thickness = 4 mm; no gap; slices = 32]. Each subject underwent a
resting-state run, which lasted 5 min (150 TRs).

2.2.6. UCLA
All BOLD-fMRI data were collected on a 3·0-T Tim Trio scanner (Sie-

mens, Erlangen, Germany). BOLD-fMRI scans were acquired using an
asymmetrical spin-echo, echo-planar sequence (T2*) [TR = 2000 ms;
TE = 30 ms; FA = 90°; matrix = 64 × 64; FOV= 192 mm; thickness
= 4mm; no gap; slices = 34]. Each subject underwent a resting-state
run, which lasted 5 min (152 TRs). Subjects were instructed to rest qui-
etly with their eyes closed.

2.2.7. WUSTL
All data were collected on a 3·0-T Tim Trio scanner (Siemens, Er-

langen, Germany). BOLD-fMRI scans were acquired using an asymmet-
rical spin-echo, echo-planar sequence (T2*) [TR= 2500 ms; TE = 27
ms; FA= 90°; matrix = 64 × 64; FOV= 256 mm; thickness = 4mm;
no gap; slices = 33]. Each BOLD-fMRI run lasted 6 min and 50 s (164
TRs), and each subject underwent three working memory task runs.

2.3. Data Preprocessing

All of the BOLD-fMRI datawere preprocessed byusing thepreviously
described procedures (Zeng et al., 2014a,b) with a statistical parametric
mapping software package (SPM8, Welcome Department of Cognitive
Neurology, Institute of Neurology, London, UK, http://www.fil.ion.ucl.
ac.uk/spm). For each subject, the first five frames of the scanned data
were discarded for magnetic saturation. The following steps were then
performed: 1) slice timing correction; 2)motion correction; 3) normal-
izationwith an EPI template in theMontreal Neurological Institute atlas
space (3-mm isotropic voxels); 4) spatial smoothing using a 6-mm full-
width half-maximumGaussian kernel; 5) linear detrend and band-pass
temporal filtering (0·01–0·08 Hz); 6) regression of nuisance variables,
including the six parameters obtained by rigid body head motion cor-
rection, ventricular and white matter signals, and their first temporal
derivatives, quadratic terms, and squares of derivatives (32P) (Ciric
et al., 2017; Satterthwaite et al., 2013); and 7) if frame-wise displace-
ment (FD) at any point in time exceeded 0·3 mm, then that time
point was scrubbed (Drysdale et al., 2017; Power et al., 2015).

2.4. Control of Motion Artifact

To control confounding effects of motion artifact, several strategies
were conducted: First, 10 patients and 18 controls were excluded due
to excessive headmotion during scan acquisition (N2·5 mm translation
and/or 2·5° rotation); second, frame-wise displacement (FD) and the
temporal mean of the FD time series (mFD) was computed for each
run (Power et al., 2012), and we excluded 93 patients and 60 controls
with high levels of gross motion (mFD N 0·3 mm) (Satterthwaite
et al., 2013); third, a confound regression strategy of nuisance variables
as the aforementioned was used. Fourth, if FD at any point in time
exceeded 0·3 mm, then that time point was scrubbed (Drysdale et al.,
2017; Power et al., 2015). After volume censoring, we excluded 14 pa-
tients and 143 controlswith b100 time points. The results of the analysis
of controls formotion-related artifact can be seen in Fig. S1, illuminating
the sufficiency of the control of motion artifact.

After stringent control of motion artifact (117 patients and 221 con-
trols were excluded totally) and balancing for age and gender between
the patient and control groups (We first calculated the Chi-square value
and sorted the subjects by age for each group. Then the subjects with
minimal/maximal ages and a certain gender were removed to guaran-
tee that P-values were N0·10 both in the Chi-square test of gender
and in the two-sample t-test of age), 357 patients and 377 controls
were finally retained for further analysis. The participants' demographic
and clinical characteristics are summarized in Table 1, and the patients
and controls were matched for each site (P N 0·10, Pearson Chi-square
test/ two-sample t-test). In addition, the entire patient and control
groups were also well matched in gender (patients vs. controls: 144/
213 vs. 161/216 females/males, P = 0·515, Pearson Chi-square test),
age (patients vs. controls: 28·49 ± 8·58 vs. 29·32 ± 9·07 years, P=
0·202, two-sample t-test), mFD before and after motion scrubbing (pa-
tients vs. controls: 0·129 ± 0·063 vs. 0·128 ± 0·060 mm, P=0·886,
and 0·103 ± 0·040 vs. 0·107 ± 0·040 mm, P=0·108, two-sample t-
test), and data loss (patients vs. controls: 6·44 ± 7·96% vs. 5·94 ±
3·95%, P=0·381, two-sample t-test).

2.5. Functional Connectivity Measure

To ensure the optimal use of the wealth of information present in
fcMRI scans, we used multi-atlas based whole-brain fcMRI in themulti-
variate pattern analysis, which measures functional connectivity of the
same image in different spaces of multiple atlases (Min et al., 2014).
The first one includes 176 regions of interest (ROIs) based on the 17-
functional network parcellation of the human brain (Buckner et al.,
2011; Choi et al., 2012; Yeo et al., 2011). The second one includes 160
ROIs from several meta-analyses of fMRI activation studies
(Dosenbach et al., 2010). All of the 160 ROIs weremodeled as 6-mm ra-
dius spheres. The last one is the automated anatomical labeling (AAL)
atlas, which included 116 regions (Tzourio-Mazoyer et al., 2002).

For each brain atlas, we evaluated functional connectivity between
each pair of regional averaged time courses using the Pearson correla-
tion coefficient. Then, all of the correlation coefficients were converted
to z-scores by applying Fisher r-to-z transformation. Thus, three correla-
tion matrices were obtained for each subject. To remove potential site-
related variation in functional connectivitymeasures, Z-standardization
was used to normalize the functional correlationmatrices (Fig. S2) (Yan
et al., 2013). Then, the standardized correlation matrices were used as
classification features in further analysis.

2.6. Discriminant Autoencoder Network with Sparsity Constraint (DANS)

In the current study, we developed a deep DANS neural network
aimed at learning imaging site-shared rather than site-specific fcMRI
features. In contrast to the conventional sparse autoencoder network
(SAN) (Kim et al., 2016), we introduced an optimized discriminant
item based on correlation function in the cost function at the pre-
training stage to generate discriminating fcMRI features for binary clas-
sification. In the conventional autoencoder neural network, a least-
square cost function is defined in the pre-training of weight matrices:
min
w; wd

kO−XkF , wherew denotes weight matrix for linear dimensional-

ity reduction,wd denotesweightmatrix for linear reconstruction,O= g
(wdh+ q) denotes reconstructed output, h= f (wx+ p) denotes hid-
den layer output, g(∙) and h(∙) denote nonlinear projections, p and q de-
note offsets, and ‖∙‖F denotes LF-norm. For the multi-layer autoencoder
network, let h(s − 1) denote the input of Sth layer; then the hidden
layer output is h(s) = f (w(s)h(s− 1) + p(s)), the reconstructed out-
put is O(s) = g (wd(s)h(s) + q(s)), and the cost function is min

wðsÞ; wdðsÞ
J1

ðsÞ ¼ kOðsÞ−hðs−1ÞkF . Because the previous studies demonstrate that
classification performance may benefit from the control of the sparsity
of layer weights(Kim et al., 2016), a sparsity constraint c1‖w(s)‖1 +
c2‖w(s)‖22 was also included in the cost function to minimize the risk
of overfitting and further to improve the generalizability of the discrim-
inant deep learning framework, where ‖∙‖1 and ‖∙‖2 denote L1-norm and
L2-norm, respectively, and c1 and c2 denote the regularization coeffi-
cients selected in the ranges of [10−5, 10−4,10−3, 10−2,10−1 ]. To re-
duce the computation burden of the estimate of hyperparameters
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(regularization coefficients), we fixed the c1 and c2 for all hidden layers.
In addition to L1− and L2-norm regularization, a dropout strategy was
also employed to prevent overfitting (Li et al., 2014), where 50% of
nodes and respective connections were temporarily removed to extract
different sets of features that could independently produce a useful
output.

In this study, we additionally introduced an optimized discriminant
item based on a correlation function, i.e. ∑i, j=1

i=Nj , j=Cρij(s), in the cost
function at the pre-training stage to generate discriminating fcMRI fea-
tures for binary classification (C = 2). ρij(s) denotes the correlation
function between the feature vector of Sample i of Class Cj and the aver-

aged feature vector of samples of other classes, andρ j
i ðsÞ ¼ m� jðsÞTh j

i ðsÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km� jðsÞk2kh j

i ðsÞk
2

q
, where hij(s) denotes the feature vector of Sample i of

Class Cj,m
�

jðsÞ ¼ 1
N−N j

∑i¼Nk ;k¼C
i;k¼1ðk≠ jÞhðsÞdenotes the averaged feature vector

of samples of other classes, and C, N, Nj, Nk denote the number of classes
(C=2here), sample size of training dataset, sample sizes of Class Cj and
Class Ck, respectively. An autoencoder neural network always mini-
mizes the cost function using the initial input and final output. Because
themodels were trained in a layer-wise way here, the error of between
input and output of a given hidden layer is equivalent to the error be-
tween initial input and final output of the network. Thus, the cost func-
tion of the layer-wise training model could be as follows:

min
w sð Þ;wd sð Þ

J sð Þ ¼ J1 sð Þ þ c1 w sð Þk k1 þ c2 w sð Þk k22 þ c3∑
i¼N j ; j¼C
i; j¼1 ρ j

i sð Þ

where c3 denotes the regularization coefficient selected in the ranges of
[0·1, 0·5, 1, 5, 10]. The aimof including the optimized discriminant item
was to speed up the convergence and improve classification perfor-
mance by learning imaging site-shared features rather than site-
specific features.

In the back propagation of the conventional autoencoder neural

network, the gradients ∂ J1ðsÞ
∂wðsÞ ;

∂ J1ðsÞ
∂pðsÞ ;

∂ J1ðsÞ
∂wdðsÞ ;

∂ J1ðsÞ
∂qðsÞ ;

∂ J1ðsÞ
∂hðsÞ ;

∂ J1ðsÞ
∂OðsÞ can be

calculated according to the computational formula on http://ufldl.
stanford.edu/wiki/index.php/ Backpropagation_Algorithm. After intro-
ducing a sparsity constraint c1‖w(s)‖1 + c2‖w(s)‖22 and an optimized
discriminant item ∑i, j=1

i=Nj , j=Cρij(s) in the cost function:

min
wðsÞ;wdðsÞ

JðsÞ ¼ J1ðsÞ þ c1kwðsÞk1 þ c2kwðsÞk22 þ c3∑
i¼N j ; j¼C
i; j¼1 ρ j

i ðsÞ ,
where J1(s) =‖ O(s)− h(s− 1)‖F, h(s) = f (w(s)h(s− 1) + p(s)),

O(s) = g (wd(s)h(s) + q(s)), and ρ j
i ðsÞ ¼ m� jðsÞTh j

i ðsÞ=ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
km� jðsÞk2kh j

i ðsÞk
2

q
, wherem� jðsÞ ¼ 1

N−N j
∑i¼Nk ;k¼C

i;k¼1ðk≠ jÞhðsÞ; excepting ∂ JðsÞ
∂wdðsÞ ;

∂ JðsÞ
∂qðsÞ ;

∂ JðsÞ
∂OðsÞ, the computational formula of the other gradients need to

be modified:

(1) The weight matrix for linear dimensionality reduction w(s):

∂J sð Þ
∂w sð Þ ¼

∂J1 sð Þ
∂w sð Þ þ c1 sgn w sð Þð Þ þ 2c2w sð Þ;

(2) The hidden layer output h(s):

∂ J sð Þ
∂h sð Þ ¼

∂ J1 sð Þ
∂h sð Þ þ

c3m
�

j sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
m� j sð Þ�� ��2 h j

i sð Þ
��� ���22

r þ
XC

k¼1;k≠ j

1
N−Nk

XNk

i¼1

c3h
k
i sð Þffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

m�k sð Þ�� ��2 hk
i sð Þ

��� ���22

r

−ρ h j
i sð Þ;m� j sð Þ

� � c3h
j
i sð Þ

h j
i sð Þ

��� ���2
−

XC
k¼1;k≠ j

1
N−Nk

XNk

i¼1

ρðhk
i sð Þ;m�k sð ÞÞ c3m

�
k sð Þ

m�k sð Þk2;
���

http://ufldl.stanford.edu/wiki/index.php
http://ufldl.stanford.edu/wiki/index.php
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(3) The offset in the back propagation p(s):

∂J sð Þ
∂p sð Þ ¼

X ∂J sð Þ
∂h sð Þ

� �
∘f

0
w sð Þh s−1ð Þ þ p sð Þð Þ:

In the current study, the learning ratewas fixed at 10−3, the dropout
wasfixed at 0·5, and the updates ofweightmatriceswere stopped if the
epoch number reached 100.

The fine tuning of the current DANS model is the same as the con-
ventional autoencoder neural network. First, we used theweightmatrix
in the pre-training as the initials. Then the template M(s) with sparse
weights can be generated with a threshold of e(s) N 0 (10−3 was se-
lected here):

Mij sð Þ ¼ 1 wij sð Þ�� ��≥e sð Þ
0 wij sð Þ�� ��be sð Þ

	

In the fine tuning, the M(s) could not be modified, and we just up-
dated the corresponding weights if Mij(s) = 1, so that there was no
change in the distribution of sparse weights.

Linear support vector machines (SVMs) were used in the classifier
layer of the DANS neural network. Thus, the entire procedure of the
DANS framework included three steps: (1) layer-wise pre-training to
generate initial weight matrices using a training dataset, (2) fine tuning
Fig. 1. The flowchart of deep discriminant autoencoder neural network with sparsity constr
procedure of the DANS framework includes three steps: (1) layer-wise pre-training to generat
hyperparameters with a softmax layer using validation dataset (one fold), and (3) testing to
(one fold or site).
to determine hyperparameters with a softmax layer using a validation
dataset, and (3) testing to generate classification results with linear
SVMs using a testing dataset. The flowchart of the DANS framework
can be seen in Fig. 1.

The DANS networks were constructed with three hidden layers and
100 nodes in each layer, which were optimized using the training and
validation datasets (Fig. S3). A conventional SAN network without the
discriminant item was also constructed with three hidden layers and
100 nodes in each layer in the multi-site pooling classification. The
model training and validation experiments revealed that the discrimi-
nant item in the cost function could speed up the convergence of the
deep learning network and improve classification performance, as
shown in Fig. S4.
2.7. Multivariate Pattern Classification

In this study, we conducted two types of classification: (1) k-fold
multi-site pooling classification, inwhich all sevendatasetswere pooled
together, and then k-fold cross-validation strategies were used to eval-
uate the classification performance; and (2) leave-site-out transfer clas-
sification, in which the sample of a given imaging site was left for
testing, and the sample of other sites was used for training. These two
types of classification were independent from each other.
aint (DANS) in distinguishing schizophrenic patients from healthy controls. The entire
e initial weight matrices using training dataset (eight folds), (2) fine tuning to determine
generate classification results with linear support vector machines using testing dataset
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In addition to the proposed deep learningmethod, the canonical lin-
ear SVM and linear discriminant analysis (LDA) with feature selection
were used in this study. Because initially reducing the number of fea-
tures accelerates computation and diminishes noise (Dosenbach et al.,
2010), a hybrid feature reduction strategy was adopted in the study.
First, a univariate feature selectionwith Kendall tau rank correlation co-
efficient was used to eliminate half of the correlation features (Shen
et al., 2010; Zeng et al., 2012). Then,multivariate recursive feature elim-
ination (RFE) was used in combination with SVM or LDA (RFE-SVM,
RFE-LDA) (Martino et al., 2008). It should be noted that feature selection
was done on the training dataset, embedded in cross-validation cycles.
All the classifiers are supervised, so that themodels were trained to dif-
ferentiate patients from controls rather than differentiate different sites,
and the final accuracy is due to the disorder itself rather than site
difference.

In the multi-site pooling classification, we used a k-fold (k = 10)
cross-validation strategy to estimate the generalization ability of the
classifiers. In the DANS and SAN classification frameworks, we used
eight folds as the training dataset, one fold as the validation dataset,
and one fold as the testing dataset. In the RFE-SVM and RFE-LDA classi-
fication frameworks, we used nine folds as the training dataset and one
fold as the testing dataset, and the training dataset was further
partitioned in nine splits both in the RFE-SVM and RFE-LDA nested cy-
cles (Martino et al., 2008). The multi-site pooling classification with a
five-fold cross-validation strategy can be seen in the Supplementary
data.

In the leave-site-out transfer classification, we used the sample of a
given imaging site as the testing dataset and the sample of other sites
as the training dataset. The training dataset was further randomly
partitioned into nine folds, and eight folds were used for training and
one fold for validation in the DANS and SAN classification frameworks.
The training dataset was also partitioned in nine splits both in the
RFE-SVM and RFE-LDA nested cycles (Martino et al., 2008).

The performance of a classifier can be quantified using the accuracy,
sensitivity, and specificity based on the results of cross-validation (k-
fold or leave-site-out). Note that the sensitivity represents the propor-
tion of patients correctly predicted, whereas the specificity represents
the proportion of controls correctly predicted. The overall proportion
of samples correctly predicted was evaluated by the accuracy (general-
ization rate). The full k-fold cross-validation procedure was repeated
ten times to generate the means and standard deviations of accuracy,
sensitivity, and specificity. We used two-sample/paired t-test and
Kolmogorov-Smirnov test (a nonparametric test) to compare classifica-
tion performance between different algorithms.

To ensure the optimal use of the wealth of information, we used
multi-atlas fusions in the classification at the feature and label levels, re-
spectively. In the feature-level fusion, the functional connectivity fea-
tures of the three atlases were merged together and were considered
as the inputs of a given classifier. In the label-level fusion, three classi-
fiers were trained based on the functional connectivity features of the
three atlases, respectively, and then we applied a standard majority-
voting scheme to resolve disagreements in the prediction outputs of
the three classifiers.

2.8. Estimation of the Discriminative Power of Functional Connectivity

The discriminative power of the functional correlations for the first
hidden layer of the DANS network in the ten-fold multi-site pooling
classification was calculated using the following steps: First, for each
node, the weight vectors were averaged for ten iterations in a full ten-
fold cross-validation. Second, the nodal weight vectors were converted
to binary ones by a threshold, with which the top 1% of the elements
with the largest absolute values were retained. Then, a synthesized
weight vector of the first layer was obtained by averaging the weight
vectors of all nodes of this layer. Because the full ten-fold cross-
validation was repeated ten times, the final weight vector was obtained
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by averaging the ten synthesized ones, which indicates the discrimina-
tive power of the functional correlations in this layer. For the second and
third hidden layers, because they used the output of the former hidden
layer as an input, and thenodes alwaysworked at an approximate linear
interval, theweight vectors could bemultiplied forward approximately.
Regionweights, representing the relative contributions in the classifica-
tion of schizophrenia, were denoted by the sum of the weights of the
relevant functional correlations. In this case, the final weights of the
functional correlations and regions could be obtained. Z-
standardization was used to normalize the connectivity and region
weights. The weights of functional correlations and regions in leave-
site-out transfer classification could be calculated in a similar way.

We grouped the brain regions of the 17-network parcellation into
six functional subsystems for visualization: visual (VN), somatomotor
(SMN), ventral attention/salience (vATN), dorsal attention (dATN),
frontoparietal control (FPN), and default networks (DN). The brain re-
gions of the AAL template and 160 ROIs were also labeled with the six
networks according to their locations.
3. Results

3.1. Ten-Fold Multi-Site Pooling Classification

Accuracies of 83·8 ± 0·5%, 79·6 ± 0·9%, and 82·7 ± 0·9% were
obtained by using the DANS method with the AAL template, 160 ROIs,
and 17-network parcellation, respectively, which were significantly
higher than those obtained by using the RFE-SVM and RFE-LDA classi-
fiers (P b 0·001, two-sample t-test and Kolmogorov-Smirnov test,
Table 2 and Fig. 2A), and the SAN network (P b 0·05, two-sample t-
test and Kolmogorov-Smirnov test, Table 2 and Fig. 2A). When fusing
multiple atlases at the feature and label levels, accuracies of 84·3 ±
0·7% and 85·0 ± 1·2% were obtained by using the DANS method, re-
spectively (Table 2 and Fig. 2A), which were significantly higher than
the accuracies obtained by using the RFE-SVM and RFE-LDA classifiers
(P b 0·001, two-sample t-test and Kolmogorov-Smirnov test, Table 2
and Fig. 2A), and the SAN network (P b 0·05, two-sample t-test and
Kolmogorov-Smirnov test, Table 2 and Fig. 2A). In addition,we also con-
ducted five-fold multi-site pooling classification, and the accuracies
were slightly lower than those of ten-folds (Table S1).
Fig. 2. The results of ten-foldmulti-site pooling classification (A) and leave-site-out transfer clas
discriminant analysis; SAN, sparse autoencoder network; DANS, discriminant autoencoder net
3.2. Leave-Site-Out Transfer Classification

The results of single-atlas based transfer classification can be seen in
Table S2–S4. The accuracies of 79·8± 4·2%, 77·2 ± 4·9%, and 78·4 ±
4·8% were obtained by using the DANSmethod with the AAL template,
160 ROIs, and 17-network parcellation, respectively, whichwere signif-
icantly higher than the accuracies obtained by using the RFE-SVM and
RFE-LDA classifiers (P b 0·05, paired t-test or Kolmogorov-Smirnov
test, Fig. 2B). When fusing multiple atlases at the feature and label
levels, accuracies of 80·4 ± 4·4% and 81·0 ± 4·9% were obtained by
using the DANSmethod, whichwere significantly higher than the accu-
racies obtained by using the RFE-SVM and RFE-LDA classifiers (P b 0·05,
paired t-test, Tables 3, 4 and Fig. 2B). Noted that one sample used data
collected at a 1·5-T scanner (Xiangya), and another used functional
rather than resting-state data (WUSTL). Given that the rest of the sites
used resting-state data obtained at 3·0-T scanners, we conducted addi-
tional analysis that leaves out both the Xiangya and WUSTL data, and
the full results of leaving-two sites-out cross-validation based on
multi-atlas fusion can be seen in the Supplementary data (Table S5 &
S6), which reveals that similar results could be obtained.

3.3. Most Discriminating Functional Connectivity

We first analyzed the most discriminating functional connectivity
based on the 17-network parcellation in the multi-site pooling classifi-
cation. The fcMRI features learned by the nodes in the first hidden
layer were analyzed (Fig. S5). A significant observation was that
cortical-striatal-cerebellar circuit exhibited great weights. Some nodes
learned cortical-striatal functional connectivity features, some nodes
learned striatal-cerebellar functional connectivity features, and some
nodes learned direct cortical-cerebellar functional connectivity features
(Fig. 3).

It was observed that themost discriminating regions include the left
caudate, posterior cingulate cortex (PCC), bilateral temporo-parietal
cortices, and right inferior parietal lobule (IPL) within the DN, bilateral
prefrontal cortex (PFCl), dorsal prefrontal cortex (PFCd), and left tem-
poral cortex within the FPN, left PFCd, right pre-central cortex (PrC),
medial frontal cortex (FrMed), right ventral prefrontal cortex (PFCv),
and bilateral putamen within the vATN, left frontal eye field (FEF)
within the dATN, and central sulcus and putamen within the SMN
sification (B). RFE, recursive feature elimination; SVM, support vectormachine; LDA, linear
work with sparsity constraint.



Table 3
The results of leave-site-out transfer classification based on multi-atlas fusion at the feature level.

Site RFE-SVM (%) RFE-LDA (%) SAN (%) DANS (%)

SS SC ACC SS SC ACC SS SC ACC SS SC ACC

Xijing#1 71·8 90·7 79·8 61·2 90·7 73·6 68·9 93·3 79·2 70·9 93·3 80·3
Xijing#2 78·7 68·3 72·9 74·5 75·0 74·8 76·6 78·8 77·6 78·7 78·3 78·5
AMU 83·0 80·9 81·9 88·6 78·7 83·5 88·6 88·3 88·5 89·8 88·3 89·1
Xiangya 88·1 56·7 75·0 88·1 56·7 75·0 95·2 56·7 79·2 100·0 60·0 83·3
COBRE 80·0 57·4 65·3 84·0 61·7 69·4 76·0 59·6 65·3 72·0 74·5 73·6
UCLA 64·7 88·0 78·6 58·8 84·0 73·8 79·4 88·0 84·5 76·5 80·0 78·6
WUSTL 66·7 81·0 74·4 61·1 95·2 79·5 66·7 85·7 76·9 61·1 95·2 79·5
Mean ± STD 76·1 ± 8·7 74·7 ± 14·0 75·4 ± 5·5 73·8 ± 13·4 77·4 ± 14·3 75·7 ± 4·5 78·8 ± 10·2 78·6 ± 14·7 78·7 ± 7·2 78·4 ± 11·9 81·4 ± 11·3 80·4 ± 4·4

RFE, recursive feature elimination; SVM, support vector machine; LDA, linear discriminant analysis; SAN, sparse autoencoder network; DANS, discriminant autoencoder network with sparsity constraint; SS, sensitivity; SC, specificity; ACC, accuracy.

Table 4
The results of leave-site-out transfer classification based on multi-atlas fusion at the label level.

Site RFE-SVM (%) RFE-LDA (%) SAN (%) DANS (%)

SS SC ACC SS SC ACC SS SC ACC SS SC ACC

Xijing#1 60·2 96·0 75·3 59·2 92·0 73·0 70·9 92·0 79·9 73·8 93·3 82·0
Xijing#2 76·6 65·0 70·1 72·3 73·3 72·9 83·0 73·3 77·6 80·9 78·3 79·4
AMU 81·8 79·8 80·8 85·2 77·7 81·3 92·1 86·2 89·0 92·1 88·3 90·1
Xiangya 90·5 63·3 79·2 90·5 60·0 77·8 97·6 60·0 81·9 97·6 66·7 84·7
COBRE 92·0 57·4 69·4 80·0 66·0 70·8 72·0 70·2 70·8 68·0 76·6 73·6
UCLA 64·7 86·0 77·4 58·8 82·0 72·6 67·7 88·0 79·8 58·8 90·0 77·4
WUSTL 72·2 81·0 76·9 61·1 85·7 74·4 66·7 90·5 79·5 55·6 100·0 79·5
Mean ± STD 76·9 ± 12·2 75·5 ± 13·9 75·6 ± 4·3 72·5 ± 13·1 76·7 ± 11·2 74·7 ± 3·6 78·5 ± 12·4 80·0 ± 12·2 79·8 ± 5·4 75·2 ± 14·8 84·7 ± 10·6 81·0 ± 4·9

RFE, recursive feature elimination; SVM, support vector machine; LDA, linear discriminant analysis; SAN, sparse autoencoder network; DANS, discriminant autoencoder network with sparsity constraint; SS, sensitivity; SC, specificity; ACC, accuracy.
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Fig. 3. Cortical-striatal-cerebellar functional connectivity features exhibited great weights
in the classification of schizophrenia. The lines representing the discriminating functional
connections are scaled with their discriminative power. DN, default network; FPN,
frontoparietal control network; vATN, ventral attention network; dATN, dorsal attention
network; SMN, somatomotor network; VN, visual network.

82 L.-L. Zeng et al. / EBioMedicine 30 (2018) 74–85
(Fig. 4A). The right PFCl, left caudate, left temporo-parietal cortex, and
right FrMed exhibited the greatest region weights. Summing up, the
most discriminating regions were primarily located within the DN,
FPN, and vATN (Fig. 4B), and similar results could be obtained for the
AAL template and 160 ROIs (Fig. S6). Furthermore, the region weights
obtained in the leave-site-out transfer classification were quite similar
with those in the multi-site pooling classification (R=0·88, 0·86, and
0·79 for the AAL template, 160 ROIs, and 17-network parcellation, re-
spectively, P b 0·001, Fig. 4D).

We divided the most discriminating connectivity features of the 17-
network parcellation into intra- and inter-network groups, as shown in
Fig. 4C. The most discriminating intra-network functional correlations
were primarily located within the DN, FPN, and vATN, whereas the
most discriminating inter-network functional correlations between
the DN and FPN (16·4%) and between the DN and vATN (13·2%) exhib-
ited the highest percentages. Similar results were obtained for the AAL
template and 160 ROIs (Fig. S7). The connectivity weights were highly
correlated across the folds or sites (P b 0·001, Fig. S8), and the average
connectivity weights obtained in the leave-site-out transfer classifica-
tion were quite similar with the average connectivity weights obtained
in themulti-site pooling classification (R=0·76, 0·72, and 0·65 for the
AAL template, 160 ROIs, and 17-network parcellation, respectively, P b

0·001, Fig. 4D). The top 1% of the most discriminating functional corre-
lations of the three atlases can be seen in Fig. S9.

4. Discussion

We have developed a deep DANS network withmulti-atlas fcMRI to
discriminate schizophrenic patients from healthy controls in a large
multi-site sample. The accuracies of approximately 85·0% and 81·0%
were obtained in the multi-site pooling classification and leave-site-
out transfer classification between the patients and controls, respec-
tively, suggesting the potential of discriminant deep learning of multi-
atlas fcMRI in searching biomarkers to achieve clinical diagnosis of
schizophrenia across multiple independent imaging sites. In addition,
the results revealed dysregulation of the cortical-striatal-cerebellar
circuit in schizophrenia, and the most discriminating functional
correlations were primarily located within and across the DN, FPN,
and vATN, perhaps implying the potential roles of these subsystems in
the “disconnectivity” model underlying the pathophysiology of
schizophrenia.

As known, the current clinical diagnosis of schizophrenia is based
solely on clinical manifestations. In recent years, a number of previous
studies attempted to find stable neuroimaging-based biomarkers and
design neuroimaging-based diagnostic tools with the claim that hetero-
geneous psychiatric disorders can be diagnosed robustly, accurately and
rapidly in an automatic fashion. So far, it has been a big challenge to find
reliable neuroimaging-based biomarkers for the diagnostic classifica-
tion of schizophrenic individuals. Compared with previous multi-site
studies (Cheng et al., 2015b; Rozycki et al., 2017; Skåtun et al., 2017),
the current study developed a discriminant deep learning method,
yielding an improvement (N5.0%) of average accuracy both in the
multi-site pooling classification and leave-site-out transfer classifica-
tion. From this view of point, the present studymaymark an important
breakthrough by enhancing the capabilities of psychiatrists by bringing
deep learning to the task of diagnosing schizophrenia across sites. The
promising classification results may derive from the following aspects:
First, the powerful deep DANS network was able to improve the
binary-class feature learning in the large multi-site sample, ensuring
that the learned features are most discriminating between the two
populations and are independent of the choice of imaging sites. We ad-
ditionally tested the conventional SAN network (without the discrimi-
nant item in the cost function) and obtained significantly lower
accuracies in the multi-site pooling classification (Fig. 2A), which sug-
gests that the optimized discriminant item in the cost function at the
pre-training stage helped improve classification performance. Though
the improvement of the accuracies of the DANS was not significant in
the leave-site-out transfer classification relative to the conventional
SAN, but the DANS network obtained higher accuracies in most sites.
Second, increasing the training sample size may improve classification
performance of the deep DANS network. For example, the accuracies
of ten-folds were higher than those of five-folds in multi-site pooling
classification (Table 2 and S1). Third, multiple atlases enriched the dis-
criminating fcMRI features (Fig. 2). The accuracies obtained from
multi-atlas fusionwere higher than those from a single atlas, suggesting
that classification performance could be improved if more subtle brain
atlases were included. In this study, promising accuracies were also ob-
tained in the leave-site-out transfer classification. Such experiments
may be of significance in clinical practice because the results indicate
the independence of the classification models with respect to imaging
sites. Perhaps because the classification model learned no knowledge
from the testing site, the accuracies of leave-site-out transfer classifica-
tion were relatively lower than the accuracies of multi-site pooling
classification, and some sites had different sensitivity/specificity.
However, the current results suggest that the proposed discriminant
deep learning method with fcMRI may provide a promising investiga-
tive tool for diagnostic classification of individuals with schizophrenia
across independent imaging sites, and may be the first step to build
neuroimaging-based discriminative models to predict onset of schizo-
phrenia in a high-risk sample or to differentiate schizophrenia from
other disorders with clinical overlap.

In the classification of schizophrenic patients, the majority of dis-
criminating functional correlations were related to the DN, FPN, and
vATN. Schizophrenic patients consistently display deficits in amultitude
of cognitive domains(Sheffield and Barch, 2016).The activity within the
DN has been linked to task-related and spontaneous internally-guided
processes spanning autobiographicalmemory retrieval andmentalizing
(Addis et al., 2007; Saxe and Kanwisher, 2003). The DN anomaly has
been consistently demonstrated in schizophrenia in previous studies
(Bluhm et al., 2007; Camchong et al., 2011; Garrity et al., 2007; Wang
et al., 2015;Whitfield-Gabrieli et al., 2009). In the current study, the ab-
normal functional connectivity related to DN regions including the left
caudate, PCC, and bilateral temporal lobes may be associated with epi-
sodic memory deficits in patients with schizophrenia and also auditory



Fig. 4.Most discriminating brain regions and functional connectivity in schizophrenia. (A) Most discriminating brain regions in schizophrenia. (B) Percentages of themost discriminating
brain regions of each network. (C) Percentages of most discriminating functional connectivity within and between brain networks. (D) The region weights (R=0·88, 0·86, and 0·79 for
the AAL template, 160 ROIs, and 17-network parcellation, respectively, P b 0·001) and connectivity weights (R=0·76, 0·72, and 0·65 for the AAL template, 160 ROIs, and 17-network
parcellation, respectively, P b 0·001) obtained in the leave-site-out transfer classification were quite similar with those in the ten-fold multi-site pooling classification. Regions are
color-coded by category and are scaled with their discriminative power. DN, default network; FPN, frontoparietal control network; vATN, ventral attention network; dATN, dorsal
attention network; SMN, somatomotor network; VN, visual network; L/R, left/right.
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hallucinations (Mondino et al., 2016; Vercammen et al., 2010; Wang
et al., 2014b). Poorerworkingmemory ability has also been consistently
observed in schizophrenia and is often attributed to abnormal function-
ing of the FPN, especially PFCl-related connectivity alterations (Eryilmaz
et al., 2016; Nielsen et al., 2017; Wu et al., 2017). Recent evidence re-
veals that deficient DN suppression and altered dynamics between DN
and FPN are also involved in the neuropathology of working memory
deficit in schizophrenia (Pu et al., 2016; Whitfield-Gabrieli et al.,
2009). In addition, it was observed that the functional circuit across
the putamen, dorsal and medial frontal areas (especially the PFCd and
FrMed) within the salience network (vATN) was altered in schizophre-
nia. The finding of an abnormal salience network could be explained by
thedopaminehypothesis in schizophrenia to someextent (Hietala et al.,
1995; Reith et al., 1994), i.e., dysregulated dopamine transmission may
cause improper assignment of salience to irrelevant stimulus externally
or internally, leading to delusional thought and hallucinations, respec-
tively (Braff, 1993; Cohen and Servan-Schreiber, 1992; Kapur, 2003).
Thus, salience-related functional connectivity changes together with
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the DN and FPN alterations that underlie impaired attentionmay repre-
sent important factors in the positive symptoms of schizophrenia
(Camchong et al., 2011; He et al., 2013; Unschuld et al., 2014).

Another significant observation was that the cortical-striatal-
cerebellar circuit exhibited great weights. It was notable that the
cortical-striatal, striatal-cerebellar, and cortical-cerebellar functional
connectivity featureswere learned by the DANS network, implying dys-
regulation of the cortical-striatal-cerebellar circuit in schizophrenia.
Yoon et al. (2013) observed a link between impaired prefrontal-basal
ganglia functional connectivity and the level of psychosis, and Sarpal
et al. (2015) found a negative relationship between reduction in psy-
chosis and functional connectivity of striatal regions. In addition, altered
connections between the frontal regions and caudate were associated
with executive functioning impairments in schizophrenia (Morey
et al., 2005; Repovs et al., 2011; Tu et al., 2012; Yoon et al., 2013). Previ-
ous studies have also demonstrated an important role of the cerebellum
in schizophrenia (Shen et al., 2010; Shinn et al., 2015; Wang et al.,
2014a; Yu et al., 2013a; Yu et al., 2013b). In the current study, the
deep learning method discovered an integrated cortical-striatal-
cerebellar circuit based on multi-site fMRI data, which suggests that
dysregulation of the circuit may be a common pathway linking the
pathogenesis of cognitive deficits and psychosis in schizophrenia.

The current study posed several limitations. First, accurate classifica-
tion may benefit from homogeneous datasets by standardizing MRI
scanners and scanning parameters. Second, this study is limited by po-
tential confounding effects frommedication and possible long duration
of illness. Due to a limited sample size and a lack of individualized clin-
ical information including medication and illness duration for some re-
sources, it is important to examine the influence of the two conditions in
the future. Third, the fusion of multi-modal neuroimaging evidence
such as structural abnormality is necessary as a synthesized biomarker
for more reliable clinical diagnosis of this complex disorder (Sui et al.,
2015). Fourth, validation experiments are essential if the transfer classi-
fication model is applied to a clinical population at a new imaging site.
Fifth, data preprocessing may be critical for multivariate pattern analy-
sis, and the impacts of each preprocessing step for the final performance
in the deep learning of brain imaging may need to be investigated. In
summary, themachine learning-based diagnostic classification ofmulti-
ple neuropsychiatric disorderswith a largemulti-site imaging dataset is
of great significance for clinical practice andmay be an important future
direction.
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