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Simple Summary: Phosphorus (P) is an essential mineral in the diets of pigs. The degree to which P
is utilized has both economic and environmental consequences to the swine industry. Mathematical
models can be used to describe the relationship between P intake and P retention. These models
provide information regarding P utilization that can be used to formulate diets aimed at reducing P
overfeeding, and therefore decrease P wastage. The objective of this study was to assess the ability of
four non-linear models (monomolecular, Michaelis-Menten, Richards, and Morgan) and one simple
linear model to describe the relationship between P intake and P retention in growing and finishing
pigs. Through fitting these models to data from P balance studies, non-linear models which describe
diminishing returns type behaviour, the monomolecular and the Michaelis-Menten models, were
found to best describe the relationship between P intake and P retention in these categories of pig. The
parameter of these models allows estimates of endogenous P losses, P requirement for maintenance
and theoretical maximum P retention enabling the more efficient use of P in the swine industry.

Abstract: The ability of four non-linear mixed models and one linear mixed model to describe
phosphorus (P) retention as a function of dietary P intake, expressed on an available P (avP) basis,
was assessed in growing and finishing pigs. Of the four non-linear models, the monomolecular
and Michaelis-Menten describe diminishing returns behaviour, while the Richards and Morgan
describe sigmoidal behaviour with the ability to also describe diminishing returns. Using a meta-
analysis approach, models were fitted to avP intake vs. P retention data from P balance studies. Pig
bodyweights (BW) ranged from 43.5 to 133 kg, P intake ranged from 0.055 to 0.468 g kg−1 BW0.75 d−1

for avP, and 0.151 to 0.806 g kg−1 BW0.75 d−1 for total P, with P retention ranging from 0.026 to
0.329 g kg−1 BW0.75 d−1. Models were evaluated using statistical measures of goodness-of-fit and
inspection of residuals. The monomolecular and Michaelis-Menten best described the relationship
between P retention and P intake. Endogenous P losses and P requirement for maintenance were
found to be higher in finishing pigs compared to growing pigs as BW increased.

Keywords: phosphorus retention; growing and finishing pigs; non-linear models; endogenous
phosphorus losses; phosphorus requirement for maintenance

1. Introduction

Non-ruminants have a limited ability to hydrolyze phytate into phosphate, the
metabolically available form of phosphorus (P) that can be absorbed in the intestine. As a
consequence of low phytate utilization, considerable levels of unabsorbed P are excreted
in faeces. This not only represents a significant economic loss, but also an environmen-
tal pollutant compromising the sustainability of the swine industry [1–3]. In addition,
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although inorganic P sources are better utilized by the animal, these are finite resources
and are prone to volatile prices [4–6]. Due to these concerns, a considerable number of
studies on P utilization in pigs has been carried out, resulting in a significant body of data
being available that can be used to improve understanding of the utilization of this mineral
by pigs.

The fitting of mathematical functions to data from animal experiments has been shown
to be useful in characterizing biological behaviour [7]. In a meta-analytic study, Schulin-
Zeuthen et al. [8] reported that the monomolecular equation was the best estimator of P
retention in growing pigs. Dilger and Adeola [9] also observed non-linear behaviour in
the relationship between dietary P levels and P excretion in growing pigs fed conventional
and low-phytate soybean diets. They pointed out the necessity for more studies to evaluate
whether a linear relationship between P intake and P output would be the best functional
form to estimate true P digestibility and endogenous P loss in pigs. In this work, four
non-linear functions were assessed for their ability to describe the relationship between
dietary P levels and P retention. Non-linear models include the monomolecular and the
Michaelis-Menten, which describe diminishing returns behaviour, while the Richards and
Morgan describe sigmoidal behaviour with the ability to also describe diminishing returns.
Additionally, a simple linear model was applied.

As nutrient requirements vary with physiological state [10,11], in addition to relative
rates of mineral deposition being influenced by body weight [12], it is crucial to understand
P utilization in different categories of pigs to formulate diets to reduce P overfeeding and
consequently P waste. Thus, the objective of this study was to evaluate linear and non-
linear models in their ability to describe P utilization in growing and finishing pigs through
the holistic approach of meta-analysis using data collected from various phosphorous
balance studies.

2. Materials and Methods
2.1. Data Collection

A database was created using studies providing P balance data on growing and finish-
ing pigs. The literature search was conducted using the University of Guelph provided
Omni academic search engine. Key words included: “growing-finishing pigs”, “phospho-
rus balance” and “phosphorus retention”; search year ranged from 1966 to 2020. Using
these criteria, 312 results were generated. These were narrowed down to a potential
106 papers based on excluding classes of pigs that were not growing and finishing i.e.,
nursing, weaning, lactating, etc. Only studies containing information on diet, total P (tP)
dietary intake, body weight (BW), P excreted in faeces and urine, and P retention were
selected. The inclusion of available P (avP) data allows for a more realistic analysis of
assembled experiments with diets composed of distinct ingredients. Apparent total tract
digestibility (ATTD) can serve as a method to estimate avP [13]. Therefore, in studies
whereby avP was not explicitly reported, ATTD values of P were used. If neither avP
nor ATTD values were reported, avP was calculated using reported tP and associated
bioavailability of phosphorus values from the Nutrient Requirements of Swine (1998). Only
treatments that did not include additional phytase supplementation were included in the
database. In brief, the database contained 99 treatments from 23 studies encompassing
453 pigs with BW ranging from 43.5 kg to 133 kg, with an average BW across the entire
database of 78.7 kg. P intake, in addition to P retention, was scaled by metabolic body
weight (g kg−1 BW0.75 d−1). Across the database intake of avP ranged from 0.055 to 0.468
g kg−1 BW0.75 d−1, tP from 0.151 to 0.806 g kg−1 BW0.75 d−1 with P retention ranging from
0.026 to 0.329 g kg−1 BW0.75 d−1. Table 1 contains a summary of the averaged values, and
their range, contained in the full dataset, in addition to the sex. Please refer to Table A1
in the Appendix A, for body weight, breed, and dietary description of the individual
studies encompassing the full dataset. The full dataset can be found in the associated
Supplementary Material section of this article.
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Table 1. Averages and minimum-maximum values of bodyweight (BW, kg), P intake and P retention
values of the dataset in addition to being expressed on the basis of sex.

Item Full Dataset
Sex

Male Female

n 99 80 19

BW, kg 78.7 80.5 71.4
43.5–133.0 48.4–133.0 43.5–104.1

P measurements, g d−1

tP intake
11.3 11.2 11.6

3.7–21.7 4.3–20.0 3.7–21.7

avP intake
4.8 4.6 5.8

1.5–13.0 1.6–13.0 1.5–12.2

P retention
4.0 3.9 4.5

0.7–8.8 0.7–8.8 1.4–8.6

P measurements, g kg−1 BW0.75 d−1

tP intake
0.437 0.427 0.471

0.151–0.806 0.151–0.785 0.162–0.806

avP intake
0.187 0.175 0.237

0.055–0.468 0.055–0.467 0.066–0.468

P retention
0.153 0.146 0.185

0.026–0.329 0.026–0.247 0.061–0.329

2.2. Matheamtical Considerations

Five functional forms were used to describe the profiles resulting from the relationship
between tP, avP and P retention, viz.

Straightline : y = cx− b (1)

Monomolecular : y = a− (a + b)e−cx (2)

Michaelis−Menten : y =
−bc + ax

c + x
(3)

Richards : y =
b(a + 2b){

bn +
[
(a + 2b)n − bn

]
e−cx

} 1
n
− 2b (4)

Morgan : y =
−bcn + axn

cn + xn (5)

where variable x denotes P intake (tP or avP) and y denotes P retention, with both of these
variables being expressed on a g kg−1 BW0.75 d−1 basis. Parameter a represents theoretical
maximum retention, while parameter b represents endogenous P excretion. In the non-
linear equations, parameters c and n define the shape of the curve, while c represents the
slope in the linear equation. Parameters are all positive except n ≥ −1 for the Richards. The
above equations are modifications of their standard forms, because equations for describing
P balance data require a negative intercept on the ordinate axis. The standard form of
the Michaelis-Menten intercepts the y-axis at the origin and standard growth functions
(e.g., monomolecular, Richards and Morgan) give a positive intercept (refer to Thornley
and France [7] for details). Equations (2) and (3) describe diminishing returns behaviour,
whilst Equations (4) and (5) are also capable of describing sigmoidal behaviour with a
variable point of inflexion. Equation (2) is a special case of Equation (4) (i.e., n = −1), and
Equation (3) is a special case of Equation (5) (i.e., n = 1).

For each function, P requirement for maintenance was calculated by setting y equal to
zero and solving for x, viz.



Animals 2022, 12, 1611 4 of 14

Straightline : x = b/c (6)

Monomolecular : x = c−1 ln[(a + b)/a] (7)

Michaelis−Menten : x = c
b
a

(8)

Richards : x = c−1 ln

{
2n[(a + 2b)n − bn]
(a + 2b)n − (2b)n

}
(9)

Morgan : x = c
(

b
a

) 1
n

(10)

Additionally, following the methods of Darmani Kuhi et al. [14], the change in retention
based upon the difference between two P intakes, expressed as retention efficiency (k),
was calculated:

k =
∆y
∆x

(11)

2.3. Statistical Analysis
2.3.1. Model Development

Initially, each function was fitted using the PROC NLIN procedure in SAS [15] which
does not consider random effects. This procedure was used to assist in determining initial
parameter estimates for each model. These initial estimates were then used to perform a
regression analysis using a meta-analytic approach that considered each study as a random
effect [16]. The PROC NLMIXED procedure of SAS (2000) was used for this analysis
(PROC MIXED for linear functions). The distribution of random effects was assumed to
be normal. The dual quasi-Newton technique was used for optimization with adaptive
Gaussian quadrature as the integration method. Using the PROC SURVEYSELECT, the
BALBOOTSTRAP method was used for balanced bootstrap sampling of the original dataset.
The same seed was used between models to ensure the resulting bootstrapped database to
which the models were fitted was the same. Using this method, the sample size for each
bootstrap replicate is equal to the original sample size with equal sampling probability and
replacement [17]. One thousand (1000) bootstrapping replicates were specified.

2.3.2. Model Evaluation

Models were evaluated using common statistical measures of goodness-of-fit in addi-
tion to inspection of residuals. Agreement between model predictions and observed values
was assessed using mean square prediction error (MSPE):

MSPE =
1
n

n

∑
i=1

(Oi − Pi)
2

where n is the number of observations, Oi is the observed value, and Pi is the predicted
value [18]. The MSPE was decomposed into errors in central tendency (uM), errors due to
regression (uR), and errors due to disturbance (uD) [19]. Additionally, agreement between
model predictions and observations was tested using the concordance correlation coefficient
(CCC). Following the methods proposed by Lin [20], calculated CCC values range from −1,
representing perfect disagreement, to +1, perfect agreement, with a value of 0 indicating
no agreement between observed and predicted values. The Akaike information criterion
(AIC) was used to compare models against one another [21]. The AIC is used for model
selection whereby both the goodness-of-fit and the number of parameters in that model are
accounted for. This criterion penalizes more complicated models for inclusion of additional
parameters; using these criteria models with lower AIC values are preferred.
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3. Results

The ability of four non-linear and one linear model viz. monomolecular, Michaelis-
Menten, Richards, Morgan, and linear, to describe phosphorus retention in growing and
finishing pigs given avP intake, expressed on a metabolic BW basis, was assessed using a
meta-analytic approach. Due to the nature of their derivation, the models yielded biologi-
cally meaningful parameters including theoretical maximum retention (a) and endogenous
P excretion (b), in addition to allowing for the calculation of P requirement for maintenance
based upon the parameter estimates.

3.1. Fitting Behaviour

Of the four non-linear models, two described diminishing returns behaviour alone,
viz. the monomolecular, Michaelis-Menten, while the remaining two described sigmoidal
and diminishing returns behaviour, the Richards and Morgan. When fitting the linear,
monomolecular and Michaelis-Menten models to either the avP intake dataset, no con-
vergence or fitting issues were encountered. When fitting the Richards equation to the
avP intake, instead of describing a sigmoidal type response, the Richards reverted to the
monomolecular (i.e., n = −1) and thus described a diminishing returns response. Likewise,
the Morgan describes a sigmoidal response, and although it did not revert to the Michaelis-
Menten (i.e., n 6= 1) when fitted to either the avP, the shape parameter n did approach 1, viz.
2.16, with values of n closer to 1 resulting in a more diminishing returns style of behaviour.
When fitting both the Richards and Morgan, the parameter b, endogenous P excretion,
tended to converge on a negative number. As b must be greater than 0 from a biological
basis, a bound forcing b to be greater than 0 was implemented when fitting these models.
However, as seen in Table 2, for both these models the parameter b converged to very small
positive numbers.

Table 2. Parameters estimates, and associated 95% confidence intervals, resulting from fitting linear
and non-linear models to P retention vs. P intake (g kg–1 BW0.75 d–1) data in growing and finishing
pigs, derived P requirement for maintenance in addition to average efficiency (k ) of dietary P
conversation to retained P.

Item Linear Monomolecular Michaelis-Menten Richards Morgan

Parameter 1

a
CI 2

0.25
0.24–0.26

0.34
0.33–0.35

0.37
0.37–0.38

0.22
0.22–0.22

b
CI 1 × 10−8 0.044

0.04–0.05
0.08

0.07–0.09 3.0 × 10−16 1 × 10−8

c
CI

0.46
0.45–0.46

6.33
6.27–6.40

0.14
0.14–0.14

2.12
2.12–2.13

0.15
0.15–0.16

n
CI −1.00
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k(min−max)
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5 0.83 0.87 0.60 0.82

k(mid−max)
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1 Parameter a represents the theoretical maximum P retention (g kg−1 BW0.75 d−1); parameter b represents endoge-
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n = −1 therefore the Richards reverted to the monomolecular.

3.2. Parameter Estimates, Derived Parametersand Fitted Values

Parameter estimates, in addition to their 95% confidence intervals, resulting from
fitting the linear and four non-linear models to avP intake to describe P retention are
presented in Table 2. Comparing parameters with biological significance, values of a
(theoretical maximum P retention) were 0.22, 0.25, 0.34, and 0.37 g kg−1 BW0.75 d−1 for
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the Morgan, monomolecular, Michaelis-Menten and Richards, respectively, when fitted
to the P retention vs. avP intake. Given the same avP dataset, endogenous P excretion (b)
values for the monomolecular and Michaelis-Menten were 0.04 and 0.08 g kg−1 BW0.75 d−1,
respectively. For the linear and Morgan, parameter estimates representing endogenous P
excretion were 1.0 × 10−8 g kg−1 BW0.75 d−1 while for the Richards 3.0 × 10−16. Figure 1
displays the predicted values of retained P of all five models, represented by red markers,
vs. the observed values, represented by black markers, when fitted to the avP intake data.
The predicted values represented by the red dots include the random effect of study in the
model while the continuous black line represents predicted values using the standard form
of the equation.
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Figure 1. Observed and predicted values resulting from fitting the monomolecular (A), Michaelis-
Menten (B), Morgan (C), Richards (D) and linear (E) to the available P intake dataset. Predicted
values represented by the red markers include the random effect of study while the black solid
line represents predicted values of the standard equation forms, viz. Equations (1)–(5) using the
parameter estimates from Table 2.

P requirement for maintenance calculated using Equations (6)–(10) was 0.023, 0.024
and 0.033 g kg−1 BW0.75 d−1 for the monomolecular, Richards and Michaelis-Menten, re-
spectively. The Morgan and linear models resulted in very low estimates for P requirement
for maintenance, 6.0 × 10−5 and 2.2 × 10−8 g kg−1 BW0.75 d−1, respectively.

Phosphorus retention efficiency, k, over various ranges of P intake is presented in
Table 2. For all non-linear models, when calculating phosphorus retention efficiency
based upon various ranges of P intake, over the observed avP intake rage, viz. 0.055 to
0.468 g kg−1 BW0.75 d−1, higher efficiencies were seen in the lower half of the P intake
range (0.055 to 0.207) compared to the upper half (0.207 to 0.468). In the linear model,
phosphorus retention efficiency is represented by the slope, 0.46 g kg−1 BW0.75 d–1, and
thus is constant regardless of P intake level.
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3.3. Model Evaluation

Models were evaluated based upon goodness-of-fit and model selection criteria in
addition to inspection of residuals. Figure 2 displays the plotted residuals of all five models
when predicting P retention based on avP intake using the standard form of the equations,
i.e., not including the random effect of study. From visual inspection of these plots, no
clear pattern in residuals is observed in panel (A) and (B) representing the monomolecular
and the Michaelis-Menten, respectively. In contrast, panels (C) to (E), representing the
Morgan, Richards and linear, display a clear pattern of consistently negative residuals. The
resulting goodness-of-fit criteria, viz. CCC, MSPE and its decomposition for individual
models when fitted to avP intake data are displayed in Table 3, in addition to AIC values.
Models were evaluated as fixed effect models and as mixed models whereby both fixed
and the random effect of study were taken into consideration. Non-linear models fitted
to the avP intake data resulted in higher CCC values and lower MSPE values, indicating
superior fits in comparison to the linear model. Likewise, AIC values were smaller when
comparing the non-linear and linear models. When evaluating the fixed effect models,
those which describe diminishing returns, the monomolecular and Michaelis-Menten,
had the highest CCC values of 0.821 and 0.842, respectively. The Morgan and Richards
had higher CCC values compared to the linear, 0.663, 0.645 and 0.362, respectively, but
less than the monomolecular and Michaelis-Menten. AIC was lowest for the Michaelis-
Menten (−723.5), followed by the monomolecular (−723.0), Morgan (−630.7), Richards
(−619.1) and linear (−513.9). MSPE followed the same trend as AIC, with MSPE lowest
for the Michaelis-Menten and monomolecular and highest for the linear. From the MSPE
decomposition, the vast majority of the error (+96%) was in uD, errors due to disturbances,
for the monomolecular and Michaelis-Menten. In contrast to the linear, Richards and
Morgan prediction error accumulated in errors in the central tendency term (uM), indicating
high overall bias in model predictions.
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Table 3. Evaluation of models based upon goodness-of-fit and model selection criteria: concordance
correlation coefficient (CCC), mean square prediction error (MSPE), its decomposition expressed as
a percentage and Akaike information criterion (AIC), after fitting P retention vs. available P intake
(g kg−1 BW0.75 d−1) data in growing and finishing pigs using both fixed and mixed methods.

Item Linear Monomolecular Michaelis-Menten Richards * Morgan

Fixed effect
CCC 0.362 0.821 0.842 0.645 0.663
MSPE 5.3 × 10−3 6.3 × 10−4 6.3 × 10−4 1.7 × 10−3 1.6 × 10−3

MSPE decomposition
Errors in central tendency (uM) 86.0 0.0 0.0 63.6 58.8
Errors due to regression (uR) 0.6 2.86 3.4 1.3 0.9
Errors due to disturbances (uD) 13.4 97.1 96.6 35.1 40.3
AIC −513.9 −723.0 −723.5 −619.1 −630.7

Fixed + random effects
CCC 0.898 0.957 0.956 0.894 0.913
MSPE 4.3 × 10−4 2.6 × 10−4 2.1 × 10−4 2.8 × 10−4 3.5 × 10−4

MSPE decomposition
Errors in central tendency (uM) 0.0 0.1 0.7 0.0 0.3
Errors due to regression (uR) 5.6 0.0 0.0 1.7 0.6
Errors due to disturbances (uD) 94.4 99.9 99.3 98.3 99.1
AIC −762.8 −809.4 −830.2 −766.4 −779.0

* Richards reverted to the monomolecular when fitted to the avP intake data.

On the basis of AIC, CCC and MSPE, all models performed better using a mixed model
approach and incorporating the random effect of study compared to a fixed effect model.
In agreement with the fixed effect methodology, the monomolecular and Michaelis-Menten
preformed superior in comparison to the Morgan, Richards and linear. When comparing
MSPE values in a given model between the fixed effect and mixed approach, a greater
decrease in MSPE is observed in the poorer fitting models, viz. linear Richards and Morgan.
This means that unexplained variance which the fixed effect parameter cannot explain is
being attributed to the random effect in the mixed model. However, there is a smaller
difference between MSPE values for the monomolecular and Michaelis-Menten between
the fixed and mixed models. Therefore, the parameters in the fixed effect models are able
to capture the major factors describing the relationship between avP intake and P retention.

4. Discussion

Nutrient requirements in addition to P utilization by pigs vary based upon physiologi-
cal status and weight [10,11]. Additionally, both linear and non-linear models have been
applied to describe P responses in pigs, including digestibility, retention, and exogenous
excretions, when fed various levels of dietary P [8,22–25]. Given this, the objective of the
present study was to access the ability of various non-linear and linear models to describe
P retention data in growing and finishing pigs in response to avP intake.

4.1. Candidate Functions and Response Shape of P Retention

In total, five functions were fitted to a dataset encompassing P retention in growing
and finishing pigs in response to varying P intake levels, expressed on a total or available
basis. These functions can be broadly categorized based upon the response shape that
they describe. Of the five functions, one describes a linear response while the other four
cover non-linear responses. The four non-linear functions can be categorized based upon
their ability to describe diminishing returns style responses, viz. the monomolecular and
the Michaelis-Menten, and/or sigmoidal style responses, viz. the Richards and Morgan.
Diminishing returns behaviour is characterized by the rate of change in the independent
variable, in this case change in P retention in response to change in P intake (dy/dx),
being initially maximal and continuously decreasing with increasing P intake as the upper
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asymptote is approached. In contrast, sigmoidal behaviour is characterized by an initially
increasing rate of change, represented for example by an exponential, until a maximal rate
of change is achieved at the inflexion point, thereafter the rate of change is continuously
decreasing in approaching the upper asymptote. With a simple linear function, the rate of
change is constant, as represented by the slope parameter.

Based upon goodness-of-fit criteria, non-linear diminishing returns type functions,
viz. the monomolecular and the Michaelis-Menten, best described P retention in growing
and finishing pigs in response to P intake, expressed on an available basis. This was
further reinforced by the fact that the Richards, which has the ability to describe both
sigmoidal and diminishing type behaviour, reverted to the monomolecular, viz. n = −1,
and thus described a diminishing returns behaviour pattern when fitted to the avP intake
data. The linear function was found to fit the data the poorest compared to the non-linear
functions when fitted to the avP dataset. This is not surprising as non-linear behaviour of P
utilization in pigs has been demonstrated previously by Dilger and Adeola [9], Kebreab
et al. [26], Létourneau-Montminy et al. [27] and Schulin-Zeuthen et al. [8] among others. A
possible explanation of why certain studies observed linear response trends is the potential
narrow range in which dietary P intake was provided in a given study. Biological responses
are rarely linear, with non-linearity becoming prevalent at the upper range of doses or
intakes [28]. In the study of Schulin-Zeuthen et al. [8], when fitting non-linear models to P
balance data in growing pigs, the authors suggested that the parameter representing the
upper asymptote of their models was not well fitted due to the lack of sufficient data above
0.4 g avP kg−1 BW0.75 d−1. In contrast, the current study encompasses data whereby intakes
approached 0.5 g avP kg−1 BW0.75 d−1 resulting in a much better-defined upper asymptote.
Furthermore, in the study of Pettey et al. [24] the authors determined a linear response
of P retention in three P balance studies of pigs weighing 27, 59 and 98 kg. However, in
the largest weight class of pigs, P intake when expressed on a metabolic BW basis was
between 0.06 and 0.20 g kg−1 BW0.75 d−1. If findings of the study of Pettey et al. [24]
were extrapolated to P intakes outside of the study’s range, caution should be taken as it
is reasonable to conclude that the linearity observed may become non-linear as P intake
continues to increase to values outside of the observed range of the study.

4.2. Endogenous P Excretion, Requirement for Maintenance, and Efficiency

In the current study, endogenous P excretion, represented by the parameter b, varied
based upon the model fitted. When fitting to the avP intake data, the Michaelis-Menten
resulted in the value of 0.08 g kg−1 BW0.75 d−1 compared to 0.04 g kg−1 BW0.75 d−1 using
the monomolecular. Regardless of the model applied, endogenous P excretion in the current
study was greater than that of studies conducted on growing pigs [8,9,24,25,29]. Using a
similar meta-analytic approach, Schulin-Zeuthen et al. [8] determined endogenous P excre-
tion in growing pigs with an average body weight of 59.2 kg to be 0.014 g kg−1 BW0.75 d−1

when fitting the monomolecular to P retention vs. avP intake data. From 66 P balance
studies with pigs ranging from 30 to 70 kg, Rodehutscord et al. [29] determined endogenous
P excretion to be 0.015 g kg−1 BW0.75 d−1 using regression methodology. Furthermore,
Rodehutscord et al. [29] suggested that endogenous P losses are dependent on body weight,
which is in agreement with the current study.

P requirement for maintenance was determined by solving for the P intake value
when P retention was zero for each of the applied models. Limited data exist regarding P
requirements for maintenance as P requirements for pigs are most commonly expressed on
a total basis whereby both obligatory losses and P retention are summed [8,30]. In the study
of Schulin-Zeuthen et al. [8] the authors concluded P requirement for maintenance was
0.015 g kg−1 BW0.75 d−1 when fitting the monomolecular to pigs ranging from 20 to 99 kg
with an average body weight of 59 kg. Comparatively, P requirement for maintenance in
larger pigs (average body weight of 79 kg) in the current study resulted in a higher value,
0.023 g kg−1 BW0.75 d−1, using the monomolecular model.
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The average efficiency of converting P intake on a total and available basis to retained P
was calculated for each individually fitted model. Average efficiency was calculated in three
ways; from minimum to the maximum P intake value (0.055 to 0.468 g avP kg−1 BW0.75 d−1),
from 0.055 to the mid-point (0.055 to 0.207 g avP kg−1 BW0.75 d−1) and from the mid-point
to the maximum (0.207 to 0.468 g avP kg−1 BW0.75 d−1). Examining the monomolecular, the
average efficiency of converting dietary P intake into retained P was substantially higher
in the lower half of the P intake range compared to the upper half, viz. 0.83 vs. 0.24, with
an overall average efficiency of 0.46. Likewise, in the study of Schulin-Zeuthen et al. [8]
P retention efficiency was higher in the first half (0.75) of the P intake range compared
with the second (0.54) when applying a non-linear model, viz. the monomolecular. A
direct comparison between the efficiencies as reported in the current study and those of
that of Schulin-Zeuthen et al. [8] is not entirely apt. The very mathematical nature of an
equation which describes diminishing returns behaviour, such as the monomolecular and
Michaelis-Menten, describes a scenario whereby efficiency of converting P intake into P
retention (dy/dx) starts at a maximum and continuously decreases towards zero as the
upper asymptote is approached, i.e., with increasing P intake the efficiency of retention
decreases. In the study by Schulin-Zeuthen et al. [8], the avP intake ranged from 0.1 to
0.5 g kg−1 BW0.75 d−1, with the authors suggesting that the upper asymptote of their
fitted monomolecular model was not well defined due to lack of observations above
0.4 g kg−1 BW0.75 d−1. Therefore, if the range of avP intake data used in the study does
not result in the upper asymptote of P retention been approached, the rate at which P
intake is converted into retained P can be decreased further by a not insignificant amount.
However, the relative avP intake range, when expressed on a metabolic body weight basis,
between the present study and that of by Schulin-Zeuthen et al. [8] is comparable, 0.055
to 0.468 and 0.10 to 0.50 g kg−1 BW0.75 d−1, respectively. In this range of intakes the
growing pigs (BW 20–90 kg) of Schulin-Zeuthen et al. [8] displayed a higher efficiency of
converting avP intake into retained P (0.65) compared to the current study on heavier
pigs (BW 43.5 to 133.0 kg) with a efficiency of 0.46. These findings are in agreement with
those of Ruiz-Ascacibar et al. [12], whereby relative mineral deposition rate, including
P, decreased as body weights increased in intact males, castrates and female pigs from
40 to 140 kg.

In contrast to non-linear models, in a simple linear model the efficiency of converting
P intake into P retention (the slope) is constant regardless of the P intake value. In the
current study, parameter c, the slope which represents the efficiency of converting dietary P
into retained P was 0.46, meaning that for every 1 g increase in avP intake 0.46 g would be
retained on a g kg−1 BW0.75 d−1 basis. This relationship holds no matter what the dietary
P intake value is. The ramifications of this assumption are apparent when comparisons
are made between the linear and non-linear models. Increasing the avP intake value from
0.1 to 0.2 and from 0.4 to 0.5 g kg−1 BW0.75 d−1 using the linear model, would cause P
retention to increase by 0.046 g kg−1 BW0.75 d−1 over either range. In contrast, using the
monomolecular, increasing the avP intake value from 0.1 to 0.2 g kg−1 BW0.75 d−1 causes
P retention to increase from 0.096 to 0.168 g kg−1 BW0.75 d−1; an increase of 0.072 g kg−1

BW0.75 d−1 and an efficiency of 0.72 over this 0.1 increase in avP. When dietary avP intake
increases from 0.4 to 0.5 g kg−1 BW0.75 d−1 P retention increases from 0.227 to 0.238 g kg−1

BW0.75 d−1, an increase of 0.011 g kg−1 BW0.75 d−1 and efficiency of 0.11, over this 0.1
increase in avP. Therefore, if one was to apply the linear model rather than the non-linear
monomolecular model to this dataset, the linear model would under-predict the efficiency
of converting dietary P into retained P at lower levels of P intake and grossly over-predict
the efficiency at higher intake levels. The decrease in efficiency in converting dietary P into
retained P as dietary P intake increases makes sense from a biological standpoint, i.e., there
is greater utilization efficiency when P intake is below P requirement and a subsequent
decrease as this requirement is met [31]. The non-linear behaviour of the relationship
between avP intake and P retention suggests that determination of endogenous P loss and
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true digestibility is better undertaken using non-linear models rather than the commonly
used linear regression analysis [23,24].

5. Conclusions

Using a meta-analytic approach, a database was created that described P retention
in response to dietary available P intake in growing and finishing pigs. The response of
P retention to dietary avP intake was best described using simple non-linear models that
describe patterns of diminishing returns behaviour, viz. the monomolecular and Michaelis-
Menten. Furthermore, endogenous P losses and P requirements for maintenance were
found to be higher as BW increased, whilst the efficiency of converting dietary P intake
into retained P was reduced.
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//www.mdpi.com/article/10.3390/ani12131611/s1, Data used in this study can be found in the
associated supplementary materials. Data pertaining to available phosphorus (avP) intake and
phosphorus retention can be found in the Excel file entitled “Supplementary Material S1” while the
dataset pertaining to the total phosphorus (tP) intake and phosphorus retention can be found in the
Excel file entitled “Supplementary Material S2”.
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Appendix A

Table A1. Data description of studies generated from the literature in order to evaluate the ability of
linear and non-linear models to describe phosphorus retention in growing and finishing pigs.

Study Main Dietary Ingredients Pig Breed BW 1,kg References

1 High available P corn combined with
high fat and protein corn diets Crossbred 98 Hankins et al. [32]

2 Mutant corn hybrids Crossbred 110 Hankins et al. [33]

3 Mainly corn with SBM Crossbred 100 Hankins et al. [34]

4 Soybean meal and sorghum DK97 and DK88 boars and DK33 and
DK30 sows 99 O’Quinn et al. [35]

5 Barley, wheat, soybean meal combining
different levels of P and Ca:P ratio Large White × Landarace 61–64 Brady et al. [36]

6 Hulled Barley Large White × Landarace 48 Htoo et al. [37]

7 Barley, SBM, Corn German Large White × Pietran 62–88 Walz et al. [38]

8 Corn, barley, and various combinations
of dietary fat and Ca levels Pure Yorkshire 51–120 Jongbloed [39]

https://www.mdpi.com/article/10.3390/ani12131611/s1
https://www.mdpi.com/article/10.3390/ani12131611/s1
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Table A1. Cont.

Study Main Dietary Ingredients Pig Breed BW 1,kg References

9 Corn, barley with soybean meal, and
4 levels of dietary fibre Landrace × Yorkshire 62–95 Jongbloed [39]

10 Corn and barley with soybean meal Landrace × Yorkshire 65–99 Jongbloed [39]

11 Corn and barley with soybean meal Landrace × Yorkshire 73–99 Jongbloed [39]

12 Corn and barley with soybean meal Niew Dalland × Landrace 54–98 Jongbloed [39]

13 Wet barley protein, wet distillers solids Yorkshire × Landrace 90 Buraczewska et al. [40]

14 Corn, SBM Yorkshire × Hampshire 90–91 Carter et al. [41]

15 Corn, barley, SBM Unknown 54–60 Ekpe et al. [42]

16 Semi-purified Yorkshire × Landrace 65 Fernández [43]

17 Typical diets found in DK, VN, TH Unknown 57–60 Jørgensen et al. [44]

18 Semi-purified Yorkshire × Landrace 59–98 Pettey et al. [24]

19 Corn SBM Line 327 × C22 113 Hanni et al. [45]

20 Barley, wheat Large White × (Large White ×
Landrace) 50 O’Doherty et al. [46]

21 Barley, SBM Canabrid × Camborough 80 Sauer et al. [47]

22 Barley, wheat, SBM with
three levels of P CrossBred 44–104 Sørensen et al. [48]

23 Barley, corn German Large White × German Land
Race × Pietrain 90 Walz & Pallauf [49]

1 Average pig body weight per study, range of body weights indicate range of treatment means.
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