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Research in bioprinting is booming due to its potential in addressing several manufacturing
challenges in regenerative medicine. However, there are still many hurdles to overcome to
guarantee cell survival and good printability. For the 3D extrusion-based bioprinting, cell
viability is amongst one of the lowest of all the bioprinting techniques and is strongly
influenced by various factors including the shear stress in the print nozzle. The goal of this
study is to quantify, by means of in silico modeling, the mechanical environment
experienced by the bioink during the printing process. Two ubiquitous nozzle shapes,
conical and blunted, were considered, as well as three common hydrogels with material
properties spanning from almost Newtonian to highly shear-thinningmaterials following the
power-law behavior: Alginate-Gelatin, Alginate and PF127. Comprehensive in silico testing
of all combinations of nozzle geometry variations and hydrogels was achieved by
combining a design of experiments approach (DoE) with a computational fluid
dynamics (CFD) of the printing process, analyzed through a machine learning
approach named Gaussian Process. Available experimental results were used to
validate the CFD model and justify the use of shear stress as a surrogate for cell
survival in this study. The lower and middle nozzle radius, lower nozzle length and the
material properties, alone and combined, were identified as the major influencing factors
affecting shear stress, and therefore cell viability, during printing. These results were
successfully compared with those of reported experiments testing viability for different
nozzle geometry parameters under constant flow rate or constant pressure. The in silico
3D bioprinting platform developed in this study offers the potential to assist and accelerate
further development of 3D bioprinting.
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INTRODUCTION

Bioprinting is a research-intensive field within regenerative
medicine combining additive manufacturing technologies and
tissue engineering concepts for reproducing functional organs
and complex living tissues in the laboratory (Murphy and Atala,
2014; Ji and Guvendiren, 2017; Moroni et al., 2018b; Chen et al.,
2021). However, there are still many challenges in order to
guarantee cell survival and good printability (Bishop et al.,
2017; Moroni et al., 2018a; Ong et al., 2018; Sánchez et al.,
2020). The three predominant techniques used for bioprinting
are inkjet printing (or drop-by-drop bioprinting), extrusion
bioprinting and laser-induced patterning (Bishop et al., 2017;
Cidonio et al., 2019; De Moor et al., 2020). When using a bioink,
the main goal of these techniques is either to position different
cell types in desired locations or to induce progenitor cells to
differentiate into the desired type at specific locations (Derby,
2012; Skardal, 2018). Extrusion-based bioprinting is one of the
most widely used technique in current research, because of it is
simplicity and ability to print a broad array of biocompatible
materials and to deposit variable and high cell densities at specific
locations in the three-dimensional (3D) space (Gillispie et al.,
2020). The set-up is also highly adaptable and is ideally suited for
the fabrication of large and complex tissue constructs since it
allows building up 3D structures according to a layer-by-layer
approach (Mandrycky et al., 2016). On the other hand, the
development of a bioink with suitable rheology and
printability response is not straightforward. In addition, cell
viability is amongst the lowest across all the bioprinting
techniques.

Despite the extensive experimental work carried out on
extrusion-based 3D bioprinting, a comprehensive view on the
individual and combined effects of various parameters on cell fate
is not straightforward to derive (Nair et al., 2009; Murphy and
Atala, 2014; Mandrycky et al., 2016; Paxton et al., 2017; Moroni
et al., 2018a). Cell viability has been reported to be as low as 40%
(Mandrycky et al., 2016) and shear stress has been identified as
one of the main causes (Gillispie et al., 2020). Fluid shear stress
has been shown to influence cell functionality in vivo
(Wittkowske et al., 2016) and in vitro (Pedersen et al., 2016;
Silvani et al., 2021). Probing into the maintenance of cell viability
and functionality, many studies have made it clear that higher
shear stresses (beyond physiological ranges) almost always lead to
lower cell viability and altered functionality (Li et al., 2009; Nair
et al., 2009; Ozbolat, 2016). Blaeser et al. found that shear stress
should be controlled within 5 kPa to have more than 90% cell
survival for mouse fibroblasts in a microvalve-based printing
process (Blaeser et al., 2016). Higher dispensing pressure can
allow ejecting highly viscous bioinks, but this could increase the
shear stress, which reduces cell viability in vitro. A few studies
observed only a small or even a non-discernible change in
viability in relation to increased shear stress during printing
(Khalil and Sun, 2009). Shear stress is a factor that cannot be
directly measured during experiments, however the level of shear
stress is directly related to different material and bioprinting
parameters, such as bioink viscosity, extrusion pressure, flow rate
and also nozzle geometry (shape and size) (Nair et al., 2009; Billiet

et al., 2014; Blaeser et al., 2016; Sánchez et al., 2020). Dispensing
pressure and flow rate of the dispensed material also directly
affect the print speed as well as scaffold attributes such as printed
strut thickness, macroscopic pore size and porosity of the
scaffolds formed, and hence their mechanical properties (Li
et al., 2011; Cidonio et al., 2019). In addition, the material
properties of the hydrogel used to encapsulate the cells, such
as the shear-thinning behavior, have an important influence on
the printability of the bioink. The experimental results reported in
the literature follow different printing protocols and material
characterization strategies, making direct comparison difficult to
perform. Further work is needed to improve and standardize the
currently used printability measurements and to move towards a
more comprehensive view and reporting of printability and 3D
printing (Gillispie et al., 2020).

Computational modeling (in silico) allows obtaining a more
comprehensive view of the physical phenomena encountered in
diverse tissue engineering applications (Reina-Romo et al., 2019;
Mehrian et al., 2020; Mukherjee et al., 2020). Models of extrusion-
based 3D bioprinting have evolved from analytical models
requiring simplifying assumptions on nozzle geometry to
computational fluid dynamics (CFD) models that can simulate
complex flow behavior and complex nozzle geometries
(Emmermacher et al., 2020). In silico models enable the
visualization and quantification of the mechano-chemical
micro-environment of the cells during the bioprinting process
under various protocols. Li et al. developed an analytical
computational model to investigate cell damage with different
needle geometries and found that at equivalent flow rates, cell
damage in a conical nozzle is lower than in a blunted one (Li et al.,
2009, Li et al., 2011). The optimization of computer-controlled
process parameters has been addressed in a handful of
experimental studies. The increase in computational power
and the rapid development of various algorithms are making
in silico models ideally suited to address this optimization
challenge when combined with various data analysis
techniques such as machine learning. A variety of methods are
available to account for variations in design parameter data and to
quantify the importance of each parameter (Hamby, 1994). The
design of experiments (DoE) is one such method for studying the
influence of the input parameters on physical experiments and
computational models, through optimisation and outcome
prediction in the whole parameter space, resulting in reduced
cost, time and variability (Montgomery, 2017; Dellaquila et al.,
2020). The results of the DoE can be analyzed through several
methods, depending on the design and the goal of the analysis.
Statistical tools such as Analysis of variance (ANOVA) are
conventionally used for analyzing factorial design outcomes
(Gramacy and Lee, 2009). In case of more complex space-
filling designs, machine learning algorithms, (such as
“Gaussian process”, GP) are more appropriate to estimate the
importance of a parameter and the exact effect of varying a
parameter on the outcome of the model (Gramacy, 2007;
Gramacy and Lee, 2009). Unlike an ANOVA-type of analysis,
Gaussian processes not only estimate the importance of
individual parameters, but also the influence of the parameters
on the outcome of a model (Gramacy, 2007).
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In this study, we developed an in silico framework to assess and
quantify the effect of the nozzle geometry, printing pressure and
material properties on the shear stress and related cell viability
during extrusion-based bioprinting. Two different nozzle
configurations are investigated: conical and blunted (or
cylindrical). Three commonly used hydrogel materials are
incorporated: Alginate-Gelatin, Alginate and PF127 (Sánchez
et al., 2020; Roche et al., 2021). A DoE approach is used to
screen 200 different combinations of geometrical parameters
(nozzle design) per geometry and per hydrogel. For each
design, the shear stresses arising in the nozzle during
extrusion are computed using a CFD model. Comparison
between the in silico results for specific studies reported in the
literature allows validating of the computational model and the
use of shear stress as a surrogate for cell viability. Machine
learning (Gaussian Process) is used to analyze the (in silico)
screening data and identify the geometrical parameters that have
the highest influence on the shear stress and related cell viability.
This revealed the important parameters to be considered as well
as insight into the complex combinatorial effect of nozzle
geometry and hydrogel material properties.

MATERIALS AND METHODS

Material Properties
An incompressible, non-Newtonian fluid material model (at
constant temperature) was used to simulate the flow of the
three hydrogels considered in this study: Alginate-Gelatin or
AlgGel (4%w/v Alg with 20%w/v Gel, mixed in 1:1), Alginate
(12%w/v with 1%w/v CaCl2) and pluronic F127 or PF127 (25%w/
v) (Rezende et al., 2009; Chung et al., 2013; Lee and Yeong, 2015;
Suntornnond et al., 2016; Paxton et al., 2017; Roche et al., 2021).
PF127 is a biologically inert material compared to the other two
which support cell adhesion, however it has been utilized
frequently for its shear thinning capability as a sacrificial or
support material in conjunction with other hydrogels, and
successful modification of PF127 to support cell adhesion is
also reported (Gillispie et al., 2020). There are several material
models to capture the behavior of the viscosity, and more
specifically the shear-thinning behavior of the hydrogel. In this
study, the rheological model used to simulate the flow behavior is
the power-law relationship, ubiquitous in the 3D bioprinting
literature:

η � K · _cn−1 (1)

τ � η _c � K · _cn (2)

where, η is the viscosity, _c is the shear rate, K is the consistency
coefficient and n is the power-law or flow behavior index
(Chhabra and Richardson, 2008). Newtonian fluids are power-
law fluids with a behavior index n of 1, however materials with n >
0.8 practically behave as Newtonian fluid (Chhabra and
Richardson, 2008). The densities, consistency coefficient and
power-law indices, as well as the common printing pressures
are reviewed in Table 1. The consistency coefficients and power-
law indices were empirically obtained from rheological data

fitting (see Supplementary Figure S1). The data was collected
from several sources in the literature, with varying material
concentrations and printing pressures (Table 1). The
parameters used in this study were chosen within this range,
following Paxton et al. (2017).

Nozzle Geometry and Design of
Experiments
The nozzle geometries incorporated in this study are the conical
(tapered) and the blunted (cylindrical) shape, comprehensibly
described by 5 geometrical parameters for the conical nozzle and
4 geometrical parameters for the blunted one, as indicated in
Figure 1. For the blunted nozzle design these are: the radius at the
entrance (Rbig) and the exit (Rsmall) of the nozzle, the inlet (Lupper)
and outlet (Llower) nozzle lengths. For the conical nozzle design an
extra parameter is required: the intermediate radius of the nozzle
(Rmiddle). CAD model design for illustration was done using
FreeCAD (Riegel et al., 2001) and Inkscape (Oualline and
Oualline, 2018).

In order to determine the importance of the aforementioned
geometrical parameters as well as all possible combinations, a
DoE was conducted. Within the DoE, each of the investigated
parameters adopted different values within a given range. The
chosen range of each geometrical parameter was adopted from
the catalog of Nordson EFD optimum systems (Systems, 2018).
Table 2 shows the geometrical parameters and experimental
design ranges used.

There are different methods to perform the sensitivity analysis
by DoE such as the factorial designs, either full or fractional, the
Taguchi’s Method or the space-filling designs, such as the Latin
Hypercube Sampling or the uniform design (Isaksson et al., 2006;
Myers et al., 2016). More details on these can be found in
Montgomery (Montgomery, 2017), Myers and Montgomery
(Myers et al., 2016) and (Saltelli et al., 2008). Firstly, a space-
filling design, known as Latin Hypercube Sampling or Latin
Hypercube Design (LHS or LHD) was employed to spread out
the parameter combinations over the entire parameter space to be
able to capture the full range of possible behaviors. The main
advantage of this method is that it is computationally cheap to
generate and can deal with a large number of parameters (McKay
et al., 1979). Compared to a completely random Monte Carlo
method for picking parameters in a given range, LHS divides the
parameter space (the dimension of which is equal to the number
of input parameters) into equal “bins”. Subsequently, it randomly
picks values from each bin which leads to a better sampling,
which is why it is referred to as “space-filling” (Gramacy, 2007;
Gramacy and Lee, 2009). In this study, an LHD with 200 valid
parameter combinations was generated, using “lhs” package in R
(Carnell and Carnell, 2019). For the conical nozzle, parameter
combinations with the entrance radius (Rbig) smaller than the
intermediate radius (Rmiddle) were excluded. Finally, each LHD
contained 200 possible nozzle designs covering the entire design
spectrum for all geometrical parameters. In total six different
LHDs were performed, to analyze the three hydrogels (Alginate,
PF127 and Alginate-Gelatin) for the two nozzle geometries
(blunted and conical).
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Computational Fluid Dynamics Model
CFD fluid flow simulations were conducted in the open-source
CFD software platform OpenFOAM (version 7) (Weller et al.,
1998, 2019). The simulation domain consisted of the fluid (i.e. the
hydrogel) inside the nozzle (Figure 1). The fluid was simulated
considering a steady laminar flow (no turbulence) since laminar
behavior is reported for non-Newtonian fluid in similar
applications (Chhabra and Richardson, 2008). We assumed a
simplified axisymmetric representation of the geometry with
rotational symmetry along the long nozzle axis (Figure 1). The
flow was simulated using the boundary conditions of a zero-wall
velocity (no-slip condition) and constant printing pressure “Δp”
(net pressure difference between the inlet and the outlet) ranging
between 80 and 340 kPa, depending on the material (Table 1). For
a few simulations in the later part of the study, a constant input
flow rate boundary condition was used in place of the “Δp”.

A 2D axisymmetric mesh composed of hexahedral elements with
prisms only along the axis of symmetry was used in all the cases. A
convergence analysis was carried out to ensure the grid-independence
of the results. From this, for all themodels, the suitable grid cell size was
determined as 0.005mm in the radial direction (orthogonal to the flow
direction) and 0.010mm in the flow direction. Simulation results were
validated by comparison with analytical results for simplified
geometries and the commercial software package Ansys PolyFlow
(Stolarski et al., 2018). For the analytical model from literature, the
nozzle geometry was reduced to the lower part of the nozzle, especially
for the blunted nozzle (Khalil and Sun, 2009; Rezende et al., 2009; Lee
and Yeong, 2015; Paxton et al., 2017), as described by the following
equations. Shear-thinning fluids extruded through a cylinder
(Suntornnond et al., 2016) can be described by the following equations.

τw � Δp · R
2 · L (3)

Vavg � n
3n + 1

Δp · R
2k · L

(1/n)
· R (4)

Q � πR2Vavg (5)

R and L are the radius and length of the pipe, Vavg and Q are
the average velocity and flow rate, k and n are the consistency
coefficient and power-law index, respectively. With the input
parameter combinations obtained from the DoE, CFD
simulations were run for each case and the shear stress (τ),

TABLE 1 | Range of material properties and common printing pressures of the hydrogels considered in this study. The values used in the present study are primarily from
Paxton et al. (2017).

Material Range Density
ρ

(kg/m3)

Power-law
index
n (−)

Consistency
coefficient
K (Pa·sn)

Printing
pressure
P (kPa)

References

Pluronic F127
(PF127)

Literature 1,040 0.051–0.988 0.06–510 100–300 Jalaal et al. (2017); Paxton et al. (2017)
Present
study

1,000 0.127 406 200

Alginate (Alg) Literature – 0.188–0.433 27.3–254 150–500 Rezende et al. (2009); Lee and Yeong, (2015); Paxton
et al. (2017)Present

study
1,000 0.335 55.7 340

Alginate-Gelatin
(AlgGel)

Literature – 0.608 13.3 80–300 Wüst et al., (2015); Wüst et al., (2015); Paxton et al.
(2017); Roche et al. (2021)Present

study
1,000 0.608 13.3 80

FIGURE 1 | The blunted (left) and the conical (right) nozzle geometries,
described by geometric parameters radius at the entrance (Rbig or Rb) and the
exit (Rsmall or Rs) of the nozzle, the inlet (Lupper or Lu) and the outlet (Llower or Ll)
nozzle lengths and the radius at the middle (Rmiddle or Rm, for the conical
nozzle only).

TABLE 2 | Range of the values of the geometrical parameters considered for the
conical and blunted (cylindrical) nozzle designs.

Nozzle shape Variable Range (mm)

Conical Rsmall 0.05–0.42
Rmiddle 1–3.5
Rbig 1.5–4.5
Llower 4–20
Lupper 3–15

Blunted Rsmall 0.05–0.42
Rbig 1.5–4.5
Llower 4–20
Lupper 3–15
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FIGURE 2 | The effect of the maximum shear stress (quantified by the simulations) on cell viability (obtained from experiments reported in the literature). The cell and
print settings of the experiments are presented in Table 3. They include Input parameters such as types of cells (point shapes), material properties (point and line colors),
duration after printing (line types). Note: the X-axis is presented in log10 scale for better visibility. Cell viability at a shear stress of 0kPa indicates the value for the 2D control.

TABLE 3 |Cell and print settings for studies investigating the effect of bioprinting conditions on cell survival. Themaximum shear stress (MSS) is calculated by Computational
Flow Dynamics (CFD) simulations in the present study, shown graphically in Figure 2. Some studies reported the shear stress and corresponding cell viability, but
without all the parameters required to perform CFD simulation of the bioink in the nozzle (indicated by *).

Material Pressure
(kPa)

Nozzle
diameter

(Rs,
mm)

Length
lower
(Ll,
mm)

Flow
rate
(µL/s)

MSS (kPa) Live
cell
(%)

Cell References

3% w/v alginate, K:
8.587, n � 0.76

0–275.79 0.150–0.400 12 0.6–226 0–2.17 42.97–83.84 HepG2 (liver hepatocellular carcinoma
cell)

Chang et al.
(2008)

1.5% w/v alginate, K:
1.259, n � 0.7

55.12–220.48 0.250 12 0.4–1.6 0.41–1.65 73.44–84.38 RHEC (rat heart endothelial cell line) Khalil and Sun,
(2009)

1.5% w/v alginate, K:
1.259, n � 0.7

34.45–275.60 0.250 12 0.3–2.7 0.32–2.66 50–80 RAMEC (rat adrenal medulla
endothelial cell)

Nair et al. (2009)

5% w/v alginate, K:
10.82, n � 0.54

200–500 0.250 20 2.3–12.6 0.68–1.708 78.91–98.83 3T3 (mouse embryonic fibroblast, “3-
days transfer, inoculum 3×105 cells”)

Li et al. (2011)

2% w/v alginate, K: 2,
n � 0.87

0–275.60 0.150 12.70 0.1–0.3 0–1.05 83.2–99.02 hMSC (human mesenchymal stem
cell)

Snyder et al.
(2015)

1% w/v Alg:5–10%
Gel,K: 8.183,n �
0.546

– 0.250 – 0.700 200–600 10–60 ESC (embryonic stem cell) Ouyang et al.
(2016)*

AlgGel, K � 13.3, n �
0.608

100.00 0.200 12.22 0.6–3.8 0.58–3.79 56.25–96.88 hMSC (human mesenchymal stem
cell)

Paxton et al.
(2017)

0.2% w/v alginate, K:
25.60, n � 0.35

50.00 0.200 6.35 1.5–197 0.41–5.05 81.25–94.73 L8 (rat myoblast cell), RSC96 (rat
Schwann cell)

Ning et al.,
(2018)

2% w/v alginate, K:
10.39, n � 0.41

– 0.200 11 5–17 00.457–0.76 67.75–98.8 RSC96, L8, HUVEC (human umbilical
vein endothelial cell)

Ning et al.
(2020)

Geltin-Silk fibroin – 0.200 6.35 – 0.440 90.00 hMSC (human mesenchymal stem
cell)

Trucco et al.
(2021)*
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along with other useful parameters such as flow rate (Q), flow
velocity (v) and viscosity profile (]), was computed to understand
the influence of the nozzle geometry on the printability and cell
viability.

Data Analysis
Analysis of the in silico data obtained from the CFD simulations
was performed using the “R” (version 3.6.1) open-source

statistical programming language with “RStudio” GUI/IDE
(Ihaka et al., 1996; Allaire, 2012). To evaluate the importance
of the input parameters, a machine learning algorithm involving a
Gaussian process was utilized, implemented with the “tgp”
package (version 2.4–14) (Gramacy, 2007). The “tgp” package
creates a machine-learning model (Gaussian Process, functions:
“bgp()” and “sens()”), which enables quantification and
visualization of the sensitivity of each parameter towards the

FIGURE 3 | Streamline profile (left part) and shear stress distribution (right part) of Alginate hydrogel simulated at 340kPa inlet pressure with Rbig � 3.5mm, Rsmall

� 0.5 mm, Lupper � 4.0 mm, Llower � 6.0 mm and Rmiddle � 2.0 mm (Rmiddle for the conical nozzle only). Streamlines are colored according to velocity and the maximum
shear stress zone developed in the hydrogel while printing (in red, 5–25 kPa).

FIGURE 4 | Combined box and violin plots summarising (A) the maximum shear stress; (B) the flow rate at the nozzle outlet and (C) average viscosity at the nozzle
outlet—obtained from CFD simulations of 200 nozzle design for three different materials. Results are shown for the blunted nozzle (red, left) and the conical nozzle
(green, right).
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FIGURE 5 | Influence of nozzle geometrical parameters (Rb � Rbig, Rs � Rsmall, Lu � Lupper, Ll � Llower and Rm � Rmiddle) on the maximum shear stress response,
obtained using Gaussian Process, for different biomaterials (columns) and nozzle shapes (blunted or conical, in rows). The main effects are shown in the two top rows,
where the “0” value in the X-axis represents the middle value from the nozzle geometry parameter range, and −1 and +1 are towards the low and high limit, respectively.
Similarly, higher values of the scaled response (vertical axis) are associated with higher values of maximum shear stress. The sensitivity of each variable towards the
model is summarized in the box-plots at the two bottom rows. Relative sensitivity at value “0” indicates no influence.
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model response (maximum shear stress in our case), and the
varying trend of the input parameters with the response variable.
All the data wrangling and plotting were done with the package
collection—“tidyverse” (version 1.3.0) (Wickham et al., 2019) and
“ggplot2” (version 3.3.2) (Wickham, 2016), respectively.

RESULTS

Shear Stress as Predictor of Cell Viability
To corroborate the use of shear stress as a predictor for cell
survival in 3D bioprinting, we simulated a series of experimental
studies reporting cell viability results for a range of printing
parameters such as pressure, nozzle radius, flow rate, material
properties and duration after printing. The computed maximum
shear stress value (MSS, maximum of τ) for each parameter
combination (using our CFD simulation platform) is plotted
against the experimentally measured cell viability (as reported
in the literature) in Figure 2. Cell viability decreases significantly
with increasing shear stress values, except for one experiment
where cell viability remained more or less constant with the
author reporting the absence of statistical significance (Khalil and
Sun, 2009). All the chosen studies, used a blunted nozzle shape,
facilitating the direct comparison. Whenever all the parameters
are not found from the report (such as radius of nozzle entry or
length of the lower nozzle in a few cases), it is assumed by
comparing with similarly shaped nozzles in the NordonEFD
bioprinting nozzle catalogue (Table 3). The exact relation
between cell viability and shear stress depends on several
variables, including the material and the cell type. Based on
these results, in the remainder of this study, MSS is used as
the output quantity to evaluate the different nozzle designs.

Qualitative Description of the Response
Variables
Figure 3 shows the distribution of the shear stress throughout the
blunted and the conical nozzles. This distribution is similar for all
materials and nozzle design parameters, so only results for one
material (Alginate) for both nozzle shapes are depicted. As
expected, the shear stress presents a gradient with a low value
at the inlet (<2 kPa), reaching its maximum value at lower part of
the nozzle. Another important observation is that this maximum
shear stress (MSS) occurs only at the nozzle outlet for the conical
design, while a region of high shear is present throughout the
whole lower nozzle for the blunted design.

The box/violin plot of Figure 4 shows the distribution of
important response variables such as the MSS (left), flow rate
(middle) and the average viscosity of bioink material at the nozzle
outlet (right) for all the 1,200 simulations (2 nozzle designs × 3
materials× 200 unique designs). Less variation in theMSS is observed
for blunted nozzle designs than for conical nozzle designs in the
investigated parameter ranges. For the conical nozzle, maximum
shear stress ranges between 6.5–52, 3.8–44 and 4–35 kPa forAlginate,
Alginate-Gelatin and PF127, respectively; and for the blunted nozzle
those are 0.7–12, 0.2–5.5 and 0.5–8.5 kPa, respectively. Between the
two types of nozzles, conical nozzles achieve higher maximum shear
stress, but also yield higher flow rates (middle plot in Figure 4),
meaning increased printing speeds compared to the blunted designs.

Quantification and Trends Using Machine
Learning
The Gaussian Process model captures the sensitivity of all
parameters, which is evident from the 90% confidence
intervals (the grey region around the trend-lines in two upper

FIGURE 6 | Influence of shear-thinning material properties on the maximum shear stress keeping all other factors constant for each panel. Every point and trend-
line are colored with distinct values of “n” (power-law index). Low (n � 0.1) and high values (n � 0.75) represent highly shear thinning and almost Newtonian fluids,
respectively. The left and the middle panels showmaximum shear stress (MSS) in function of exit nozzle radii (Rs) at Rm � 2.0 mm. Right panel shows MSS in function of
middle nozzle radii (Rm) at Rs � 0.2 mm. The nozzle shapes and relative MSS distributions are shown in the inset (darker colors correspond to relatively higher shear
stress region, not to the same scale). The grey regions in the graphs with varying Rs correspond to the values that are beyond the range of commercially used 3D printing
nozzles.
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rows of Figure 5). Also, randomly dividing the dataset and
running GP for each material-nozzle combination yields
identical results, which validates its applicability to a new
dataset (Supplementary Figure S2, S3). The plots of the two
upper rows in Figure 5 show the influence of each geometrical
parameter on the MSS for the three hydrogels modeled (Alginate-
Gelatin, Alginate and PF127). The outputs are centered and
scaled so that all parameters can be seen in a single graph to
observe their relative influence on the response measure. When
varying Rbig and Lupper for either nozzle shape, the response
remains unaltered (a flat line along the X-axis), indicating that
the nozzle entrance radius and the upper nozzle length have a
negligible influence on MSS. In contrast, Rsmall, Llower and Rmiddle

(for conical only) have considerable influence on the MSS for
both nozzle shapes, meaning that the geometry of the bottom part
of the nozzle has most influence. The sensitivity of each

geometrical parameter to the overall output variable MSS is
shown in the box-plots at the bottom rows of Figure 5, with
similar conclusions drawn from the main effect plots in the upper
panels. For example, for a blunted nozzle shape combined with
Alginate ink, Rbig and Lupper having nearly no influence on the
MSS; whereas the two other parameters, Rsmall and Llower, having
altering values, contributes significantly to the MSS.

Figure 6 shows the combined effect of shear-thinning
properties (power-law index, n) and the geometrical variables
Rsmall and Rmiddle on the MSS for Alginate materials, while the
other parameters are kept constant. Shear-thinning reduces the
effect of geometric variation on the MSS. For the conical
geometry, the effects of increasing Rmiddle on the maximum
shear stress is linear for all values of “n”. In case of Rsmall, the
grey region on the right corresponds to values that are beyond the
range of commercially used nozzles. Rsmall has opposite effects on
MSS for the blunted and the conical design, as could already be
observed in Figure 5. For almost Newtonian materials (n � 0.75)
the conical nozzle shows more complex behavior with varying the
power-law index and Rsmall, where shear stress first increases
sharply and then decreases for larger values of Rsmall.

The counter-intuitive results for the blunted geometry, where
MSS increases for increasing values of the outflow radius, are a
consequence of the chosen print strategy where a constant
pressure difference is maintained for all nozzle designs during
the print process. Table 4 contains the computed flow rates
obtained during pressure-driven printing and vice-versa for a set
of conical and blunted nozzles, where the Rsmall and Rmiddle values
are varied within the commercially used range. This shows that in
order to maintain a constant pressure difference during printing
for the various nozzle designs, the flow rate significantly increases
which causes an increase in MSS. When a flow-driven process is
simulated for the same nozzle designs (through adaptation of
print pressure), an increase in Rsmall results in a decrease in MSS,
for both nozzle types. Ning et al. experimentally studied cell
viability after printing at constant flowrate but with different
nozzles diameter (Ning et al., 2020). The trend in viability they
observed corresponds with the computational model predictions

FIGURE 7 | Influence of nozzle diameter on cell survival/recovery when
printed at constant flow rate with varying nozzle diameter, vs. shear stress
values obtained in our CFD simulations. The experimental results and model
input parameters are taken from the reference (Ning et al., 2020).

TABLE 4 | Quantification of the difference between pressure-driven and flow rate-driven bioprinting and their effects on response variables such as maximum shear stress,
viscosity and velocity. Also, for the pressure-driven bioprinting, the resulting flow rate is quantified (last column). For flow rate-driven bioprinting the resulting pressure
difference is quantified.

Input Output

Simulation Nozzle Rs Rm Max shear stress (kPa) Viscosity (m2s−1) Velocity (ms−1) Flow rate (µLs−1)

Constant pressure (340 kPa) Conical 0.227 1.000 14.39 4.60E-05 21.08 3,420.49
0.227 3.500 34.73 2.69e-5 23.70 3,776.19
0.050 1.729 39.67 1.32e-5 20.03 159.06
0.420 1.729 15.54 5.99e-5 23.22 12,799.20

Blunted 0.050 – 1.27 3.96e-4 0.07 0.57
0.420 – 8.87 2.91e-4 15.10 8,355.76

Simulation Nozzle Rs Rm Max shear stress (kPa) Viscosity (m2s−1) Velocity (ms−1) Pressure (kPa)
Constant flow-rate (3,500 µLs−1) Conical 0.227 1.000 14.93 4.53e-5 21.66 360

0.227 3.500 31.56 2.81e-5 22.06 300
0.050 1.729 1,627.14 1e-5 441.65 100,000
0.420 1.729 4.09 1.13e-4 6.33 530

Blunted 0.050 – 955.74 1.2e-4 446.14 330,000
0.420 – 5.09 1.2e-4 6.32 130
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where smaller lower nozzle diameters (Rsmall) led to lower
maximal shear stresses and hence higher predicted viability
(Figure 7).

DISCUSSION

Extrusion-based bioprinting is at the heart of much research
activity due to its potential use in a regenerative medicine
context as the technology allows for the deposition of materials
and cells in a 3D spatially controlled manner. The process still
suffers from a low cell viability post-printing compared to
other bioprinting modalities. Cells in the nozzle of a bioprinter
can undergo cell death and unwanted cell differentiation due
to (too high) shear stress. In this study, a computational model
was used to study the effect of the nozzle geometrical
parameters on the maximum shear stress, shear rate and
outlet hydrogel velocity in a DoE approach. 200 designs
each for both the blunted and the conical nozzles were built
by varying geometrical parameters within a predefined range
using LHS. In addition to the nozzle shape, different hydrogels
(each with a different level of shear-thinning) were used during
the simulations, resulting in a total of 1,200 simulated nozzle
shape-biomaterial combinations tested under fixed printing
pressure. After initial model validation, a series of screening
experiments reported in the literature was modeled to
corroborate the use of maximum shear stress as a measure
of cell viability. The influence of geometrical parameters on
MSS for the six cases was analyzed through Gaussian Processes
and implications for the design of tailored nozzles were
investigated. Finally, these computational results were
compared to dedicated experiments reported in the
literature investigating the effect of the lower nozzle
diameter in blunted nozzles.

In silicomodels of extrusion-based bioprinting reported in the
literature often reduce the model domain to the lower part of the
nozzle, especially for the blunted nozzle (Khalil and Sun, 2009;
Rezende et al., 2009; Lee and Yeong, 2015; Paxton et al., 2017).
Such a simplified geometry is not capable of capturing the
pressure drop in the upper part of the nozzle. Under pressure-
driven flow conditions such as simulated in this study, we found
that the pressure drop in the upper part of the nozzle might not
always be negligible as assumed by some studies using analytical
models, such as described by Eqs 3, 4. Even if “Δp” is kept
constant, it affects the flowrate with varying geometrical
parameters, hence the printability and also the shear stress
magnitude (see Table 4). In other words, the assumption can
be valid in a few cases depending on the values of Llower or
Rsmall but not over the entire range of commercially available 3D
printing nozzles, which we can easily visualize from the pressure
difference in our simulations. Such advantages encouraged the
bioprinting community to use CFD based simulations in recent
years (Billiet et al., 2014; Emmermacher et al., 2020). It is
worthwhile to mention that in silico bioprinting studies
employing CFD modeling often also make several
assumptions, serving to reduce complexity. These assumptions,
also made in the present study, pertain to the no-slip boundary

condition and incompressible and laminar flow of the bioink.
Another assumption is the implementation of hydrogel bioink as
single-phase without considering the encapsulated cells as
separate entities, for which it was shown that cells with a
diameter less than 10% of the nozzle radius can be assumed to
be macroscopically monophasic with the hydrogel
(Emmermacher et al., 2020).

A multitude of studies has focused on the in silico aspects of
the bioprinting process, with either printability or cell viability as
the focal point. In an experimental study, Webb et al. aimed to
optimize print parameters by using nozzle diameter and pressure
as the surrogate to account for the shear stress and printability,
since there is no direct measure of shear stress experimentally
(Webb and Doyle, 2017). Billiet et al. found the critical areas of
shear stress in their CFD model for blunted and tapered nozzle
design (Billiet et al., 2014), which corroborates well with our
findings. Emmermacher et al. used a CFD model that takes
account of hydrogel material property, pressure and nozzle
diameter, however focusing particularly on the conically
shaped print nozzle (Emmermacher et al., 2020). A thorough
comparison of the blunted and conical nozzle for similar print
conditions has not been done, with some experimental studies
reporting only differential cell viabilities with the two types of the
nozzle. The application of machine learning in the design
optimization of 3D extrusion-based bioprinting has been
hinted at in perspective papers (Kim et al., 2019; Yu and
Jiang, 2020) but has not yet been reported, to the best of our
knowledge. In this study, we have shown that with constant print
pressure certain geometrical parameters such as the radius of exit
nozzle radius, the two nozzle shapes can behave in an opposite
manner in the commercially available range (Figure 6, varying
Rsmall). It also indicates that if the shear-thinning ability of a
bioink material is varied, a contrasting shear stress response
might be obtained at the limits of Newtonian and non-
Newtonian behavior, even with the same type of nozzle
(Figure 6, conical nozzle varying Rsmall). Here, the utility of
the ML (GP) approach over conventional (linear) regression is
justified, since a linear response is obtained when regression
models are used in DoE, which may not be correct in more
complex systems (Krausch et al., 2019).

Across all the nozzle geometrical parameters, all the
parameters have consistent responses on the maximum shear
stress, except Rsmall. The main reason behind this is that for the
pressure-driven bioprinting scenario, the flow rate does not
remain constant with varying Rsmall. A higher flow rate in the
broader nozzle associates with higher flow velocity, which in turn
leads to higher maximum shear stress in a blunted nozzle. The
situation is more complex in conical, where higher flow rate
indeed associates with increasing nozzle radius (conical nozzles at
constant pressure in Table 3), however the shape of the lower
nozzle changes (change in the tapering angle) unlike the blunted
which affects the shear stress distribution. With the low Rsmall, the
tapering angle is large, and the stress is concentrated near the
nozzle exit whereas for a high Rsmall the shear stress spreads to a
larger area with less maximum value. Increasing Rmiddle (hence
increasing the tapering angle) while keeping all other factors
constant, leads to higher shear stress (Table 4). It might be helpful
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to think of the blunted nozzle as a simpler case of the conical,
where Rsmall � Rmiddle. We can see from Figure 5 that the trends in
Rsmall in the blunted nozzle resemble those of Rmiddle in the conical
nozzle. The highest shear stress region occurs near the nozzle tip
in the conical but near the middle portion for the blunted nozzle.
This is commensurate with what differentiates the two nozzle
types, namely the shear stress distribution, as noted by some prior
studies (Billiet et al., 2014; Paxton et al., 2017; Ning et al., 2020).
Very few studies have reported comparing different nozzle
geometries for extrusion-based bioprinting, however the
number of geometries tested per study is limited (Li et al.,
2011; Jiang et al., 2019; Emmermacher et al., 2020). Another
asset of in silico modeling is that it provides a common platform
to quantify and compare different experimental studies as shown
in Figure 2, thereby allowing to aggregate insights from different
studies.

Not only different geometries can be compared through a
quantitative in silico model platform, but also simulated results
from studies executed with different bioinks can be quantitatively
compared. It is reported that the Non-Newtonian behavior of
hydrogels is only strong with power-law indices below 0.5 and
polymer behaves almost as a Newtonian fluid at values of 0.8 and
higher (Chhabra and Richardson, 2008). This study showed that
the shear-thinning capacity (high vs. low “n”) of material results
in the reduction of the shear stress in the nozzle. Varying the
composition for composite hydrogels such as AlgGel has been
shown to affect both the printability and cell viability, in addition
to the change in other processing parameters like gelation
temperature, holding time, incubation time (Ouyang et al.,
2016). For the blunted geometry, at all levels of shear-
thinning, increasing the Rsmall at first leads to higher MSS,
with decreasing effect as Rsmall approaches Rbig. However, the
extent of shear-thinning yields contrasting effects in the conical
nozzle. As mentioned before, varying Rsmall leads to the change in
two factors simultaneously: the shear stress distribution and the
flow rate, which oppositely affect the MSS. For more Newtonian
material (n � 0.75), an increase in flow rate dominates first,
leading to an increase in MSS, but then the change in the shear
stress distribution starts dominating and MSS decreases, leading
to a relatively complex response with an inflection point, for
increasing Rsmall in the conical nozzle. It can be envisaged that
with a certain combination of material properties and geometrical
parameters (Rsmall), these two factors can even equalize each
other, leading to almost no influence on the maximum shear
stress. This is observed in our simulation with a low shear-
thinning material (AlgGel, n � 0.608) in the conical nozzle
(main effect plot in Figure 5). This also substantiates the
importance of the interaction between material property and
nozzle geometry in a particular range of values relevant to 3D
bioprinting, to the shear stress experienced by cells.

Apartfrom printability, cell viability is the key aspect in
evaluating the performance of a 3D bioprinted scaffold or
construct (Sharma et al., 2020). However, no consensus has
been reached on the relation between the influential parameters
and cell viability. For example, shear stress has been shown to
affect the cells adversely in many studies (Nair et al., 2009; Li
et al., 2011; Billiet et al., 2014; Wüst et al., 2015; Paxton et al.,

2017), whereas some studies report little or no influence (Khalil
and Sun, 2009). The reason for this can be of methodological or
of intrinsic nature. Firstly, the time point when reporting cell
viability ranges from immediate post-printing to a much longer
timescale, e.g., up to 7 days (Blaeser et al., 2016). Secondly,
different cell lines are used in the literature to perform cell
viability evaluation, each having inherently different abilities to
recover and regain viability as reported by Chang et al. (Chang
et al., 2008). Combining these elements with the different
materials and print settings leads to the situation where
direct comparison of the different studies is neither feasible
nor advisable. Figure 3 and (Table 3) show that, given time,
HepG2 cells recover and increase viability after printing with
3% w/v alginate bioink, as can be appreciated by comparing cell
survival immediately after printing (orange regular line) and
the situation 6 and 24 h after printing. Printing three different
cell lines (HUVEC, RSC, HAT7) with 0.2% w/v alginate as
bioink (red lines) resulted in different degrees of cell viability
(Ning et al., 2020). However, L8 and RSC96 cells bioprinted
with 2% w/v alginate as bioink (purple lines) showed no
discernible difference in viability at the same printing
condition (Ning et al., 2018). As an intermediate conclusion,
almost all studies we encountered utilizing stem cells (such as
hMSC, hiPSC, hESC) report the adverse effect of increasing
pressure or shear stress on cell viability (Faulkner-Jones et al.,
2015; Blaeser et al., 2016; Paxton et al., 2017; Emmermacher
et al., 2020) (see Figure 2). In line with this, here we did not
assume any particular cell-specific property, we focused instead
on print conditions and geometrical parameters defining the
physical forces such as maximum shear stress acting on the cells
during printing, which affects cell viability (Sharma et al., 2020).
If we compare the range of shear stresses reported in the
literature using the analytical equations (up to 3 kPa,
Figure 2, Eq. 3) with that obtained in our simulations (up
to ∼50 kPa, Figure 4), the analytical equations yield a single
value rather than the shear stress distribution obtained in the
CFD simulations.

Increasing the nozzle diameter maintaining the same flow
rate led to lower maximal shear stresses in the computational
model (Figure 7), a trend confirmed by the experimental
results. However, due to the particular combination of cell,
material, nozzle and printing conditions, the experimental cell
viability results did not result were not statistically significant.
While for the general studies varying pressure or flow rate
without altering the nozzle geometry we see a strong
concordance between maximum shear stress and cell
viability (Figure 2), the numerical and experimental results
for studies with varying Rsmall for the blunted nozzles indicate
that other factors might also be important in addition to the
magnitude of shear stress. Residence time has been suggested
by a number of studies as another strongly influential factor
next to (or in some cases more important than) the magnitude
of the shear stress (Li et al., 2011; Faulkner-Jones et al., 2015;
Paxton et al., 2017; Ning et al., 2020). It is not only the
magnitude of the shear stress but also the exposure time of
the cells to that magnitude that will determine the extent of cell
damage.
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This is an area where we can build upon our present
simulation platform to build a model that accounts both for
the effect of residence time as well as shear stress on cells. Such a
model could be used in a multi-objective optimization finding the
printing conditions leading to a compromise between lowering
shear stresses and increasing residence time. This is likely to
provide further insight into the nature of the 3D printing process
with shear-thinning bioink materials. Lastly, the approach
presented here is not limited to nozzle geometrical parameters
but is also applicable to other optimization aspects of bioprinting.
One such scenario can be to obtain parameters for the fastest
printing (using the flow rate as the response variable in the
Gaussian Process model) while maintaining a predefined
minimum level of cell viability.

CONCLUSION

In summary, the findings demonstrate that shear stress and thus
cell viability will be strongly influenced by specific geometrical
features of the nozzle and the hydrogel selected in the bioprinting
process, alone or in combination. The most influencing geometry
parameters dictating the maximum shear stress, are the radius of
the middle and the exit of the nozzle, in addition to the lower
nozzle length. The effect of nozzle geometry and material
properties (extent of shear-thinning) are not always separable,
but rather influence the shear stress response along with other
flow properties in a combinatorial way. The identification of
crucial parameters that affect the cell fate or the flow properties
and the relation between them, is the main benefit of introducing
in silico modeling combined with a design of experiments
approach, analyzed using machine learning methods, allowing
to probe the whole commercially available print nozzle spectrum.
This may reduce the number of preliminary trial-error
experiments that need to be carried out and result in a
reduction of the associated time and expenses. An additional
advantage of in silico modelling is that it allows to quantitatively
compare different experimental setups and their outcomes. We
believe that the findings discussed here can stimulate further
development and potential application of in silico tools in the
relevant areas of the bioprinting field.
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